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FINITE VOLUME METHOD IN CURVILINEAR COORDINATES FORHYPERBOLIC CONSERVATION LAWS ∗A. Bonnement1, T. Fajraoui2, H. Guillard3, M. Martin4, A. Mouton5, B.Nkonga6 and A. Sangam7Abstra
t. This paper deals with the design of �nite volume approximation of hyperboli
 
onservationlaws in 
urvilinear 
oordinates. Su
h 
oordinates are en
ountered naturally in many problems as forinstan
e in the analysis of a large number of models 
oming from magneti
 
on�nement fusion intokamaks. In this paper we derive a new �nite volume method for hyperboli
 
onservation laws in
urvilinear 
oordinates. The method is �rst des
ribed in a general setting and then is illustrated in2D polar 
oordinates. Numeri
al experiments show its advantages with respe
t to the use of Cartesian
oordinates. 1. Introdu
tionWe are 
on
erned with the 
onstru
tion of �nite volume methods in 
urvilinear 
oordinates for hyperboli

onservation laws. Su
h s
hemes are 
ru
ial when one is interested in 
apturing a

urately the properties of thephysi
al model under 
onsideration in whi
h 
oordinates system play an important role. The physi
al modelsof interest are for instan
e those des
ribing 
harged parti
les motion in solar winds in the frame of astrophysi
alplasmas [4℄ or the transport of 
harged parti
les in a tokamak, a Magneti
 Fusion Con�nement devi
e dedi
atedto the ignition of 
ontrolled thermonu
lear fusion rea
tions on earth [4, 8, 10℄.More pre
isely, in magnetized plasma, there are two distin
t behaviours of parti
les, along and a

ross mag-neti
 �eld lines. This leads to highly anisotropi
 �ows of the plasma. As a 
onsequen
e, Cartesian 
oordinatesdo not 
onstitute an appropriate system to des
ribe the physi
s that takes pla
e in the plasma. Instead, othersystems of 
oordinates are preferred, as for instan
e �eld aligned 
oordinates systems [1,2℄, Boozer 
oordinatesor Hamada 
oordinates [6℄. The �eld governing equations written in these generalized 
urvilinear systems aregenerally not in stri
t 
onservation laws form: spatially varying metri
 
oe�
ients multiply the di�erentialterms and additional sour
e terms appear in the equations. Therefore the design of a �nite volume method isnot as straighforward as it is in Cartesian 
oordinates and additionally important 
onservation properties 
anbe lost by the dis
retisation. Another relevant question that arises in this 
ontext 
on
erns the representation
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164 ESAIM: PROCEEDINGSof ve
tors and the 
hoi
e of the basis in whi
h these ve
tors are expressed sin
e in 
urvilinear 
oordinates, thebasis are spatially dependent. For instan
e, the proje
tion of a ve
tor in the lo
al basis of the 
orresponding 
o-ordinates system introdu
es sour
e terms 
oming from the variations of lo
al basis with respe
t to the variablesof the 
hosen 
urvilinear 
oordinates, and the 
onservation laws form of the equation is therefore lost. From anumeri
al point of view, �nding an appropriate approximation of this kind of terms that keeps the 
onservationproperties of the system of equations remains a 
hallenge, for this purpose it is useful to think about sour
eterms in shallow water systems, or to Coriolis for
e term in geophysi
al equations [7℄.Our approa
h 
onsists in 
onstru
ting the �nite volume approximation of the 
onsidered equations in gen-eral 
urvilinear 
oordinates, without any preliminar proje
tion when dealing with ve
tor equations. Averagedquantities are 
arefully 
hosen so that the 
onstru
ted �nite volume s
heme is 
apable of 
apturing the prin
ipal
hara
teri
s of the physi
al models. This approa
h allows to automati
ally approximate the non-
onservativeterms in a 
onsistent manner independently of the 
urvilinear system used.This paper is organized as follows. In se
tion 2, prerequisites on 
urvilinear 
oordinates are re
alled. Finitevolume methods in these 
urvilinear 
oordinates are designed in se
tion 3. Numeri
al tests using two-dimensional
ylindri
al 
oordinates as example are then 
onsidered in se
tion 4 in order to illustrate our approa
h. Finally,
on
lusion is given in se
tion 5. 2. Geometri
al toolsLet us 
onsider a physi
al model de�ned on a physi
al domain Ω(x) ⊂ R
3, where ea
h point M(x) of Ω(x) islo
alized by its Cartesian 
oordinates x = t(x1, x2, x3). Suppose now the physi
al model under 
onsideration
an be easily des
ribed in another 
oordinates systems, so that the physi
al model 
an be looked through thedomain Ω(ξ), where ξ = t(ξ1, ξ2, ξ3). The domain Ω(ξ) will be referred to as the 
omputational domain, andthe 
orresponding 
oordinates system ξ as 
urvilinear 
oordinates. Obviously, there exists an one-to-one map

