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FINITE VOLUME METHOD IN CURVILINEAR COORDINATES FORHYPERBOLIC CONSERVATION LAWS ∗A. Bonnement1, T. Fajraoui2, H. Guillard3, M. Martin4, A. Mouton5, B.Nkonga6 and A. Sangam7Abstrat. This paper deals with the design of �nite volume approximation of hyperboli onservationlaws in urvilinear oordinates. Suh oordinates are enountered naturally in many problems as forinstane in the analysis of a large number of models oming from magneti on�nement fusion intokamaks. In this paper we derive a new �nite volume method for hyperboli onservation laws inurvilinear oordinates. The method is �rst desribed in a general setting and then is illustrated in2D polar oordinates. Numerial experiments show its advantages with respet to the use of Cartesianoordinates. 1. IntrodutionWe are onerned with the onstrution of �nite volume methods in urvilinear oordinates for hyperbolionservation laws. Suh shemes are ruial when one is interested in apturing aurately the properties of thephysial model under onsideration in whih oordinates system play an important role. The physial modelsof interest are for instane those desribing harged partiles motion in solar winds in the frame of astrophysialplasmas [4℄ or the transport of harged partiles in a tokamak, a Magneti Fusion Con�nement devie dediatedto the ignition of ontrolled thermonulear fusion reations on earth [4, 8, 10℄.More preisely, in magnetized plasma, there are two distint behaviours of partiles, along and aross mag-neti �eld lines. This leads to highly anisotropi �ows of the plasma. As a onsequene, Cartesian oordinatesdo not onstitute an appropriate system to desribe the physis that takes plae in the plasma. Instead, othersystems of oordinates are preferred, as for instane �eld aligned oordinates systems [1,2℄, Boozer oordinatesor Hamada oordinates [6℄. The �eld governing equations written in these generalized urvilinear systems aregenerally not in strit onservation laws form: spatially varying metri oe�ients multiply the di�erentialterms and additional soure terms appear in the equations. Therefore the design of a �nite volume method isnot as straighforward as it is in Cartesian oordinates and additionally important onservation properties anbe lost by the disretisation. Another relevant question that arises in this ontext onerns the representation
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164 ESAIM: PROCEEDINGSof vetors and the hoie of the basis in whih these vetors are expressed sine in urvilinear oordinates, thebasis are spatially dependent. For instane, the projetion of a vetor in the loal basis of the orresponding o-ordinates system introdues soure terms oming from the variations of loal basis with respet to the variablesof the hosen urvilinear oordinates, and the onservation laws form of the equation is therefore lost. From anumerial point of view, �nding an appropriate approximation of this kind of terms that keeps the onservationproperties of the system of equations remains a hallenge, for this purpose it is useful to think about soureterms in shallow water systems, or to Coriolis fore term in geophysial equations [7℄.Our approah onsists in onstruting the �nite volume approximation of the onsidered equations in gen-eral urvilinear oordinates, without any preliminar projetion when dealing with vetor equations. Averagedquantities are arefully hosen so that the onstruted �nite volume sheme is apable of apturing the prinipalharateris of the physial models. This approah allows to automatially approximate the non-onservativeterms in a onsistent manner independently of the urvilinear system used.This paper is organized as follows. In setion 2, prerequisites on urvilinear oordinates are realled. Finitevolume methods in these urvilinear oordinates are designed in setion 3. Numerial tests using two-dimensionalylindrial oordinates as example are then onsidered in setion 4 in order to illustrate our approah. Finally,onlusion is given in setion 5. 2. Geometrial toolsLet us onsider a physial model de�ned on a physial domain Ω(x) ⊂ R
3, where eah point M(x) of Ω(x) isloalized by its Cartesian oordinates x = t(x1, x2, x3). Suppose now the physial model under onsiderationan be easily desribed in another oordinates systems, so that the physial model an be looked through thedomain Ω(ξ), where ξ = t(ξ1, ξ2, ξ3). The domain Ω(ξ) will be referred to as the omputational domain, andthe orresponding oordinates system ξ as urvilinear oordinates. Obviously, there exists an one-to-one map

