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Abstract 
In a recent literature, the structural properties of knowledge networks have been 
pointed out as a critical factor for cluster structural changes and long run 
dynamics. Mixing evolutionary economic geography and network-based approach 
of clusters, this contribution aims at capturing and discussing the particular 
influence of hierarchy (degree distribution) and assortativity (degree correlation) 
in the innovative capabilities of clusters along the industry life cycle. We test our 
propositions in the field of the mobile phone industry in Europe from 1988 to 2008. 
We use EPO PATSTAT and OECD REGPAT to capture cluster trends, and R&D 
relations from European Framework Programs to capture knowledge networks 
and their evolving structural properties. Our findings provide new insights to 
understand the organization of clusters over time in order to perform along the 
industry life cycle 
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1 Introduction 
 
The literature has underlined the importance of networks for cluster performance, either to 
boost innovative capacities of clustered firms or to enhance firms formation and growth (Jaffe 
et al., 1993; Audretsch and Feldman, 1996b; Pouder and John, 1996; Buenstorf and Klepper, 
2009). Porter (1998) already pointed to interaction and networks as one of the basic 
components of clusters, together with the co-location and the industrial dimensions. The 
current context featured by complex knowledge and rapid change has exacerbated the 
importance of networks. Innovation and knowledge creation are interactive processes 
(Nooteboom, 2000; Antonelli, 2005; Sorenson et al., 2006). Consequently, cluster innovative 
performance is strongly dependent on the capacity to host interacting organizations possessing 
and combining different and complementary competences and pieces of knowledge. In the 
policy sphere, these ideas have sustained the popularity of cluster policies to boost 
collaboration (Martin and Sunley, 2003). In the academia sphere, they have been strengthen 
by the current "relational turn" in economic geography (Bathelt and Glücker, 2003; Boggs 
and Rantisi, 2003), as well as the increasing availability of relational data and powerful 
analytic tools. 
 
The convergence of these trends has produced an important bulk of studies trying to go 
beyond the treatment of networks as a metaphor. Researches form economy, sociology, 
management science and geography have tried to open the black box of networks by studying 
their formation, properties and evolution. This wave has structured around two interdependent 
questions. On the one hand, the decision of tie formation/disruption and the parameters behind 
partners selection (Jackson and Wolinsky, 1996; Ahuja, 2000; Rivera et al., 2010; Balland, 
2012). On the other hand, the features of the relational structure emerging from the 
aggregation of individual relational decisions (Borgatti and Everett, 1999; Uzzi and Spiro, 
2005; Vicente et al., 2011). 
 
Network functioning is heterogeneous across/along industries and space. Literature on 
technological systems has shown that network tie formation and network structuring may 
differ across technologies or industries (Broekel and Graf, 2012), as well as along the 
technological or industrial cycle (Balland et al., 2013b; ter Wal and Boschma, 2011). 
Similarly, network functioning may be not independent of the geographical context. In that 
sense several papers have tried to identify both structural properties of networks in cities, 
clusters and regions favoring or hampering their innovative performance (Fleming et al., 
2007; Breschi and Lenzi, 2012), and the features and behavior of actors in key positions in the 
structure (Giuliani and Bell, 2005; Morrison, 2008). The recent literature on cluster life cycles 
and regional resilience try to ally both of them to study how dissimilar network structures in 
particular locations perform differently by their capacity to associate or dissociate in the right 
moment of the technology life cycle (Suire and Vicente, 2009; Crespo et al., 2013). 
 
The present chapter joins this literature. Our aim is to test the influence of two new structural 
properties of networks in cluster innovative performance: network hierarchy and network 
assortativity (Crespo et al., 2013). They complete small world (Watts and Strogatz, 1998) and 
core/periphery (Borgatti and Everett, 1999) structural measures at two levels. On the one 
hand, hierarchy introduces a structural measure of the existence (or not) of leading 
organizations able to coordinate systemic processes of innovation. On the other hand, 
assortativity introduces a measure of the structural openness, i.e. the connectivity between the 
core and the periphery that enhances the circulation of knowledge between both, favoring the 
arrival of new ideas. We test the influence of these two properties on the European mobile 
phone sector, which is characterized by standardization, modularity and rapidly shrinking 



product life cycles. Our results show that cluster innovative performance needs hierarchical 
and disassortative networks. This seems particularly important for industries where 
standardization processes and aggregation of complementary services are important, as it is 
the case in the mobile phone sector. Moreover, the important shock suffered by mobile phone 
sector in 2000 lets show that the influence of hierarchy and assortativity varies between 
growth and maturity industrial stages. 
 
In the remainder of the chapter we proceed as follow: Section 2 develops the theoretical 
concepts we aim to test. It examines hierarchy and assortativity arguing why they matter for 
cluster innovative performance and elaborates the corresponding hypothesis. We discuss them 
with particular insights on the mobile phone sector in Europe. Section 3 presents the context 
of the analysis, the data collection process, the variables construction with particular detail on 
the two measures proposed for hierarchy and assortativity, and the estimated method used. In 
Section 4 we present the main results of the estimated models. Section 5 discusses the results 
on the context European mobile phone technological domain. Finally, Section 6 concludes. 
 
 
2 Network properties for cluster performance  
 
2.1 Networks and clusters 
 
Taking a network perspective to approach cluster, we can define them as a set of local nodes 
(organizations) in a particular field, and the ties defined on them. Organizations in clusters 
have heterogeneous institutional forms, relational capacities and cognitive bases. They may 
construct relations of different nature (productive, commercial, cognitive or social) that work, 
primarily or subsidiary, as channels for voluntary or involuntary knowledge flows. The union 
of organizational and relational sets results in a network through which knowledge and 
information circulate more or less efficiently depending on its structural features. 
 
The current context is featured by increased competition based on differentiation and rapid 
change. The continuous development of new products with an increasing number of 
complementary services and utilities drive the competition for the market (Moore, 1991). 
Organizations need to collaborate with others in order to get complementary pieces of 
knowledge and create differentiated products fast enough to be competitive. Consequently, 
the knowledge creation process becomes complex and composite (Nooteboom, 2000; 
Antonelli, 2005). 
 