φ : ξ 7→ x, whi
h is assumed to be at least a C1-di�eomorphism, whi
h means that J the determinant of theJa
obian matrix MJ of φ de�ned by
MJ =















∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3













is positive. To introdu
e the 
ompa
t expressions of the gradient and the divergen
e operators, ∇, ∇·, withrespe
t to 
urvilinear 
oordinates ξ that will be used in this paper, it is useful to de�ne the lo
al 
ovariant basis
ek asso
iated to the transformation φ given by

ek =
∂x

∂ξk
=

∂x1

∂ξk
i +

∂x2

∂ξk
j +

∂x3

∂ξk
k ,where k = 1, 2, 3, and i, j and k are ve
tors of the 
anoni
al basis 
orresponding to the Cartesian 
oordinatessystem. The 
ontravariant basis ek asso
iated to ek is provided through the relations

ek · ej = δk
j ,where δk

j is the Kröne
ker tensor.With these quantities, the gradient of the ve
tor �eld V (ξ) is given by
∇V =

∂V

∂ξk
⊗ ek =

(

∂V i

∂ξk
+ V mΓi

mk

)

ei ⊗ ek .
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onvention is assumed through this paper.) Here Γi
mk are the Christo�el symbolsgiven by

∂em

∂ξk
= Γi

mkei ,and represent the proje
tion onto ei of the 
hange of the ve
tor em a

ording to ξk.The divergen
e of the ve
tor �eld V (ξ) is de�ned as the 
ontra
tion of the gradient
∇ · V =

∂V

∂ξk
· ek =

(

∂V i

∂ξk
+ V mΓi

mk

)

ei · e
k =

∂V k

∂ξk
+ V kΓi

ki .By using the identity 1

J

∂J

∂ξk
= Γi

ki, one gets the 
ompa
t expression
∇ · V =

1

J

∂(JV · ek)

∂ξk
.Considering a tensor �eld T , its gradient is given by

∇T =
∂T

∂ξk
⊗ ek .The above relation 
an be expanded as follows

∇T =

(

∂T ij

∂ξk
+ T mjΓi

mk + T imΓj
mk

)

ei ⊗ ej ⊗ ek . (2.1)The divergen
e of the tensor �eld T is given by
∇ · T =

∂T

∂ξk
· ek .Using relation (2.1) this leads to

∇ · T =
1

J

∂

∂ξk

(

JT · ek
)

.We are now ready to design a �nite volume methods in 
urvilinear 
oordinates for hyperboli
 
onservationlaws. 3. Contru
tion of finite volume s
hemes in 
urvilinear 
oordinatesLet us 
onsider a general hyperboli
 
onservation law equations written in a 
oordinate free manner as
∂W

∂t
+ ∇ · F (W ) = 0 ,where W is the state variable and F (W ) is its �ux.Let us also 
onsider a 
urvilinear transformation φ : ξ 7→ x, whose determinant of Ja
obian is J . Using theresults of the previous se
tion and noting that ∂tJ = 0, it 
an be seen that in this 
oordinates system, the aboveequation be
omes

∂J W

∂t
+

∂

∂ξk

(

JF (W ) · ek

)