φ : ξ 7→ x, whih is assumed to be at least a C1-di�eomorphism, whih means that J the determinant of theJaobian matrix MJ of φ de�ned by
MJ =
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is positive. To introdue the ompat expressions of the gradient and the divergene operators, ∇, ∇·, withrespet to urvilinear oordinates ξ that will be used in this paper, it is useful to de�ne the loal ovariant basis
ek assoiated to the transformation φ given by

ek =
∂x

∂ξk
=

∂x1

∂ξk
i +

∂x2

∂ξk
j +

∂x3

∂ξk
k ,where k = 1, 2, 3, and i, j and k are vetors of the anonial basis orresponding to the Cartesian oordinatessystem. The ontravariant basis ek assoiated to ek is provided through the relations

ek · ej = δk
j ,where δk

j is the Kröneker tensor.With these quantities, the gradient of the vetor �eld V (ξ) is given by
∇V =

∂V

∂ξk
⊗ ek =

(

∂V i

∂ξk
+ V mΓi

mk

)

ei ⊗ ek .



ESAIM: PROCEEDINGS 165(The Einstein summation onvention is assumed through this paper.) Here Γi
mk are the Christo�el symbolsgiven by

∂em

∂ξk
= Γi

mkei ,and represent the projetion onto ei of the hange of the vetor em aording to ξk.The divergene of the vetor �eld V (ξ) is de�ned as the ontration of the gradient
∇ · V =
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∂ξk
· ek =
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∂V i
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mk

)

ei · e
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∂V k
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ki .By using the identity 1

J

∂J

∂ξk
= Γi

ki, one gets the ompat expression
∇ · V =

1

J

∂(JV · ek)

∂ξk
.Considering a tensor �eld T , its gradient is given by

∇T =
∂T

∂ξk
⊗ ek .The above relation an be expanded as follows

∇T =

(

∂T ij

∂ξk
+ T mjΓi

mk + T imΓj
mk

)

ei ⊗ ej ⊗ ek . (2.1)The divergene of the tensor �eld T is given by
∇ · T =

∂T

∂ξk
· ek .Using relation (2.1) this leads to

∇ · T =
1

J

∂

∂ξk

(

JT · ek
)

.We are now ready to design a �nite volume methods in urvilinear oordinates for hyperboli onservationlaws. 3. Contrution of finite volume shemes in urvilinear oordinatesLet us onsider a general hyperboli onservation law equations written in a oordinate free manner as
∂W

∂t
+ ∇ · F (W ) = 0 ,where W is the state variable and F (W ) is its �ux.Let us also onsider a urvilinear transformation φ : ξ 7→ x, whose determinant of Jaobian is J . Using theresults of the previous setion and noting that ∂tJ = 0, it an be seen that in this oordinates system, the aboveequation beomes

∂J W

∂t
+

∂

∂ξk

(

JF (W ) · ek

)

= 0 .In order to see the ontour of the problem, we will study separately the onstrution of �nite volume methodinto two di�erent ases. The �rst one deals with the salar ase, that is the state variable W is a salar and its



166 ESAIM: PROCEEDINGS�ux F (W ) is a vetor. In a seond step, we will onsider the ase where W is a vetor while its �ux F (W ) isa tensor.3.1. Salar equationThis orresponds to take W = S a salar and F (W ) = V a vetor, then the hyperboli equation beomes
∂(J S)

∂t
+

∂

∂ξk

(

JV · ek

)

= 0 . (3.2)Typial examples for instane are the equations of ontinuity and energy in �uid dynamis.Aording to the �nite volume philosophy, the disrete equations are simply obtained by integrating (3.2) ona ontrol ell. To be more preise, let us onsider a subdivision of the omputational domain Ω(ξ) into ontrolvolumes (Ωi)i∈ N
. Then integrating equation (3.2) over a ell Ωi and dividing the result by the volume |Ωi|,one gets
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dΩ = 0 ,whih an be rewritten as
∂
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dΩ = 0 .Introduing the average Si = 1
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)

dΩ = 0 .The �ux term is also immediately tratable, sine by the divergene theorem, one has
∫