Atmoshere (Marshall, 1890), noise (Grabher, 2002) or buzz (Storper and Venables, 2004) are 
some of the concepts developed to underline the importance of co-location to gain access to 
valuable information and knowledge, voluntary or involuntary circulating locally. Thick local 
relational sets become the scaffolding for fast diffusion of knowledge that boosts innovative 
performance of clusters. Local organizations may also build up relations with organizations 
located elsewhere. Such distant relations, or pipelines, fill two functions. On the one hand, 
they give access to no-redundant ideas circulating elsewhere, and so as source of novelty, they 
may increase the innovative performance of the cluster (Uzzi, 1997). On the other hand, they 
are fundamental to embed the local cluster in a larger network that configures the global 
technological domain (Owen-Smith and Powell, 2004). The performance of the local 
environment and the global technological domain are mutually reinforcing (Bathelt et al., 
2004). 
 
However, networks are in permanent change. The process of network configuration is done by 
a successive and cumulative decisional process. Organizations chose their location (entry/exit 



decision). These are strategic decisions taken at a moment of time with a vocation to last give 
rise to the local set of nodes. Moreover, organizations chose their partners. Partnership 
construction is also strategic but much more fluid. So, organizations are continuously 
creating, maintaining or disrupting relations of different nature with other organizations. This 
self-organized process of organizations entry/exit and of relations formation/disruption 
produces a large diversity of structures not neutral for cluster innovative performance 
(Markusen, 1996; Cattani and Ferriani, 2008). 
 
The link between innovation performance and the heterogeneity of network structures has 
produced several attempts to identify which network structural properties favor or hamper 
regional innovation performance. The most popular efforts concern small world networks 
(Kogut and Walker, 2001; Uzzi and Spiro, 2005; Fleming et al., 2007; Schilling and Phelps, 
2007). They simultaneously exhibit high clustering and low average path length (Watts and 
Strogatz, 1998). The combination of these two properties is said to boost innovation. 
Clustering influences innovation because closure of networks generates trust (Granovetter, 
1985; Coleman, 1988), and trust promotes collaboration and facilitates risk sharing, resource 
pooling and information diffusion. Low path length boosts innovation because it increases 
network connectivity, and so it makes easier knowledge circulation and transmission. 
Core/Periphery networks have also received important attention. They exhibit a group of 
organizations densely connected: the core; and a set of organizations loosely connected to it: 
the periphery (Borgatti and Everett, 1999). In this case, most of the studies have focused on 
differential performance between core and peripheral organizations, rather than in the 
influence of core/periphery structures in aggregate performance (regional or cluster). They 
argue that organizations in the core have a better access to knowledge flows (Giuliani and 
Bell, 2005) and higher survival rates (Mitchell and Singh, 1996). Such structures tend to be 
stable on time (Orsenigo et al., 1998) due to preferential attachment mechanisms (Barabási 
and Albert, 1999), and the influence of prior network structure in new ties formation (Gulati 
and Gargiulo, 1999). Thirdly, some authors have introduced the geographical dimension more 
explicitly to study the influence of network openness on performance, i.e. how the local 
structure of relations is embedded in a global context. They conclude that distant relations 
have a positive influence in regional innovative performance, because they bring new ideas 
into the region to avoid redundancy and lock-in (Bathelt et al., 2004; Breschi and Lenzi, 
2012). In these structures the local organizations building distant relations, knowledge 
gatekeepers, have a prominent role for both cluster performance and vulnerability (Morrison, 
2008; Hervás-Oliver and Albors, 2012). Recently, Crespo et al. (2013) have argued that 
hierarchy and assortativity of local networks matter for cluster performance. These structural 
properties account for the existence of a core/periphery structure, and for the features of the 
connexions between both. We develop both of them in the following sections. 
 
 
2.2 Hierarchy 
 
Organizations in clusters are heterogeneous at several levels. From a relational perspective 
there are three features of the organization that influence his engagement in collaboration. 
Firstly, organizations have different absorptive capacity. The higher the capacity of an 
organization to identify, assimilate and exploit new external knowledge (Cohen and 
Levinthal, 1990), the higher his incentives to collaborate. Secondly organizations may have 
different models of knowledge valuation or management (Dasgupta and David, 1994; Owen-
Smith and Powell, 2004). The more an organization prioritizes accessibility over 
appropriation, the more open to collaboration it will be. This choice depends on the 
institutional nature and the strategic positioning of the organization. Finally, organizations 
differ on their size. Since relations construction and maintenance is expensive in time and 



resources, we can expect that larger organizations, with more resources, will be more active in 
collaboration than small ones. 
 
Network hierarchy refers to the heterogeneous relational capabilities of organizations in the 
cluster, reflecting an unequal distribution of power in the cluster. Organizations with many 
relations, the core, may co-exist with others loosely connected, the periphery. The first, on the 
top of the hierarchy, have a prominent position to lead the systemic technological process. 
The second, in the lower levels of the hierarchy, bring the different complementary modules 
to integrate. 
 
We can consider clusters as successful when they manage to impose standards or dominant 
designs in a given moment of time. Consequently, when products are complex, the need to 
construct linking mechanisms among the different components increases (Tushman and 
Murmann, 1997). Hierarchical networks become efficient structures to set up compatibility 
and interoperability among the different components in order to reduce system dysfunctions 
and enhance diffusion. So, clusters are the locus for imposing integrated technological 
systems, and hierarchical structures a necessary condition. 
 

H1: Network hierarchy displays a positive effect on cluster innovative performance 
 
 
2.3 Assortativity 
 
Innovation is the result of a re-combination process, where blocks of existing knowledge are 
melded for new knowledge creation. So, although hierarchy matters to organize the collective 
process, innovative performance will also depend on the structural degree of openness. It is 
not only a matter of having some leading core firms or institutions to organize the process, but 
also about how these different hierarchical levels are interconnected. We refer to it as the 
assortativity property of networks. It reflects the tendency of nodes in a network to connect 
with other nodes that have similar or dissimilar degree. A network is assortative when highly 
connected nodes tend to interact with highly connected nodes, and poorly connected nodes 
with poorly connected nodes. At the opposite, a network is disassortative when highly 
connected nodes tend to interact with poorly connected nodes, and conversely. 
 
Network structural properties emerge with the network evolution manifested by nodes entry 
(or exit) and by their decisions in the formation or disruption of relations. Partners selection 
decision considers, among other factors, the existing network structure as well as the 
particular structural position of certain nodes that make them more or less attractive (Ahuja et 
al., 2009; Baum et al., 2012)1. When closure behavior dominates bridging behavior in 
partners’ selection, assortative networks emerge. Organizations create new relations with 
organizations already collaborating with their own partners. Their motivations for such 
behaviors are enhanced trust, lower monitoring costs, and lower risk of opportunistic 
behaviors. Contrary, when bridging behavior dominates closure behavior disassortative 
networks emerge. Organizations adopt a disruptive relational strategy and build up new 
partnerships with isolated organizations or disconnected groups of organizations. In doing so 
they look for new and no redundant knowledge that enhances higher innovative potential. 
 