= 0 .In order to see the 
ontour of the problem, we will study separately the 
onstru
tion of �nite volume methodinto two di�erent 
ases. The �rst one deals with the s
alar 
ase, that is the state variable W is a s
alar and its



166 ESAIM: PROCEEDINGS�ux F (W ) is a ve
tor. In a se
ond step, we will 
onsider the 
ase where W is a ve
tor while its �ux F (W ) isa tensor.3.1. S
alar equationThis 
orresponds to take W = S a s
alar and F (W ) = V a ve
tor, then the hyperboli
 equation be
omes
∂(J S)

∂t
+

∂

∂ξk

(

JV · ek

)

= 0 . (3.2)Typi
al examples for instan
e are the equations of 
ontinuity and energy in �uid dynami
s.A

ording to the �nite volume philosophy, the dis
rete equations are simply obtained by integrating (3.2) ona 
ontrol 
ell. To be more pre
ise, let us 
onsider a subdivision of the 
omputational domain Ω(ξ) into 
ontrolvolumes (Ωi)i∈ N
. Then integrating equation (3.2) over a 
ell Ωi and dividing the result by the volume |Ωi|,one gets

1

|Ωi|

∫

Ωi

∂(J S)

∂t
dΩ +

1

|Ωi|

∫

Ωi

∂

∂ξk

(

JV · ek

)

dΩ = 0 ,whi
h 
an be rewritten as
∂

∂t

(

1

|Ωi|

∫

Ωi

J S dΩ

)

+
1

|Ωi|

∫

Ωi

∂

∂ξk

(

JV · ek

)

dΩ = 0 .Introdu
ing the average Si = 1

|Ωi|

∫

Ωi
J S dΩ yields,

∂

∂t

(

Si

)

+
1

|Ωi|

∫

Ωi

∂

∂ξk

(

JV · ek

)

dΩ = 0 .The �ux term is also immediately tra
table, sin
e by the divergen
e theorem, one has
∫

Ωi

∂

∂ξk

(

JV · ek

)

dΩ =

∫

∂Ωi

JVk

(

n · ek
)

dσ(Ω) , (3.3)where ∂Ωi is the boundary of Ωi, n is the outward pointing unit ve
tor normal to the surfa
e ∂Ωi, and dσ(Ω)the Lebesgue measure on this surfa
e. The right hand side of (3.3) is immediately 
al
ulable as soon as one hasnumeri
al �uxes [3, 5, 9℄. For this 
ase, it is readily seen that there is no di�eren
e between the 
onstru
tion of�nite volume method in 
urvilinear 
oordinates system and in a Cartesian one.3.2. Ve
torial equationThis 
ase deals with W = V a ve
tor and F (W ) = T a tensor, then the hyperboli
 equation turns into
∂(J V )

∂t
+

∂

∂ξk

(

JT · ek

)

= 0 . (3.4)Momentum equation in �uid dynami
s is su
h a kind of equations.By using the same pro
edure as in s
alar 
ase, one gets the following dis
rete s
heme,
∂

∂t

(

1

|Ωi|

∫

Ωi

J V dΩ

)

+
1

|Ωi|

∫

Ωi

∂

∂ξk

(

JT · ek

)

dΩ = 0 , (3.5)and at �rst glan
e, this 
ase seems similar to the s
alar one. However, sin
e V is a ve
tor, it has to be stored
omponent by 
omponent on a given basis. The traditional approa
h 
onsists in taking the s
alar produ
t of



ESAIM: PROCEEDINGS 167equation (3.4) by the basis ve
tors ek (resp. ek) and then to obtain s
alar equations for the 
ovariant 
omponentsof the ve
tor �eld V k (resp. 
ontravariant 
omponents Vk). Then these s
alar equations are dis
retized usingthe results of se
tion 3.1. In the sequel, we will designate this method as the proje
tion-integration method.This approa
h has one important short
oming: be
ause the basis ve
tors are spatially dependent, they do not
ommute with the di�erential operators and therefore sour
e terms appear in the equations (see equation (4.21)for instan
e). The approximation of these terms is di�
ult and moreover it depends on the spe
i�
 
urvilinearsystem used.We therefore advo
ate the use of the following pro
edure that we will be 
alled the integration-proje
tionmethod.First we de�ne an average basis in the 
ell Ωi by:
ei,k =