Ωi
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)

dΩ =

∫

∂Ωi

JVk
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n · ek
)

dσ(Ω) , (3.3)where ∂Ωi is the boundary of Ωi, n is the outward pointing unit vetor normal to the surfae ∂Ωi, and dσ(Ω)the Lebesgue measure on this surfae. The right hand side of (3.3) is immediately alulable as soon as one hasnumerial �uxes [3, 5, 9℄. For this ase, it is readily seen that there is no di�erene between the onstrution of�nite volume method in urvilinear oordinates system and in a Cartesian one.3.2. Vetorial equationThis ase deals with W = V a vetor and F (W ) = T a tensor, then the hyperboli equation turns into
∂(J V )

∂t
+

∂

∂ξk

(

JT · ek

)

= 0 . (3.4)Momentum equation in �uid dynamis is suh a kind of equations.By using the same proedure as in salar ase, one gets the following disrete sheme,
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)

dΩ = 0 , (3.5)and at �rst glane, this ase seems similar to the salar one. However, sine V is a vetor, it has to be storedomponent by omponent on a given basis. The traditional approah onsists in taking the salar produt of



ESAIM: PROCEEDINGS 167equation (3.4) by the basis vetors ek (resp. ek) and then to obtain salar equations for the ovariant omponentsof the vetor �eld V k (resp. ontravariant omponents Vk). Then these salar equations are disretized usingthe results of setion 3.1. In the sequel, we will designate this method as the projetion-integration method.This approah has one important shortoming: beause the basis vetors are spatially dependent, they do notommute with the di�erential operators and therefore soure terms appear in the equations (see equation (4.21)for instane). The approximation of these terms is di�ult and moreover it depends on the spei� urvilinearsystem used.We therefore advoate the use of the following proedure that we will be alled the integration-projetionmethod.First we de�ne an average basis in the ell Ωi by:
ei,k =

1

|Ωi|

∫

Ωi

J ek dΩ ,so that one obtains, assuming that Vi,k is onstant in a ell,
1

|Ωi|

∫

Ωi

J V dΩ = Vi,k ei,k .Here, ei,k is the kth average vetor in the ell Ωi with respet to the hosen urvilinear oordinates, and byde�nition Vi,k represents the average value of V along the kth vetor aording to the orresponding urvilinearoordinates. The disrete �nite volume approximation is then de�ned by
∂
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)

dΩ = 0 , (3.6)where (ei,k)k is the ontravariant basis assoiated to (ei,k)k.This proedure is quite simple and it allows for a general (and impliit) disretisation of the soure terms. Inthe next setion we detail it in the ase of 2D polar oordinates.4. Appliation to 2D polar oordinatesThe onstrution of �nite volume method proposed in setion 3 is illustrated in 2D polar oordinates.4.1. 2D polar oordinates and �nite volume methodLet us onsider 2D polar oordinates denoted by (r, θ) ∈ (0, +∞[×[0, 2π) related to Cartesian oordinates
(x, y) by (x, y) = φ(r, θ) as follows,

{

x = r cos θ ,

y = r sin θ .We onsider the usual orthonormal basis (ex, ey) of R
2, and then the ovariant basis assoiated with theoordinates (r, θ) is given by

er =
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)

, eθ =
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−r sin θ
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)

.The determinant assoiated to the transformation φ is J = r while the ontravariant basis with respet to
(er, eθ) is given by
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)
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1
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.



168 ESAIM: PROCEEDINGSWorking with the ovariant vetor eθ and the ontravariant vetor eθ leads to a sale fator r, it is thenappropriate to onsider their assoiated unit vetors,
ẽθ =

1

r
eθ , ẽθ = r eθ .Then, for instane a vetor V an be written as V = V rer + V θẽθ.Equipped with these notations, we an write down the expressions of gradient and divergene operators. Thegradient of a salar funtion S in polar oordinates writes

∇S = ∂rS er +
1

r
∂θS ẽθ .Let us write the vetor V as V = V rer + V θẽθ, its divergene is given by

∇ · V =
1

r
∂r(r V r) +
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r
∂θ(r V θ) = ∂rV

r +
1

r
V r + ∂θV

θ .Now, onsider a tensor T deomposed as
T = T r,r er ⊗ er + T r,θ er ⊗ ẽθ + T θ,r ẽθ ⊗ er + T θ,θ ẽθ ⊗ ẽθ .The divergene of T is given by the following formula,
∇ · T =

1

r
∂r(rT · er) +

1

r
∂θ(rT · ẽθ)