Assortative networks are closed. There are groups of organizations that collaborate, but these 
                                                 
1 In the establishment of new relations and the selection of partners individual and dyadic features also matter. The firsts, 
explained above, refers mostly to size, absorptive capacities and knowledge management strategy. The second refers to the 
similarities or differences between both potential partners. The proximity approach gives a powerful framework to integrate 
five different dimensions (Boschma, 2005). 
 



groups are not properly connected. Consequently, there is a redundancy of knowledge flows 
within the network that may produce negative lock-in and reduce the cluster innovative 
performance. Due to an excess of conformism in the relational pattern, the new explorative 
ideas that are often produced in the periphery by new SMEs do not reach the exploitation 
phase in the core of the cluster. The core and the periphery of the network are not sufficiently 
connected, i.e. there are important missing links between the leading organizations in the core 
and the burgeoning periphery. Contrary, with disassortative networks, the organizations in the 
top of the hierarchy multiply their relations with the periphery. Leading organizations have 
access to many more sources of new knowledge. Consequently, innovation and the 
exploitation of this innovation are enhanced. With disassortative networks, the lock-in in a 
technological trajectory does not imply a cluster lock-in. 
 

H2: Network assortativity has a negative impact on cluster innovative performance. 
 
 
2.4 Hierarchy and assortativity along industrial cycles 
 
Industries suffer deep transformations as time goes by. Along the industry life cycle, 
demographic and innovation patterns as well as market competition regime change (Anderson 
and Tushman, 1990; Utterback and Suárez, 1993; Klepper, 1997). In early stages, industrial 
output and new firms entries grow at high rates. At the same time, the number of exits is low, 
so the number of firms in the industry grows. From the technology perspective, the industry is 
still in the ferment era, a dominant design or standard has not emerged yet. Therefore, firms 
offer many different versions of the product and the competition regime is driven by 
innovation. There is a competition "for the market" and not a competition "in the market". 
With time, although market keeps growing entry of new firms slows down and existing firms 
start to exit. Consequently, the industrial organization changes. It ossifies around a reduced 
number of firms, and the emergence of a dominant design or standard. The nature of 
competition shifts towards price considerations and the aggregation of complementary 
services and utilities. As a result, process innovations efforts to cut costs gain importance to 
the detriment of product innovations. 
 
To the extent that industrial organization and the competitive regime change along the 
industrial life cycle, we can expect a modification of the influence of hierarchy and 
assortativity on cluster performance across industrial stages. ter Wal and Boschma (2011) 
discuss the relation between network configurations evolution and the industry life cycle. 
They argue that, at the emergence stage, networks are quite unstable and not hierarchical 
given the sharp uncertainty about technological developments. In the growth stage, the 
network evolves toward a stable core-periphery structure due to the prominence of 
preferential attachment mechanism (Orsenigo et al., 1998), a hierarchical structure emerges. 
When the industry reaches maturity networks in the industry get locked-in due to the fixed 
patterns of interaction and the higher probability of peripheral nodes to exit. This trajectory 
may have two possible issues. On the one hand, the introduction of a new radical technology 
may start a new industrial and network cycle. The new cycle can be structure-reinforcing or 
structure-loosening depending on the fact that the organization introducing the breakthrough 
was in the core or in the periphery (Madhavan et al., 1998). On the other hand, if no radical 
new technologies are introduced, the industry decline, firms exit continues and the network 
disappears. The evolution towards one or the other trajectory depends on the assortative or 
disassortative nature of the network. 
 
H3: Hierarchy and assortativity have different influence of cluster innovative performance 
when the industry is in a growing stage or in a maturity stage. 



 
 
3 Data and methods  
 
3.1 Research setting 
 
We situate our study in the context of European mobile phone technological domain. During 
the last 30 years mobile phones have completely changed from pure voice-communication 
devices to multi-functional handsets. Nowadays, smartphones integrate voice-communication 
with digital camera, music player, payment systems, GPS, gaming or numerous Internet 
services. This process, based on technological convergence and modularity, has transformed 
mobile phone into a transversal technology with very flexible frontiers in continuous 
expansion, i.e. mobile phones are complex systems materializing the new mobility paradigm. 
 
A succession of mobile phone generations has accompanied such product transformation. 
From the 1G to the current 3G, or incipient 4G, mobile phone communications have increased 
their capacity, both in higher transmission speed and in richer content of the message. Each 
generation is based on a different communication standard. The analogue 1G was superseded 
by the digital 2G. The GSM standard, impulzed by the European Commission, overcame the 
limits of the analogue systems in terms of efficiency in the radio-spectrum allocation and in 
terms of interoperability. GSM was a success. From the mid-90s mobile phone markets 
experienced tremendous growth, and they achieved penetration rates around 100% in most 
European countries in early-2000s. At this stage competitive pressure increases and traditional 
strategies of product customization and cost reduction become important. They go with new 
product developments consisting in the aggregation of functionalities and services, i.e. new 
product innovations. This growth and the proliferation of new services encouraged the 
development of a new standard, the 3G (UMTS).  
 
In the late 90s, a combination of low interest rates and high growth rates in ICT related 
sectors generated optimistic expectations on company future profits. They rooted a stock 
market bubble anticipating further rises. This euphoria leads mobile phone operators in 
Europe to spent large amounts in 3G licenses auctions and mergers. However, they 
underestimated the cost of network development, the difficulty and cost of developing 
futuristic product and services design and the difficulties to develop new business models for 
voice and data in 3G, compared to mainly voice in 2G (Dunnewijk and Hultén, 2007). 
Contrary, they overestimated the users’ demand of 3G services (Ansari and Garud, 2009). The 
financial bubble crash of March 2000 reveals these difficulties and was source of numerous 
companies’ bankruptcies and massive restructuration in the mobile phone sector. This re-
organization made emerge two different strategies for the transition from 2G to 3G: migration 
by big leap forward, or migration by small steps though EDGE or GPRS standards, also called 
2.5G. 
 