1

|Ωi|

∫

Ωi

J ek dΩ ,so that one obtains, assuming that Vi,k is 
onstant in a 
ell,
1

|Ωi|

∫

Ωi

J V dΩ = Vi,k ei,k .Here, ei,k is the kth average ve
tor in the 
ell Ωi with respe
t to the 
hosen 
urvilinear 
oordinates, and byde�nition Vi,k represents the average value of V along the kth ve
tor a

ording to the 
orresponding 
urvilinear
oordinates. The dis
rete �nite volume approximation is then de�ned by
∂

∂t
Vi,k +

ei,k

|Ωi|
.

∫

Ωi

∂

∂ξk

(

JT · ek

)

dΩ = 0 , (3.6)where (ei,k)k is the 
ontravariant basis asso
iated to (ei,k)k.This pro
edure is quite simple and it allows for a general (and impli
it) dis
retisation of the sour
e terms. Inthe next se
tion we detail it in the 
ase of 2D polar 
oordinates.4. Appli
ation to 2D polar 
oordinatesThe 
onstru
tion of �nite volume method proposed in se
tion 3 is illustrated in 2D polar 
oordinates.4.1. 2D polar 
oordinates and �nite volume methodLet us 
onsider 2D polar 
oordinates denoted by (r, θ) ∈ (0, +∞[×[0, 2π) related to Cartesian 
oordinates
(x, y) by (x, y) = φ(r, θ) as follows,

{

x = r cos θ ,

y = r sin θ .We 
onsider the usual orthonormal basis (ex, ey) of R
2, and then the 
ovariant basis asso
iated with the
oordinates (r, θ) is given by

er =

(

cos θ

sin θ

)

, eθ =

(

−r sin θ

r cos θ

)

.The determinant asso
iated to the transformation φ is J = r while the 
ontravariant basis with respe
t to
(er, eθ) is given by

er =

(

cos θ

sin θ

)

, eθ =
1

r

(

− sin θ

cos θ

)

.



168 ESAIM: PROCEEDINGSWorking with the 
ovariant ve
tor eθ and the 
ontravariant ve
tor eθ leads to a s
ale fa
tor r, it is thenappropriate to 
onsider their asso
iated unit ve
tors,
ẽθ =

1

r
eθ , ẽθ = r eθ .Then, for instan
e a ve
tor V 
an be written as V = V rer + V θẽθ.Equipped with these notations, we 
an write down the expressions of gradient and divergen
e operators. Thegradient of a s
alar fun
tion S in polar 
oordinates writes

∇S = ∂rS er +
1

r
∂θS ẽθ .Let us write the ve
tor V as V = V rer + V θẽθ, its divergen
e is given by

∇ · V =
1

r
∂r(r V r) +

1

r
∂θ(r V θ) = ∂rV

r +
1

r
V r + ∂θV

θ .Now, 
onsider a tensor T de
omposed as
T = T r,r er ⊗ er + T r,θ er ⊗ ẽθ + T θ,r ẽθ ⊗ er + T θ,θ ẽθ ⊗ ẽθ .The divergen
e of T is given by the following formula,
∇ · T =

1

r
∂r(rT · er) +

1

r
∂θ(rT · ẽθ)

=
1

r
∂r(r T r,r er + r T r,θ ẽθ) +

1

r
∂θ(r T θ,r er + r T θ,θ ẽθ) .Now, let V = V rer + V θẽθ be a ve
tor whi
h temporal evolution is governed by,

∂(J V )

∂t
+

∂

∂ξk

(

JT · ek

)

= 0 , (4.7)where T is a tensor.Applying the pro
edure developed in the previous se
tion, one gets the following s
heme,
∂Vi,r