=
1

r
∂r(r T r,r er + r T r,θ ẽθ) +

1

r
∂θ(r T θ,r er + r T θ,θ ẽθ) .Now, let V = V rer + V θẽθ be a vetor whih temporal evolution is governed by,

∂(J V )
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+

∂

∂ξk

(

JT · ek

)

= 0 , (4.7)where T is a tensor.Applying the proedure developed in the previous setion, one gets the following sheme,
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)

dΩ = 0 , (4.8)where Vi,r and Vi,θ are average values of V r and V θ, respetively in the ell Ωi, while ei,r and ei,θ are averagevetors in the ell Ωi,
ei,r =
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|Ωi|

∫
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Fig 1: A ell in polar oordinates.For simpliity, the tensor T is assumed to be symmetri, i.e. T r,θ = T θ,r. We also hose a tensorial mesh sothat the ell Ωi an be loalized by the segments produt [rD, rA] × [θA, θB] (see Figure 1). Then the averagevetors ei,r and ei,θ an be expressed as
ei,r =

1

θB − θA

( ˜eθA
− ˜eθB

) ,

ei,θ =
1

θB − θA

(erB
− erA

) ,where
erA

= erD
=

(

cos θA

sin θA

)

, ˜eθA
= ˜eθD

=

(

− sin θA

cos θA

)

,and
erB

= erC
=

(

cos θB

sin θB

)

, ˜eθB
= ˜eθC

=

(

− sin θB

cos θB

)

.Finally, for any salar funtion f = f(r, θ), we use the following approximations:
f̂|rD

≈ f(rD, θ) , f̂|rA
≈ f(rA, θ) , ∀ θ ∈ [θA, θB] ,

f̂|θA
≈ f(r, θA) , f̂|θB

≈ f(r, θB) , ∀ r ∈ [rD, rA] .Then equation (4.8) beomes,
|Ωi| (∂tVi,r ei,r + ∂tVi,θ ei,θ) +

(

rA T̂
r,r

|rA

− rD T̂
r,r

|rD

)

(eθA
− eθB

) +
(

rA T̂
r,θ

|rA

− rD T̂
r,θ

|rD

)

(

erB
− erA

)

+ (rD − rA)
(

T̂
r,θ

|θB

erB
+ T̂

θ,θ

|θB

eθB
− T̂

r,θ

|θA

erA
− T̂

θ,θ

|θA

eθA

)

= 0 .

(4.9)



170 ESAIM: PROCEEDINGSIt is interesting to expand equation (4.9) on the pair of orthogonal vetors ei,r and ei,θ, whih yields
|Ωi| ∂tVi,r + (θB − θA) (rA T̂

r,r

|rA

− rD T̂
r,r

|rD

) +
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)
(rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

)

− (θB − θA) (rA − rD)
T̂

θ,θ

|θB

+ T̂
θ,θ

|θA

2
= 0 ,

(4.10)
|Ωi| ∂tVi,θ + (θB − θA) (rA T̂

r,θ

|rA

− rD T̂
r,θ

|rD

) +
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)
(rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

)

+ (θB − θA) (rA − rD)
T̂

r,θ

|θB

+ T̂
r,θ

|θA

2
= 0 .

(4.11)Equations (4.10)-(4.11) an be onsidered as results of integration over Ωi followed by projetions onto ei,rand ei,θ of (4.7). This operation is referred to as integration-projetion proedure.It is onvenient to ompare equations (4.10)-(4.11) with the result of the traditional approah, that is projetion-integration proedure applied to (4.7). The projetion of (4.7) onto er and eθ leads to,
∂t(r Vr) + ∂r(r T r,r) + ∂θT

r,θ = T θ,θ , (4.12)and
∂t(r Vθ) + ∂r(r T r,θ) + ∂θT

θ,θ = −T r,θ . (4.13)Equations (4.12)-(4.13) are no longer onservative sine they own right hand side soure terms, the onservativeharater of the original equation (4.7) is lost during the projetion operation. This is due to variations ofvetors er and eθ with respet to θ. This kind of soure terms does not appear if Cartesian oordinates areonsidered in lieu of polar oordinates.Now, integrating (4.12)-(4.13) yield,
|Ωi| ∂tVi,r + (θB − θA) (rA T̂