Nowadays, the main players of the mobile phone technological domain continue to be 
network operators and manufacturers or Original Equipment Manufacturers (OEMs). The 
core business of network operators is to attract paying consumers to the use of services on 
their telecom networks that convey voice and data (e.g. Vodafone, Telefónica, T-Mobile …). 
OEMs refer to organizations that manufacture and brand handsets (e.g. Nokia, Eriksson …). 
However, the competitive pressure, the integration of new functions and the rapid product 
change has pushed the OEMs to interact and outsource to third parties certain number of 
activities: suppliers of components, assemblers of electronic components, prototype 
developers, universities... This has contributed to open the mobile phone sphere to actors 
originally from different domains, either as providers of new piece of knowledge to integrate 



in the system (e.g. Microsoft) or to become an OEM (e.g. Apple, Google). 
 
The mobile phone technological domain in Europe is an interesting context for the study of 
the influence of network hierarchy and network assortativity for two main reasons. Firstly, it 
is a sector characterized by the integration of complementary modules constituting complex 
system, rapidly shrinking product life cycles, and strong standardization processes. So, 
organizations are pushed to interact with others in order to get new knowledge and 
competences in sufficiently short time to remain competitive, i.e. knowledge networks are 
central for the technological domain evolution, and clusters are well known locus to enhance 
such knowledge flows. Secondly, European organizations and public authorities have been 
crucial for the mobile phone development. On the one hand, they established the GSM 
standard that enhances the diffusion of mobile phones. On the other hand, four out of five 
players that dominated the GSM market were European (Nokia, Ericsson, Siemens and 
Alcatel). This indicates the importance of European regions in this technological domain. 
Thus, we can expect to find several regions with a relatively important concentration of 
interacting organizations on mobile phone related activities. 
 
 
3.2 Data 
 
Data sources and extraction  
 
To test our hypotheses we exploit data of different nature from two different sources. Data on 
organizational networks are constructed through R&D project collaborations based on 
European public funded projects by Framework Programs (FP1-FP7) from the Syres EUPRO 
database. FP are created by the European Union (EU) to support and encourage research. 
Although the strategic objectives and thematic priorities may vary between funding periods, 
they follow a simple schema in which potential participants meet other organizations (firms or 
institutions) to elaborate and submit a proposal to the Commission. Funded projects may be 
quite heterogeneous in their field, duration and number of partners, but to the extent they try 
to foster trans-national cooperation they always involve organizations from several EU 
countries. 
 
Syres EUPRO contains information on all projects funded on FP1-FP7 as well as the 
organizations involved on them from 1984 to 2010. Syres EUPRO is based on raw CORDIS 
data, but it has been improved at several points: i) identification of unique organization name, 
ii) identification of unique organization type iii) creation of economic meaningful sub-entities 
iv) identification of genealogy of participants, and v) regionalization (NUTS1 and NUTS2 
level) (Barber et al., 2008). For each project, it lists the title and a brief description, start and 
end dates, broad subject categories and the organizations involved. For each organization 
participating in a project, it lists the name of the organization with unique identifier at sub-
entity level, organizational type, non-standardized address and standardized location at 
NUTS1 and NUTS2 level. 
 
As for previous contributions (Autant-Bernard et al., 2007; Scherngell and Barber, 2011; 
Balland et al., 2013c), several reasons legitimize the choice of public funded R&D 
collaborations. Firstly, steps towards standards construction with greater signal capacity and 
security, and the integration of new services result of collective projects. Secondly, based on 
strategic consideration European governments tried to boost the mobile phone industry from 
the very beginning, with particular concerns in intra-European compatibility and roaming. EU 
funds to finance these projects were fundamental. The consequence was the development of 
the GSM common standards, and the early growth of the European mobile phone sector. 



Finally, many governments have had a prominent role in the sector through the actions of the 
monopolistic position of former national operators and the national regulatory agencies. 
 
To measure cluster innovative performance, we use patent applications counts to the 
European Patent Office (EPO) regionalized by the inventors address. Although patents are 
just a partial measure of the innovative performance of regions, they have been largely used to 
this end (Fleming et al., 2007; Lobo and Strumsky, 2008; Breschi and Lenzi, 2012), because 
they contain abundant information, they are of relative easy access, and they are quite 
homogeneous across regions. We select patents related to the mobile phone technological 
domain using PATSTAT database elaborated by the EPO. We regionalize these patents by 
inventors address using REGPAT database elaborated by the OECD and based on PATSTAT 
database2. 
 
Mobile phone has become a transversal technology. To include the different mobile phone 
dimensions we have used a keywords approach. We select mobile phone projects and patents 
from Syres EUPRO and PATSTAT databases by looking for certain key-words in their 
abstracts. We define "mobile", "phone" and "telecommunication" as basic recursive 
keywords, and we use boolean operators to combine them with specific words associated to 
four layers that define the mobile phone industry: i) infrastructure layer, ii) security layer, iii) 
service/software layer, iv) terminal layer. The selection of these keywords is based on expert 
advice.  
 
Our final data on projects and patents span from 1988 to 2008. The keyword methodology 
produced a sample of 978 projects and 4124 participants from the collaborative R&D base. 
Projects are assigned to a year on the base of their starting date. For the patents database we 
get a sample of 8692 patent applications3. 
 
Network definition  
 
We construct networks for each year of the period 1988-2008. Collaborative R&D networks 
are built from affiliation matrix based on projects. Affiliation matrix contains organization-
by-project information: aij=1 if the ith organization is involved in the jth project and 0 
otherwise. From the affiliation matrix we get an organization-by-organization unimodal 
matrix: if bij≥1 ith and jth organizations have at least one project in common, if bij=0 they do 
not collaborate. 
 
Projects are annually assigned by their starting date. Since the average duration of projects is 
30.6 months, we used 3-years moving windows to construct collaborative R&D networks. 
Due to the objectives of European cooperation, FP projects are conditioned to the 
involvement of partners from different countries. We deal with this bias by assuming that 
when two organizations of the same region are in a common project they know each other, 
and so they have an effective collaboration. Contrary, for organizations of two different 
regions we assume that collaboration exists only when they are in at least two common 
projects in the same year-window, otherwise there is only a policy bias and the effective 
collaboration does not exist (Autant-Bernard et al., 2007). Consequently, two organizations in 
the same region have a relation at year t, if they collaborate in at least one project in year t, t − 
1 or t − 2. Two organizations in different regions have a relation at year t, if they collaborate 
in at least two projects in year t, t − 1 or t – 2. 
 