∂t
ei,r +

∂Vi,θ

∂t
ei,θ +

1

|Ωi|

∫

Ωi

∂

∂ξk

(

JT · ek

)

dΩ = 0 , (4.8)where Vi,r and Vi,θ are average values of V r and V θ, respe
tively in the 
ell Ωi, while ei,r and ei,θ are averageve
tors in the 
ell Ωi,
ei,r =

1

|Ωi|

∫

Ωi

rer dΩ , ei,θ =
1

|Ωi|

∫

Ωi

rẽθ dΩ .
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1

2

3

4

1 2 3 4

A

B

C

D

θA

θB

Fig 1: A 
ell in polar 
oordinates.For simpli
ity, the tensor T is assumed to be symmetri
, i.e. T r,θ = T θ,r. We also 
hose a tensorial mesh sothat the 
ell Ωi 
an be lo
alized by the segments produ
t [rD, rA] × [θA, θB] (see Figure 1). Then the averageve
tors ei,r and ei,θ 
an be expressed as
ei,r =

1

θB − θA

( ˜eθA
− ˜eθB

) ,

ei,θ =
1

θB − θA

(erB
− erA

) ,where
erA

= erD
=

(

cos θA

sin θA

)

, ˜eθA
= ˜eθD

=

(

− sin θA

cos θA

)

,and
erB

= erC
=

(

cos θB

sin θB

)

, ˜eθB
= ˜eθC

=

(

− sin θB

cos θB

)

.Finally, for any s
alar fun
tion f = f(r, θ), we use the following approximations:
f̂|rD

≈ f(rD, θ) , f̂|rA
≈ f(rA, θ) , ∀ θ ∈ [θA, θB] ,

f̂|θA
≈ f(r, θA) , f̂|θB

≈ f(r, θB) , ∀ r ∈ [rD, rA] .Then equation (4.8) be
omes,
|Ωi| (∂tVi,r ei,r + ∂tVi,θ ei,θ) +

(

rA T̂
r,r

|rA

− rD T̂
r,r

|rD

)

(eθA
− eθB

) +
(

rA T̂
r,θ

|rA

− rD T̂
r,θ

|rD

)

(

erB
− erA

)

+ (rD − rA)
(

T̂
r,θ

|θB

erB
+ T̂

θ,θ

|θB

eθB
− T̂

r,θ

|θA

erA
− T̂

θ,θ

|θA

eθA

)

= 0 .

(4.9)



170 ESAIM: PROCEEDINGSIt is interesting to expand equation (4.9) on the pair of orthogonal ve
tors ei,r and ei,θ, whi
h yields
|Ωi| ∂tVi,r + (θB − θA) (rA T̂

r,r

|rA

− rD T̂
r,r

|rD

) +
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)
(rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

)

− (θB − θA) (rA − rD)
T̂

θ,θ

|θB

+ T̂
θ,θ

|θA

2
= 0 ,

(4.10)
|Ωi| ∂tVi,θ + (θB − θA) (rA T̂

r,θ

|rA

− rD T̂
r,θ

|rD

) +
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)
(rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

)

+ (θB − θA) (rA − rD)
T̂

r,θ

|θB

+ T̂
r,θ

|θA

2
= 0 .

(4.11)Equations (4.10)-(4.11) 
an be 
onsidered as results of integration over Ωi followed by proje
tions onto ei,rand ei,θ of (4.7). This operation is referred to as integration-proje
tion pro
edure.It is 
onvenient to 
ompare equations (4.10)-(4.11) with the result of the traditional approa
h, that is proje
tion-integration pro
edure applied to (4.7). The proje
tion of (4.7) onto er and eθ leads to,
∂t(r Vr) + ∂r(r T r,r) + ∂θT

r,θ = T θ,θ , (4.12)and
∂t(r Vθ) + ∂r(r T r,θ) + ∂θT

θ,θ = −T r,θ . (4.13)Equations (4.12)-(4.13) are no longer 
onservative sin
e they own right hand side sour
e terms, the 
onservative
hara
ter of the original equation (4.7) is lost during the proje
tion operation. This is due to variations ofve
tors er and eθ with respe
t to θ. This kind of sour
e terms does not appear if Cartesian 
oordinates are
onsidered in lieu of polar 
oordinates.Now, integrating (4.12)-(4.13) yield,
|Ωi| ∂tVi,r + (θB − θA) (rA T̂