r,r

|rA

− rD T̂
r,r

|rD

) + (rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

) =

∫

Ωi

T θ,θ(r, θ) dr dθ , (4.14)
|Ωi| ∂tVi,θ + (θB − θA) (rA T̂

r,θ

|rA

− rD T̂
r,θ

|rD

) + (rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

) = −

∫

Ωi

T r,θ(r, θ) dr dθ . (4.15)The omparison of equation (4.10) with (4.14), and (4.11) with (4.15) is summarized in the following result.Proposition 1. The integration-projetion proedure and projetion-integration operation applied to vetorialequation written in 2D polar oordinates are equivalent if and only if the soure terms are disretized as follows
∫

Ωi

T θ,θ(r, θ) dr dθ = (θB − θA) (rA − rD)
T̂

θ,θ

|θB

+ T̂
θ,θ

|θA

2

+

(

1 −
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)

)

(rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

) ,

∫

Ωi

T r,θ(r, θ) dr dθ = (θB − θA) (rA − rD)
T̂

r,θ

|θB

+ T̂
r,θ

|θA

2

−

(

1 −
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)

)

(rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

) .

(4.16)
Moreover, this disretisation is onsistent both on r and θ.



ESAIM: PROCEEDINGS 171Note that the disrete version of eah soure term an be split into a entered (�traditional�) term and avisous-like term. The expression of this visous term is new to the best of our knowledge. Note speially thatit ouples the omponents of the tensor T .4.2. Tools for pratial implementationIn this setion we gather together tools that are important for pratial implementation of a part or of thefull model system omposed of a ontinuity and momentum equations
{

∂tn + ∇. (nV ) = 0 ,

∂t(nV ) + ∇. (nV ⊗ V + nI) = 0 .
(4.17)Here, n is the density per unit mass, V is the veloity and I the unit tensor. Both the Cartesian version ofsystem (4.17) and its ounterpart in 2D polar oordinates are investigated, and the results obtained by bothmethods are ompared.The ells of the mesh used in Cartesian oordinates are quadrilaterals while they are urved ones in 2D polaroordinates system. In the two ases, we use the same nodes to onstrut the mesh, but we emphasize that theells are di�erent from one oordinates system to another. In Figure 2 are displayed two suh kinds of mesheswhere the number of radial ells Nr = 3 while those of azimuthal ones is Nθ = 6. The radial and azimuthalmesh steps are denoted by ∆r and ∆θ aordingly, so that for a uniform mesh in azimuthal diretion, one has

∆θ = 2π
Nθ

.
Fig 2: Cartesian and polar meshes.In �nite volume method implementation, we need to know the value of areas of mesh ells. Consider a generiell Ωi in 2D polar oordinates loalized by its four nodes A, B, C, and D as in Figure 1, the measure of thisarea is given by,

|Ωi|r,θ =

(

r +
∆r

2

)

∆r ∆θ . (4.18)If these nodes are used to onstrut a ell Ωi in a Cartesian oordinates, the measure of the area of this ell willbe
|Ωi|x,y =

(

r +
∆r

2

)

∆r sin ∆θ . (4.19)Now, by taking ∆θ small i.e. ∆θ → 0 in equation (4.19), one gets
|Ωi|r,θ ≈ |Ωi|x,y ,whih makes obvious the fat that for large Nθ, meshes obtained in Cartesian and 2D polar oordinates systemsare approximately equal.



172 ESAIM: PROCEEDINGSNext, we are interested in evaluating the integral of normal vetors along edges of mesh ells. The triky oneseems to be those orresponding to urved edges as shown in Figure 3. Thanks to the divergene theorem,
∮

n dl = 0 ,we dedue
∫

dAB

n dl =

∫

AB

n dl ,whih an be immediately alulated by knowning only the oordinates of the nodes A and B.
A

B

n n

Fig 3: Normals.We are now onerned with the onstrution of numerial �uxes for hyperboli equations written in generalurvilinear oordinates in 2D. Assume we have in our hand a numerial �ux proedure, onsult [3,5,9℄ for moredetails. The following is a possible algorithm that allows us to onstrut a numerial �ux in general urvilinearoordinates of ells Ωi and Ωj :
• Write the vetorial quantities of ells Ωi and Ωj aording to the orthogonal basis (nij , τij) of theinterell boundary ∂Ωij between the ells Ωi and Ωj , (nij being the outward pointing unit vetornormal to the ∂Ωij direted from the ell Ωi to the ell Ωj , τij is an unit vetor orthogonal to nij). Let