 

                                                 
2 April 2012 version 
3 Patents applications are selected considering DOCDB patent families to avoid double counts. 



Geographical scale  
 
The geographical boundaries of clusters are very elastic, and systematic data at cluster level 
are rare. So, although we acknowledge that clusters geographical borders usually do not 
match with administrative divisions, we are constrained by data availability. Then, 
organizational networks and patent counts are regionalized at NUTS2 level. This is the 
smallest aggregation level to locate organizations in Syres EUPRO database. 
 
The calculation of network properties requires networks with a minimum size. Networks with 
too small number of nodes do not have a minimal critical mass to properly calculate structural 
properties. To avoid this problem we decide to work only with the 19 NUTS2 regions that 
have more than 50 participations along the whole period (1988-2008). So, we obtain a panel 
with 19 regions and 21 years. 
 
 
3.3 Dependent variable 
 
We measure regional innovative performance of clusters by the number of regional patent 
applications per year. Patent applications are annually assigned based on their "priority date", 
which is considered as the closest date to the invention act. Regional assignation is done by 
inventors address. In case of patents applications with several inventors in different locations 
a complete assignment is done, i.e. patent application X is assigned to region r when an 
inventor of the patent X is located in region r. As a result we have a discrete variable taking 0 
and positive integer values. 

 
 
3.4 Independent variables 
 
Measuring network hierarchy  
 
Crespo et al. (2013) measure the level of network hierarchy as the slope of the degree 
distribution, i.e. the relation between nodes degree and their rank position. We sort nodes by 
degrees from the largest to the smallest, and transform them in log-log scale4. 
 

 
 

 

 
Where kh denotes the degree k of node h, kh

*
 
denotes the rank of node h in the distribution, C 

is a constant and a is the slope of relation. By construction, a will take 0 or negative values. In 
order to simplify interpretation, we transform it in absolute terms. If a has a high value, in 
absolute terms, the network will display a high level of hierarchy. There will be some nodes 
with many relations in a prominent network position and others with few relations. Contrary, 
low a values, in absolute terms, correspond to a network structure with flat hierarchy. 
Consequently, all nodes have more or less the same number of relations, relational capabilities 
are quite homogeneous and there is no leading organization. 
 
In hypothesis 1, we argue that hierarchy has a positive impact on cluster innovative 
performance. However, this effect might reach a threshold beyond which higher hierarchy 
damages innovative performance. To test for non-linear effects we introduce the squared term 

                                                 
4 To avoid non existing logs for isolate actors we consider that all actors have at least one relation with themselves 



of the network hierarchy measure. 
 
Measuring network assortativity 
 
To measure the level of assortativity or disassortativity of networks we use degree correlation 
as defined by Crespo et al. (2013): it is the slope of the relation between nodes’ degree and 
the mean degree of their local neighborhood. For each node h we calculate the mean degree of 
his neighborhood Vh. A node i is in the neighborhood of node h when both of them are in the 
same region, and they have, at least, one collaborative project together, i.e. they have a 
relation. If kj is the degree of node k the mean degree of node h can be calculated as follows: 
 

 
 
Then we estimate the relationship between nodes’ degree and the mean degree of their 
neighborhood: 
 

 
 
Where D is a constant and b is the degree correlation. By construction b is enclosed between 
one and minus one. If b is positive and get closer to one, then the network is highly 
assortative, meaning that highly connected nodes tend to interact with highly connected 
nodes, and poorly connected nodes with poorly connected nodes. At the opposite, if b is 
negative and get closer to minus one, the network is disassortative, meaning that highly 
connected nodes tend to interact with poorly connected nodes, and conversely. 
 
Interactive variables 
 
We check for interplay between assortativity and hierarchy with interactive variables. To do 
so, we create dummy variables to split observations in two categories: i) observations with 
high hierarchy, in this case the variable takes the value 1 if degree distribution is above the 
median, 0 otherwise; and ii) observations with low hierarchy, in this case the variable takes 
the value 1 if hierarchy is below the median, 0 otherwise. We create interactive variable by 
multiplying these two dummies with degree correlation. With this method we test if degree 
correlation has a different impact when associated to networks with high or low hierarchy 
levels. To test hypothesis 3 we use interactive variables too. We create two dummy variables 
to split observations in two sub-periods, prior and after 20005. We multiply them by degree 
correlation and degree distribution to identify differential effects of hierarchy and assortativity 
in the first and second period, i.e. prior and after the bubble crash. 
 
 
3.5 Controls 
 
To rule out potential bias and possible competing hypothesis we introduce control variables at 
network and regional level. Small world networks may enhance regional innovation by their 
combination of local dense interaction and short average path length. While the first enables 
trust formation and collaboration, the second favors connectivity and the arrival of new 
knowledge. We introduce clustering coefficient (CC) computed as "the average fraction of 
pairs of neighbors of a node which are also neighbors of each other" (Newman, 2000) to 
control for the local cliquishness effect. 

                                                 
5 The dummy for the first period takes the value 1 for years 1988-2000, and 0 otherwise. The variable for the second period 
takes the value 1 for year 2001-2008, and 0 otherwise. 



 
To control for the short path length and the existence of non-redundant relations, we elaborate 
two measures based on their different geographical scope. Internal reach (IR) focuses on 
within-region relations. It is calculated as the average of the weighted distances of each local 
node j with all other local nodes k. It takes the value 0 if all local nodes are isolates, and it 
takes the value 1 when every local node is connected with a path of distance one to all other 
local nodes (Breschi and Lenzi, 2012): 

,  

 
where nr denotes the number of inventors located in region r, and dij the geodesic distance 
between organizations j and i, belonging to the local network of region r.  
 
Contrary, external reach (ER) focuses on between-region relations, i.e. the relational distance 
between local nodes and non-local nodes: the pipelines. We compute it as the average of the 
weighted distance of each local node j with all other non-local nodes h. Similarly, it takes the 
value 0 if non local actor has an external tie, i.e. a relation with an actor in another region. It 
takes the value of 1 if all actors in a region are connected by a path of length one to all actors 
in all other regions (Breschi and Lenzi, 2012): 
 

, 

 
where nr denotes the number of inventors located in region r, and nh the number of inventors 
located in all other regions. Similarly, djh denotes the distance between inventors j and h.  
 
We include two more controls about the cohesion of the local inter-organization network. 
Network size and network density account for the number of nodes and the number of ties. 
Network size is simply the number of organizations in the region (Ln number of org6). 
Network density is calculated as the actual over the potential number of ties among local 
organizations. It takes the value 0 when all local nodes are isolates, and it takes the value 1 
when all local nodes form a clique. 
 