r,r

|rA

− rD T̂
r,r

|rD

) + (rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

) =

∫

Ωi

T θ,θ(r, θ) dr dθ , (4.14)
|Ωi| ∂tVi,θ + (θB − θA) (rA T̂

r,θ

|rA

− rD T̂
r,θ

|rD

) + (rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

) = −

∫

Ωi

T r,θ(r, θ) dr dθ . (4.15)The 
omparison of equation (4.10) with (4.14), and (4.11) with (4.15) is summarized in the following result.Proposition 1. The integration-proje
tion pro
edure and proje
tion-integration operation applied to ve
torialequation written in 2D polar 
oordinates are equivalent if and only if the sour
e terms are dis
retized as follows
∫

Ωi

T θ,θ(r, θ) dr dθ = (θB − θA) (rA − rD)
T̂

θ,θ

|θB

+ T̂
θ,θ

|θA

2

+

(

1 −
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)

)

(rA − rD) (T̂ r,θ

|θB

− T̂
r,θ

|θA

) ,

∫

Ωi

T r,θ(r, θ) dr dθ = (θB − θA) (rA − rD)
T̂

r,θ

|θB

+ T̂
r,θ

|θA

2

−

(

1 −
θB − θA

2

sin(θB − θA)

1 − cos(θB − θA)

)

(rA − rD) (T̂ θ,θ

|θB

− T̂
θ,θ

|θA

) .

(4.16)
Moreover, this dis
retisation is 
onsistent both on r and θ.
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rete version of ea
h sour
e term 
an be split into a 
entered (�traditional�) term and avis
ous-like term. The expression of this vis
ous term is new to the best of our knowledge. Note spe
ially thatit 
ouples the 
omponents of the tensor T .4.2. Tools for pra
ti
al implementationIn this se
tion we gather together tools that are important for prati
al implementation of a part or of thefull model system 
omposed of a 
ontinuity and momentum equations
{

∂tn + ∇. (nV ) = 0 ,

∂t(nV ) + ∇. (nV ⊗ V + nI) = 0 .
(4.17)Here, n is the density per unit mass, V is the velo
ity and I the unit tensor. Both the Cartesian version ofsystem (4.17) and its 
ounterpart in 2D polar 
oordinates are investigated, and the results obtained by bothmethods are 
ompared.The 
ells of the mesh used in Cartesian 
oordinates are quadrilaterals while they are 
urved ones in 2D polar
oordinates system. In the two 
ases, we use the same nodes to 
onstru
t the mesh, but we emphasize that the
ells are di�erent from one 
oordinates system to another. In Figure 2 are displayed two su
h kinds of mesheswhere the number of radial 
ells Nr = 3 while those of azimuthal ones is Nθ = 6. The radial and azimuthalmesh steps are denoted by ∆r and ∆θ a

ordingly, so that for a uniform mesh in azimuthal dire
tion, one has

∆θ = 2π
Nθ

.
Fig 2: Cartesian and polar meshes.In �nite volume method implementation, we need to know the value of areas of mesh 
ells. Consider a generi

ell Ωi in 2D polar 
oordinates lo
alized by its four nodes A, B, C, and D as in Figure 1, the measure of thisarea is given by,

|Ωi|r,θ =

(

r +
∆r

2

)

∆r ∆θ . (4.18)If these nodes are used to 
onstru
t a 
ell Ωi in a Cartesian 
oordinates, the measure of the area of this 
ell willbe
|Ωi|x,y =

(

r +
∆r

2

)

∆r sin ∆θ . (4.19)Now, by taking ∆θ small i.e. ∆θ → 0 in equation (4.19), one gets
|Ωi|r,θ ≈ |Ωi|x,y ,whi
h makes obvious the fa
t that for large Nθ, meshes obtained in Cartesian and 2D polar 
oordinates systemsare approximately equal.