Ωi and Ωj be the results of this step;
• Compute the �ux Φij with the states Ωi and Ωj with respet to the interell boundary ∂Ωij by usinga hosen numerial �ux [3, 5, 9℄;
• Projet the �ux Φij onto the ells Ωi and Ωj to get �uxes Φi and Φj respetively, aording to

Φi = (Φij · ei,r)ei,r + (Φij · ei,θ)ei,θ ,

Φj = (Φij · ej,r)ej,r + (Φij · ej,θ)ej,θ ,where (ei,r, ei,θ) is the average vetor basis in the ell Ωi, (ej,r, ej,θ) is those of the ell Ωj .We turn now to numerial tests in 2D polar oordinates in order to validate our approah.



ESAIM: PROCEEDINGS 1734.3. Advetion equation testThe �rst test onerns a salar advetion equation with aonstant azimuthal veloity,
∂tn + ∇. (nV ) = 0 ,whih in polar oordinates takes the form,

∂trn + ∂r(rnVr) + ∂θ(nVθ) = 0 .We onsider the following initial onditions (Fig. 4):
∀(r, θ) ∈ Ω:

• for the density: n(r, θ) = n0 ,

• for the veloity: Vr(r, θ) = 0 and Vθ(r, θ) = V0,where n0 and V0 are onstants. For our test, n0 = 1 and
V0 = 0.5.For the boundary onditions we set a null �ux. Fig 4: IC with Cartesian mesh.In this ase, we obtain similar results with Cartesian and polar methods: the solutions are preserved asexpeted. The error in both ases is in the order of mahine epsilon. Note that for salar equation, only theell areas are di�erent but the �ux is the same whene the similar results.4.4. Isothermal Euler systemThe following tests onern the isothermal Euler system. Here, we onsider a salar and a vetorial equations.As onsequene, as well as the areas, the omputation of the �uxes is di�erent.More preisely, we are interested in the following dimensionless system where the temperature is supposedonstant,

{

∂tn + ∇. (nV ) = 0 ,

∂t(nV ) + ∇. (nV ⊗ V ) + ∇n = 0 .
(4.20)We use this system for two test ases. The �rst one onsiders a onstant density and an azimuthal veloity.With the seond one, the Gresho test, we an ompare the two methods on a stationary solution.4.4.1. Constant density and veloityThe initial onditions in this test are a onstant density and an azimuthal veloity:

• for the density: n(r, θ) = n0, ∀ (r, θ) ∈ Ω,
• for the veloity: Vr(r, θ) = 0 and Vθ(r, θ) = V0, ∀ (r, θ) ∈ Ω,where n0 and V0 are onstants, typially n0 = 1 and V0 = 0.5 for our test.For the boundary onditions we impose slippery walls.Figures 5 represent the Cartesian and polar results.Note here that a radial veloity appears and omes from the soure term. Indeed, if we onsider the isothermalEuler system in polar oordinates, we obtain:







∂tn + ∂r(rnVr) + ∂θ(nVθ) = 0 ,

∂trVr + ∂r(r(nV 2
r + n)) + ∂θnVrVθ = nV 2

θ + n ,

∂trVθ + ∂rr(nVθVr) + ∂θ(nV 2

θ + n) = −nVrVθ .

(4.21)
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Fig 5: Cartesian results for density at t = 0.83, 1.69 on �rst line; polar results for density at t = 0.82, 1.65 onseond line.With the initial onditions, the seond equation of the system (4.21) beomes,
∂trVr = nV 2

θ .As onsequene, a entripetal fore appears and then a radial veloity is reated.We note that the numerial results (Fig. 5) math those of physial problems in whih a radial veloity appearsand then a new pro�le of the density is obtained. Nevertheless, even if the Cartesian and the polar methodspresent similar results, it is di�ult to ompare the two approahes in absene of a stationary solution.4.4.2. Gresho testThe aim of this last test is to ompare expliitly the polar and the Cartesian methods with a stationarysolution.To have a stationary solution, �rst, we suppose,
Vr = 0 and ∂θ = 0 .