In addition to network features we control also for regional features that may influence their 
patenting capacity. We include variables for the regional availability of resources and size. 
Firstly, R&D expenditures are a fundamental indicator for the regional resources mobilized 
for innovative activities. However, systematic data at NUTS2 level were not available for the 
period of analysis. However, given the fact that location patterns of R&D collaborations tend 
to be stable over time (Acs et al., 2002), the use of fixed effects models should account for 
much of the variation (Fleming et al., 2007; Lobo and Strumsky, 2008). We support it with 
three key variables added to our model. Firstly, we use the number of inventors in region i at 
year t (Ln inventors). It accounts for the number of people actively engaged in inventive 
activities. Furthermore, we use regional population in thousands of inhabitants at year t to 
control for regional size (Ln population). Finally, to control for urbanization economies, we 
use population density calculated as population over regional land extension in square 
kilometres (Ln population density). 
 
Our model considers regional knowledge bases too, a fundamental regional feature that may 
affect patenting activity of regions in the mobile phone sector. To this end, we compute 
controls for knowledge diversity and for knowledge specialization. Firstly, we computed 
                                                 
6 All independent count variables are introduced in logarithmic terms. 0 count cases have been changed by 0.01 in order to 
avoid non-existence of ln(0), ln(0.01)=-4.61. 



Herfindahl-Hirschman Index using the shares on technological domains in each region (HHI 
technology). The EPO examiners assign patents to technological fields following the 
International Patents Classification (IPC). We use patent classes from patents assigned to 
region i at year t to calculate HHI technology variable. It varies between 0 and 1, and 
measures the extent to which a region is specialized in a narrow set of technologies (high HHI 
technology), or it has a diversified knowledge bases (low HHI technology). Secondly, we 
computed a mobile phone specialization index based on the number of inventors. For each 
region i at year t we calculate the number of regional inventors in the mobile phone sector 
over the total number of inventors in the region. We compare it with the same ratio 
aggregated for all regions. If the resulting index is superior (inferior) to 1 the region is (not) 
specialized in mobile phone technological domain. While HHI technology variable may 
indicate diversification or specialization in any technological field, specialization index 
variable focus only on mobile phone sector. 
 
 
3.6 Estimation framework 
 
To measure the innovative capacity of regions we construct the variable regional patent 
applications on mobile phone technological domain annualized by priority date. We model it 
for a period of 21 years going from 1988 to 2008, and for 19 NUTS2 European regions. 
Regional patent applications can only take integer non-negative values. Consequently, the 
appropriate estimation methods are count models based on Poisson distribution: 
 

 
 
Where  is the rate parameter. In the Poisson distribution the mean and the variance are equal 
(equidispersion). To obtain the Poisson regression model we specify with the independent 
variables  under the standard assumption of exponential mean parametrization: , i 
= 1, ..., N. However, the Poisson regression rarely fits in practice because, as in our data, the 
variance is greater than the mean: data are overdispersed. Under overdispersion the Poisson 
estimates are consistent but inefficient, and underestimate standard errors leading to 
spuriously highly z-values. Negative binomial models let solve this accounting by unobserved 
cross-sectional heterogeneity with a mixture of Poisson and Gamma distribution: 
 

  , where  

 
 
Negative binomial model is preferred because our data exhibit overdispersion, we reject 
Poisson model at p < 0.000. 
 
Given the panel structure of our data we modeled regional mobile phone patens with 
conditional fixed-effects specification to control for unobserved heterogeneity across regions7, 
i.e. it considers within-region variation only. Generational effects are directly estimated by 
including dummy variables for each generation existing in the mobile phone history. 
Consequently, the basic negative binomial model we estimate has the following form: 
 

 
                                                 
7 Either fixed-effects or random-effects provide consistent results, but the Haussman test supports the use of fixed effects. 



 
Where the dependent variable is the number of patent applications on the mobile phone sector 
of region i at year t. The independent variables X is a vector with the network structure 
variables that test our hypothesis (degree distribution and degree correlation), Z is a vector 
with the network and regional controls we use, α is the regional fixed effect, φ refers to the 
mobile phone generation fixed effect and ε is the idiosyncratic error term8. 
 
 
4 Results 
 
Tables 1 and 2 present the descriptive statistics and the correlation values for all variables. 
The correlation values are relatively low for most of the variables. Higher values concern 
variables catching network structural properties. This is often the case given the influence of 
network size over all network measures. However, we compute the variance inflation factors 
and we find that multicollinearity is not a problem. 
 

Table 1: Descriptive statistics 
 

 
 
 

                                                 
8 We run all the analysis with STATA 11 



Table 2: Variables correlation 
 

 
 

 
Table 3 present the modeling results to test our hypothesis. Model 1 is the baseline model 
with all controls. Model 2 includes the explanatory variables for hierarchy and assortativity, 
and model 3 examines their interaction. Finally, model 4 checks for differential impact of the 
explanatory variables in the emergence and maturity stages of the mobile phone sector. Model 
4 has the best fitting. 
 
In model 1 the coefficient estimate of Ln inventors is positive and significant since it captures 
the resources potentially available on the region for innovative activity. The unexpected 



negative and significant sign of Ln population probably indicates an overlapping effect with 
the Ln inventors variable. The variables Ln population density is positive and significant. 
Thus, it shows that positive urbanization externalities dominate congestion effects for mobile 
phone patents production. The positive and significant effect of specialization index as 
opposed to the non-significant effect of HHI technology underline the role of specialization 
economies over the Jacobian externalities for the regional production of mobile phone patents. 
For network controls, we have that external reach has an unexpected negative and significant 
effect. It may indicate the risk of too much outward-looking relations (Bathelt et al., 2004), in 
particular with small networks. This "excess" of external relations is linked to the nature of 
the data, since FP-projects are conditioned to non-local cooperations. Internal reach and 
clustering coefficient are both negative and non-significant reflecting the ambiguous results of 
the empirical small world literature. While Breschi and Lenzi (2012) find support for the 
small world model, results of Fleming et al. (2007) are much less concluding due to 
insignificancy of variables, particularly for clustering. Finally, density is positive and 
significant, and network size is positive and non-significant. 
 
Our first hypothesis finds support in model 2. Once accounting for regional characteristics 
and basic network connectivity, the linear and nonlinear effects of degree distribution are both 
positive, although only the nonlinear is significant. So, strong hierarchy in local networks of 
organizations in a given technological domain favors patenting activity. The marginal effect 
shows that an increase of 0.1 in degree distribution implies an increase of 0.97% in regional 
mobile phone patent applications9. Model 2 also supports our second hypothesis about the 
effects of assortative networks on innovative performance. We find that the degree correlation 
coefficient is consistently negative and significant for regional patenting activity: an increase 
of degree correlation 0.1 units produces a reduction of 0.076% in the regional patent counts 
on the mobile phone technological domain, i.e. more assortative networks are less performing. 
 