172 ESAIM: PROCEEDINGSNext, we are interested in evaluating the integral of normal ve
tors along edges of mesh 
ells. The tri
ky oneseems to be those 
orresponding to 
urved edges as shown in Figure 3. Thanks to the divergen
e theorem,
∮

n dl = 0 ,we dedu
e
∫

dAB

n dl =

∫

AB

n dl ,whi
h 
an be immediately 
al
ulated by knowning only the 
oordinates of the nodes A and B.
A

B

n n

Fig 3: Normals.We are now 
on
erned with the 
onstru
tion of numeri
al �uxes for hyperboli
 equations written in general
urvilinear 
oordinates in 2D. Assume we have in our hand a numeri
al �ux pro
edure, 
onsult [3,5,9℄ for moredetails. The following is a possible algorithm that allows us to 
onstru
t a numeri
al �ux in general 
urvilinear
oordinates of 
ells Ωi and Ωj :
• Write the ve
torial quantities of 
ells Ωi and Ωj a

ording to the orthogonal basis (nij , τij) of theinter
ell boundary ∂Ωij between the 
ells Ωi and Ωj , (nij being the outward pointing unit ve
tornormal to the ∂Ωij dire
ted from the 
ell Ωi to the 
ell Ωj , τij is an unit ve
tor orthogonal to nij). Let

Ωi and Ωj be the results of this step;
• Compute the �ux Φij with the states Ωi and Ωj with respe
t to the inter
ell boundary ∂Ωij by usinga 
hosen numeri
al �ux [3, 5, 9℄;
• Proje
t the �ux Φij onto the 
ells Ωi and Ωj to get �uxes Φi and Φj respe
tively, a

ording to

Φi = (Φij · ei,r)ei,r + (Φij · ei,θ)ei,θ ,

Φj = (Φij · ej,r)ej,r + (Φij · ej,θ)ej,θ ,where (ei,r, ei,θ) is the average ve
tor basis in the 
ell Ωi, (ej,r, ej,θ) is those of the 
ell Ωj .We turn now to numeri
al tests in 2D polar 
oordinates in order to validate our approa
h.
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tion equation testThe �rst test 
on
erns a s
alar adve
tion equation with a
onstant azimuthal velo
ity,
∂tn + ∇. (nV ) = 0 ,whi
h in polar 
oordinates takes the form,

∂trn + ∂r(rnVr) + ∂θ(nVθ) = 0 .We 
onsider the following initial 
onditions (Fig. 4):
∀(r, θ) ∈ Ω:

• for the density: n(r, θ) = n0 ,

• for the velo
ity: Vr(r, θ) = 0 and Vθ(r, θ) = V0,where n0 and V0 are 
onstants. For our test, n0 = 1 and
V0 = 0.5.For the boundary 
onditions we set a null �ux. Fig 4: IC with Cartesian mesh.In this 
ase, we obtain similar results with Cartesian and polar methods: the solutions are preserved asexpe
ted. The error in both 
ases is in the order of ma
hine epsilon. Note that for s
alar equation, only the
ell areas are di�erent but the �ux is the same when
e the similar results.4.4. Isothermal Euler systemThe following tests 
on
ern the isothermal Euler system. Here, we 
onsider a s
alar and a ve
torial equations.As 
onsequen
e, as well as the areas, the 
omputation of the �uxes is di�erent.More pre
isely, we are interested in the following dimensionless system where the temperature is supposed
onstant,

{

∂tn + ∇. (nV ) = 0 ,

∂t(nV ) + ∇. (nV ⊗ V ) + ∇n = 0 .
(4.20)We use this system for two test 
ases. The �rst one 
onsiders a 
onstant density and an azimuthal velo
ity.With the se
ond one, the Gresho test, we 
an 
ompare the two methods on a stationary solution.4.4.1. Constant density and velo
ityThe initial 
onditions in this test are a 
onstant density and an azimuthal velo
ity:

• for the density: n(r, θ) = n0, ∀ (r, θ) ∈ Ω,
• for the velo
ity: Vr(r, θ) = 0 and Vθ(r, θ) = V0, ∀ (r, θ) ∈ Ω,where n0 and V0 are 
onstants, typi
ally n0 = 1 and V0 = 0.5 for our test.For the boundary 
onditions we impose slippery walls.Figures 5 represent the Cartesian and polar results.Note here that a radial velo
ity appears and 
omes from the sour
e term. Indeed, if we 
onsider the isothermalEuler system in polar 
oordinates, we obtain:







∂tn + ∂r(rnVr) + ∂θ(nVθ) = 0 ,

∂trVr + ∂r(r(nV 2
r + n)) + ∂θnVrVθ = nV 2

θ + n ,

∂trVθ + ∂rr(nVθVr) + ∂θ(nV 2

θ + n) = −nVrVθ .

(4.21)
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Fig 5: Cartesian results for density at t = 0.83, 1.69 on �rst line; polar results for density at t = 0.82, 1.65 onse
ond line.With the initial 
onditions, the se
ond equation of the system (4.21) be
omes,
∂trVr = nV 2

θ .As 
onsequen
e, a 
entripetal for
e appears and then a radial velo
ity is 
reated.We note that the numeri
al results (Fig. 5) mat
h those of physi
al problems in whi
h a radial velo
ity appearsand then a new pro�le of the density is obtained. Nevertheless, even if the Cartesian and the polar methodspresent similar results, it is di�
ult to 
ompare the two approa
hes in absen
e of a stationary solution.4.4.2. Gresho testThe aim of this last test is to 
ompare expli
itly the polar and the Cartesian methods with a stationarysolution.To have a stationary solution, �rst, we suppose,
Vr = 0 and ∂θ = 0 .
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omes,






∂tn = 0 ,

∂trVr + r∂rn = nV 2

θ ,

∂tVθ = 0 .

(4.22)We have a stationary solution if the velo
ity and the density satisfy,
r∂rn = nV 2

θ . (4.23)For example, if we 
hoose the velo
ity as a 
onstant,
Vθ = 1 ,with equation (4.23), we obtain the following densitypro�le,

n(r) = n(1)r .For the boundary 
onditions we 
hoose in�ux andout�ux 
omputed from the density and the velo
ityanalyti
 pro�les.Figure 6 shows density pro�les for stationary solution(bla
k) and polar and Cartesian methods (respe
-tively, blue and red) with a small Nθ = 4, where
n(1) = 2 is 
hosen. Note that even if the mesh is notre�ned in θ, the polar method gives a solution 
loseto the stationary one whereas the Cartesian methodsolution is 
ompletely di�erent. As 
onsequen
e, inthis 
ase, when Nθ is small, the polar method isbetter than the Cartesian one. Fig 6: Density pro�les for stationary, polar andCartesian solutions.
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176 ESAIM: PROCEEDINGSFigure 7 shows the L2−error for the density 
omputed with polar and Cartesian methods, whi
h 
on�rmsthe superiority of the polar s
heme over the Cartesian one. Errors remain small when the polar method is usedfor small Nθ. Nevertheless, as we already noted in the previous part, when Nθ be
omes large, the polar andCartesian methods tend to be equivalent, as it should be. In addition, we note that whatever the Nθ 
hosen,the L2−error is the same in polar method. Indeed, the error depends only on the 
hosen Nr (Fig. 8).5. Con
lusionIn this paper, �nite volume methods in general 
urvilinear 
oordinates for hyperboli
 
onservation laws havebeen investigated. This approa
h has been applied to realisti
 problems 
oming from �uid dynami
s in tokamakgeometry, pre
isely in 2D polar 
oordinates. Comparison with �nite volume in Cartesian 
oordinates systemhas 
on�rmed the advantage to use our approa
h.Fourth
oming works will 
onsist in extending our approa
h to toroidal geometry, and to unstru
tured meshes,and to apply the obtained s
hemes to physi
al problems of fusion in tokamaks, for instan
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