ESAIM: PROCEEDINGS 175With these assumptions, system (4.21) beomes,






∂tn = 0 ,

∂trVr + r∂rn = nV 2

θ ,

∂tVθ = 0 .

(4.22)We have a stationary solution if the veloity and the density satisfy,
r∂rn = nV 2

θ . (4.23)For example, if we hoose the veloity as a onstant,
Vθ = 1 ,with equation (4.23), we obtain the following densitypro�le,

n(r) = n(1)r .For the boundary onditions we hoose in�ux andout�ux omputed from the density and the veloityanalyti pro�les.Figure 6 shows density pro�les for stationary solution(blak) and polar and Cartesian methods (respe-tively, blue and red) with a small Nθ = 4, where
n(1) = 2 is hosen. Note that even if the mesh is notre�ned in θ, the polar method gives a solution loseto the stationary one whereas the Cartesian methodsolution is ompletely di�erent. As onsequene, inthis ase, when Nθ is small, the polar method isbetter than the Cartesian one. Fig 6: Density pro�les for stationary, polar andCartesian solutions.
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Fig 7: Polar and Cartesian L2−errors density. Fig 8: Density pro�les for polar solutions in the ases :stationary and Nr = 10, 20, 50 with Nθ = 4.



176 ESAIM: PROCEEDINGSFigure 7 shows the L2−error for the density omputed with polar and Cartesian methods, whih on�rmsthe superiority of the polar sheme over the Cartesian one. Errors remain small when the polar method is usedfor small Nθ. Nevertheless, as we already noted in the previous part, when Nθ beomes large, the polar andCartesian methods tend to be equivalent, as it should be. In addition, we note that whatever the Nθ hosen,the L2−error is the same in polar method. Indeed, the error depends only on the hosen Nr (Fig. 8).5. ConlusionIn this paper, �nite volume methods in general urvilinear oordinates for hyperboli onservation laws havebeen investigated. This approah has been applied to realisti problems oming from �uid dynamis in tokamakgeometry, preisely in 2D polar oordinates. Comparison with �nite volume in Cartesian oordinates systemhas on�rmed the advantage to use our approah.Fourthoming works will onsist in extending our approah to toroidal geometry, and to unstrutured meshes,and to apply the obtained shemes to physial problems of fusion in tokamaks, for instane ELM instabilitiesand edge turbulene plasmas simulations. Referenes[1℄ M.A. Beer, S.C. Cowley, G.W. Hammett, Field-aligned oordinates for nonlinear simulations of tokamak turbulene, Physisof Plasma 2, 2687 (1995).[2℄ A.M. Dimits, Fluid simulations of tokamak turbulene in quasiballooning oordinates, Physial Reviews E 48, 4070 (1993).[3℄ H. Guillard, R. Abgrall, Modélisation Numérique des Fluides Compressibles, Series in Applied Mathematis, 5, Gauthier-Villars, Paris, North-Holland, Amsterdam (2001).[4℄ J.P. Goedbloed, S. Poedt, Priniples of Magnetohydrodynamis: With Appliations to Laboratory and Astrophysial Plasmas,Cambridge University Press, Cambridge (2004).[5℄ E. Godlewski, P.-A. Raviart, Numerial Approximation of Hyperboli System of Conservation Laws, Applied MathematisSienes, 118, Springer, New York (1996).[6℄ R.D. Hazeltine, J.D. Meiss, Plasma Con�nement, Dover publiations INC, Mineola, New York (2003).[7℄ J. Pedlosky, Geophysial Fluid Dynamis, 2nd Edition, Springer, New York (1987).[8℄ B.B. Kadomtsev, Tokamak plasma, a omplex physial system, Institute of Physis Publishing, Bristol (1993).[9℄ E.F. Toro, Riemann Solvers and Numerial Methods in Fluid Dynamis, A Pratial Introdution, 3rd Edition, Springer,Heidelberg (2009).[10℄ J. Wesson, Tokamaks, third edition, International Series of Monographs on Physis, 118, Oxford Sienes Publiations, Oxford(2004).