Model 3 studies potential interaction between both properties. We construct two interactive 
variables that split degree correlation in two groups: degree correlation associated with high 
degree distribution, and degree correlation associated with low degree distribution10. In model 
3 the conclusions for hierarchy hold. Similarly, the coefficients of both degree correlation 
variables are still negative and significant. So, assortative networks have a negative impact on 
regional patents production either when the network has a strong or a weak hierarchy. 
However, a Wald test indicates that both coefficients are significantly different; assortativity 
has a bigger negative effect on innovative performance when the network has low hierarchy11. 
 
In model 4 we test our hypothesis 3 on the differential effect of hierarchy and assortativity 
along the technological domain cycle. We extend model 2 to test if degree distribution and 
degree correlation change their influence on innovative performance prior and after 2000. We 
test this hypothesis with interactive variables obtained as a product of our explanatory 
variables (degree distribution and degree correlation) and two temporal dummies, one for the 
pre-crash period (1988-2000) and other for the post-crash period (2001-2008). We find partial 
support for hypothesis 3. For degree distribution, the linear effect is significant in both 
periods, but it has a negative impact on the patenting performance of regions in the first 
period, and a positive effect in the second. The Wald test confirms that both coefficients are 
significantly different. Concerning degree correlation, the estimated coefficients are negative 
and significant for both periods, i.e. assortativity damages innovative performance of regions 
in mobile phone technological domain prior and after the telecom crash. Thus, model 4 
                                                 
9 Marginal effect computed at the mean value of all variables in the model. 
10 A network is qualified as highly (lowly) hierarchical when its degree distribution is over (below) the median. 
11 We have also checked as percentile 66 as cut point for high/low hierarchy. Both degree correlation variables have a 
negative effect on regional production of patents, but it is only significant when associated with low hierarchy suggesting a 
compensation effect between both, i.e. networks with strong hierarchy cancels the negative effect of assortativity. 



validates hypothesis 3 for hierarchy, but not for assortativity. 
 
To sum up, these results support the first two hypothesis on hierarchy and assortativity: (1) 
strong hierarchy and (2) disassortativity increase patenting activity of region in the mobile 
phone technological domain. However, the hypothesis 3 on the shifting role of these 
properties along the technological cycle finds weak empirical support, it holds for hierarchy 
but not for assortativity. 
 

Table 3: Conditional fixed effects negative binomial of patent applications  
(1988-2008) 

 

 



 
 
We tested the robustness of the results to alternative model specifications. We have assumed 
that innovative performance of regions is continuous. We have also done the analysis by 
considering the annual relative performance of regions as dependent variable. We sort the 
regions by their number of patents in year t, and we construct a categorical ranking variable 
by assigning 2 for the top 3 regions, 1 for regions in positions 4 to 6 and 0 otherwise. Since 
the order of categories was meaningful we estimated an ordered probit model. The results of 
the analysis were consistent with those presented in table 3 and discussed above. 
 
From 1988 to 2008 there are several regions that do not get any mobile phone patent in certain 
years. So, to deal with an eventual "excessive" number of regions with 0 counts, we estimated 
zero-inflated negative binomial models (ZINB)12. ZINB models rely on the assumption that 
zero-counts and positive-counts comes from different data generating processes. Thus, ZINB 
are two-parts models, consisting of both binary and count model section. In the binary section 
we estimated a probit model with variables referring to the regional features. In the count 
section we include regional variables and network variables. The results concerning degree 
distribution and degree correlation are consistent with the regressions presented in table 3 too. 
In particular the inclusion of degree distribution and degree correlation variables improved 
significantly the overall fit of the model as compared with the baseline model13. 
 
 
5 Discussion 
 
These findings provide interesting evidence for a better understanding of the critical role of 
network properties for clusters performance, and then, complement a growing literature on 
that purpose (Owen-Smith and Powell, 2004; Boschma and ter Wal, 2007; Broekel and Graf, 
2012; Balland et al., 2013c). Moreover, these findings corroborate evidence on particular 
industrial dynamics in which knowledge variety and complementarities, technological 
integration and standardization influence the structural organization of clusters, their long run 
dynamics in a context of competing regions, as well as their endogenous capabilities of 
resilience (Crespo et al. 2013; Martin et al. 2013) 
 
First of all, model 2 supports the hypothesis according to which, along the whole period of 
time, stronger network hierarchy favors innovative performance of clusters, while stronger 
network assortativity damages it. On a one hand, European clusters that have better performed 
are the ones which contributed to bringing out few but dominant and leading companies, able 
to coordinate a wide range of other organizations holding separated but complementary pieces 
of knowledge, and able to integrate them in a systemic and complex technology. On the other 
hand, beside the critical role of hierarchy, the less clusters are assortative, the more their 
output in terms of patents increases, meaning that competing clusters are the ones that display 
a wider range of pathways between core-organizations and loosely-connected ones, such as 
new entrants or spin-offs. To put it differently, the innovative capabilities of clusters do not 
solely depend on the co-existence of leading organizations with a high relational capacity and 
other peripheral and loosely-connected ones. The hierarchical structure of clusters had to be 
coupled with a particular structure of knowledge flows in which new explorative, or even 
disruptive, ideas find channels to join the experienced and well-established core of leading 
organizations enabling to turn these ideas into new tradable products for exploitation. 

                                                 
12 36% of our observations have 0 counts. 
13 The estimation of a Hurdle model reached the same conclusions. 

 



 
These findings tend to confirm a large part of the literature on the complex industrial 
organization of the mobile phone industry. Concerning the positive role of hierarchy, Funk 
(2009) and Funk (2011) show that the success of mobile phone OEMs (Original Equipment 
Manufacturers) in the definition of a dominant design depends on their ability to coordinate a 
critical mass of complementary products, in order to diffuse the final product as widely as 
possible. At the opposite, one can expect that flat hierarchy in clusters implies a lack of global 
vision of the complex device, and then some risks of non-compatibilities or dysfunctions that 
weaken the ability of the clustered organizations to set up a dominant design. Concerning the 
negative influence of assortativity, literature has shown that the vertical integration between 
related and even unrelated features have turned the industry into the production of multi-
functional devices (Giachetti and Marchi, 2010). In this context, Koski and Kretchmer (2009, 
2010) have found that innovations in terms of openness towards previously unrelated 
technologies have played a stronger role for the performance of OEMs than the traditional 
network and epidemic effects at play on the consumer side. Therefore, one might expect that 
clusters in which leading organizations devote their relational capabilities to connect 
themselves favor technological standardization. However, it can prevent the entry of potential 
providers of unrelated assets, redundant knowledge flows and then generate a high risk of 
conformism. 
 
More outstanding are the findings on network hierarchy and assortativity when we refine the 
analysis by splitting the period into two sub-periods (Model 4). Indeed, following previous 
theoretical and empirical attempts (Menzel and Fornahl, 2010; Balland et al., 2013a; Crespo 
et al., 2013), our period is rather long to be able to capture differentiated effects of these 
properties on the aggregate performance of clusters along the particular life cycle of the 
mobile phone industry. In particular, the Internet bubble crash which concerned the whole 
industry of information technologies constitutes a significant event for the organization of the 
industry and an important step between its development and its maturity. If the negative role 
of assortativity remains unchanged when the two periods are taken into consideration, at the 
opposite, we can see a changing role of hierarchy along the industry life cycle. Here again, 
our findings corroborate a large part of the literature on industrial dynamics. Indeed, during 
the first period, the more clusters display a high level of hierarchy, the less they perform in 
their patenting activities. On the one side, one could interpret that clusters hosting big 
companies such as national incumbents (traditional network operators) performed less in 
terms of innovation during the initial stages of development, since their main concern was 
more to re-orient their customer bases towards the first generation of mobile handsets than to 
participate to the wave of burgeoning innovations in the mobile phone industry. On the other 
side, as early demonstrated in the industry life cycle approach of Klepper (1996, 1997), small 
companies and recent entrants are responsible for a large part of product innovations, in an 
entrepreneurial technological regime which is favorable to innovative entries and unfavorable 
to well-established big companies. Moreover, the logic of knowledge accessibility in which 
these burgeoning companies are involved to combine complementary pieces of knowledge is 
typical of the early phase of cluster formation (Audretsch and Feldman, 1996a), with flat 
hierarchy, and far from the process of ossification around a couple of leading companies that 
typifies more mature clusters. The long run analysis of the mobile phone industry by Giachetti 
and Marchi (2010) confirms our findings. According to them, a large part of innovations 
during the early and growth phases in the 1980s and 1990s arises more from a structured 
process of collaboration between OEMs, components suppliers, original design manufacturers 
and public research organizations, than from the control of the integration process by the 
oligopolistic networks operators. 
 
 



At the opposite, during the second period, strong hierarchy favors cluster performance in 
patenting activities, together with low assortativity. To explain such a change, the arguments 
of Klepper (1996, 1997) and Audretsch and Feldman (1996a) on the life cycle of the industry 
and the geographical counterpart still apply, at least partially. As a matter of fact, as in many 
other industries, and after a growth stage with intensive entries, a shakeout occurs and clusters 
achieve more or less their final form with a more oligopolistic structure, and the continuation 
of the spin-off process, that allow clusters to insure their sustainability, rather than to decline 
(Menzel and Fornahl, 2010; Crespo, 2011). Therefore, the return of the positive effects of 
hierarchy could be explained by this prototypical trend of industry, where performing clusters 
are now the ones in which some leading organizations have crossed the chasm between the 
early and the mass market and are able to coordinate actions and knowledge of other co-
located organizations to maintain their position. This explanation might be relevant, but only 
partially, since Klepper’s view of the life cycle of industries, reinforced by the observed 
patterns of innovation of Abernathy and Utterback (1978), links the ossification of the 
industrial structure along the cycle of the industry to the changing nature of innovation, which 
goes from product innovation to process innovation. However, these patterns do not match 
with the particular long run dynamics of the mobile phone industry. Many authors (Funk, 
2009, 2011; Koski and Kretchmer, 2009, 2010; Giachetti and Marchi, 2010) underline the 
acceleration of the rhythm of product innovations by the well-established companies during 
the period of shakeout and maturity. These product innovations were driven by the impact of 
technological convergence between the mobile phone, Internet, computer and media 
industries, as well as the introduction of other advanced technologies that make handsets 
“smarter”. In this context, competing clusters in the shakeout and maturity phases of the 
mobile phone industry were the ones which succeeded in mixing the ossified structure with an 
open network structure that favors connections and knowledge channels between the core-
organizations of the industry and new and fresh unrelated ideas that allow OEMs to increase 
their portfolio of new applications and uses. Such a pattern shows that the prototypical 
process of ossification along the cycle of the industry does not go against the persistence of 
product innovations if network structures exhibit a sufficient level of disassortative relational 
behaviors. In that sense, model 4 clearly shows that the resilience capabilities of clusters after 
the telecom bubble crash is linked to the ability of the whole structure of networks to deal 
with hierarchy and disassortativity, in order to avoid the “trap of rigid specialization” 
(Grabher, 1993) that generally pushes clusters towards decline. 
 
 
6 Concluding remarks 
 
In this essay, we have tried to contribute to the growing literature on clusters dynamics that 
puts the structural properties of knowledge networks at the center of the analysis. Our main 
contribution to this literature shows that for clusters involved in the production of complex 
and systemic technologies, the properties of hierarchy and assortativity bring new ways to 
capture the reasons why some clusters perform better than others, and through what kind of 
structural mechanisms they resist to economic shocks and perform all along the cycle of 
markets. Previous literature has clearly showed that small-world properties matter for that 
purpose. Since these properties perfectly capture the trade-off between closure and bridging, 
or between cohesiveness and openness of networks, they give an interesting view of the 
mechanisms at play in the structural organization of clusters. Here, we show that considering 
hierarchy together with assortativity allows going further. They represent properties that put 
together some traditional basics of industrial organization, such as the process of 
oligopolization along the cycle of the industry, with the geographical but also relational 
dimensions of these industrial structures. In particular, our analysis shows that the increasing 
hierarchy that allows industry to reach maturity does not necessarily lead to lock-in situations 



for clusters that host part of this industry. If the relational structures typifying some of these 
clusters display a sufficient level of disassortativity to prevent rigidities and preserve 
openness towards new and fresh knowledge, thus they will maintain opportunities for product 
innovation in the long run. Other studies, including other industries and other methodologies, 
will be necessary in the future to confirm these preliminary but promising results. 
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