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FINITE VOLUME METHOD IN CURVILINEAR COORDINATES FOR
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NKONGAS AND A. SANGAM’

Abstract. This paper deals with the design of finite volume approximation of hyperbolic conservation
laws in curvilinear coordinates. Such coordinates are encountered naturally in many problems as for
instance in the analysis of a large number of models coming from magnetic confinement fusion in
tokamaks. In this paper we derive a new finite volume method for hyperbolic conservation laws in
curvilinear coordinates. The method is first described in a general setting and then is illustrated in
2D polar coordinates. Numerical experiments show its advantages with respect to the use of Cartesian
coordinates.

1. INTRODUCTION

We are concerned with the construction of finite volume methods in curvilinear coordinates for hyperbolic
conservation laws. Such schemes are crucial when one is interested in capturing accurately the properties of the
physical model under consideration in which coordinates system play an important role. The physical models
of interest are for instance those describing charged particles motion in solar winds in the frame of astrophysical
plasmas [4] or the transport of charged particles in a tokamak, a Magnetic Fusion Confinement device dedicated
to the ignition of controlled thermonuclear fusion reactions on earth [4,8,10].

More precisely, in magnetized plasma, there are two distinct behaviours of particles, along and accross mag-
netic field lines. This leads to highly anisotropic flows of the plasma. As a consequence, Cartesian coordinates
do not constitute an appropriate system to describe the physics that takes place in the plasma. Instead, other
systems of coordinates are preferred, as for instance field aligned coordinates systems [1,2], Boozer coordinates
or Hamada coordinates [6]. The field governing equations written in these generalized curvilinear systems are
generally not in strict conservation laws form: spatially varying metric coefficients multiply the differential
terms and additional source terms appear in the equations. Therefore the design of a finite volume method is
not as straighforward as it is in Cartesian coordinates and additionally important conservation properties can
be lost by the discretisation. Another relevant question that arises in this context concerns the representation
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of vectors and the choice of the basis in which these vectors are expressed since in curvilinear coordinates, the
basis are spatially dependent. For instance, the projection of a vector in the local basis of the corresponding co-
ordinates system introduces source terms coming from the variations of local basis with respect to the variables
of the chosen curvilinear coordinates, and the conservation laws form of the equation is therefore lost. From a
numerical point of view, finding an appropriate approximation of this kind of terms that keeps the conservation
properties of the system of equations remains a challenge, for this purpose it is useful to think about source
terms in shallow water systems, or to Coriolis force term in geophysical equations [7].

Our approach consists in constructing the finite volume approximation of the considered equations in gen-
eral curvilinear coordinates, without any preliminar projection when dealing with vector equations. Averaged
quantities are carefully chosen so that the constructed finite volume scheme is capable of capturing the principal
characterics of the physical models. This approach allows to automatically approximate the non-conservative
terms in a consistent manner independently of the curvilinear system used.

This paper is organized as follows. In section 2, prerequisites on curvilinear coordinates are recalled. Finite
volume methods in these curvilinear coordinates are designed in section 3. Numerical tests using two-dimensional
cylindrical coordinates as example are then considered in section 4 in order to illustrate our approach. Finally,
conclusion is given in section 5.

2. GEOMETRICAL TOOLS

Let us consider a physical model defined on a physical domain (x) C R3, where each point M (z) of Q(z) is
localized by its Cartesian coordinates & = (2!, 22, ). Suppose now the physical model under consideration
can be easily described in another coordinates systems, so that the physical model can be looked through the
domain Q(¢), where &€ = (¢!, €2, €3). The domain (¢) will be referred to as the computational domain, and
the corresponding coordinates system £ as curvilinear coordinates. Obviously, there exists an one-to-one map
¢ : & — x, which is assumed to be at least a C!'-diffeomorphism, which means that J the determinant of the

Jacobian matrix M  of ¢ defined by
ozt 9zl Qxl
€T 92 e’

My;=| % 222 oz

ox® 9z 9u®

oeT  9eZ e
is positive. To introduce the compact expressions of the gradient and the divergence operators, V, V-, with
respect to curvilinear coordinates £ that will be used in this paper, it is useful to define the local covariant basis

ey, associated to the transformation ¢ given by

ox  Ox! ,+8z2 ,+8x3k
e = ——= ——1 — —
S T T T T
where k = 1, 2, 3, and 4, j and k are vectors of the canonical basis corresponding to the Cartesian coordinates

system. The contravariant basis e* associated to ey is provided through the relations

k _ sk
e’ -e;=dj,

where 5;“ is the Kronecker tensor.
With these quantities, the gradient of the vector field V'(£) is given by

vv

ov (avi
e

= 96k =\ Ber + Vmenk> e ®ek.
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(The Einstein summation convention is assumed through this paper.) Here I'? , are the Christoffel symbols
given by
de ,
8—57’: =Thei,
and represent the projection onto e; of the change of the vector e,, according to &*.
The divergence of the vector field V' (£) is defined as the contraction of the gradient

. . . 1.0J , .
By using the identity 7 a_gk =1I"};, one gets the compact expression
1 9(JV -é€b)
V.V=zo—0—-—-.
J otk
Considering a tensor field T, its gradient is given by
oT &
VT = a—fk Ke
The above relation can be expanded as follows
VT = (a—gkjuf T+ T rgnk) e @e; e (2.1)
The divergence of the tensor field T is given by
or
V.-T= a—é_k - e
Using relation (2.1) this leads to
1 0
V-T==—(JT- €.
J agk ( € )

We are now ready to design a finite volume methods in curvilinear coordinates for hyperbolic conservation
laws.

3. CONTRUCTION OF FINITE VOLUME SCHEMES IN CURVILINEAR COORDINATES
Let us consider a general hyperbolic conservation law equations written in a coordinate free manner as

ow
— + V- F(W)=0,
ot (W)
where W is the state variable and F(W) is its flux.
Let us also consider a curvilinear transformation ¢ : € — x, whose determinant of Jacobian is J. Using the
results of the previous section and noting that d;J = 0, it can be seen that in this coordinates system, the above
equation becomes

oJW 0
=+ —(JFW).- ) =0.
o ' o < (W)-e >
In order to see the contour of the problem, we will study separately the construction of finite volume method

into two different cases. The first one deals with the scalar case, that is the state variable W is a scalar and its
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flux F(W) is a vector. In a second step, we will consider the case where W' is a vector while its flux F(W) is
a tensor.

3.1. Scalar equation

This corresponds to take W = S a scalar and F(W') =V a vector, then the hyperbolic equation becomes

G(JS)_’_i(JV.ek) _o. (3.2)

ot gk

Typical examples for instance are the equations of continuity and energy in fluid dynamics.

According to the finite volume philosophy, the discrete equations are simply obtained by integrating (3.2) on
a control cell. To be more precise, let us consider a subdivision of the computational domain Q(¢) into control
volumes (£2;) Then integrating equation (3.2) over a cell ; and dividing the result by the volume |Q;],

one gets
i aee (V<)
—(JV-e")dQ2=0,
%] Jo, O8F

5 ([, 750) +ay [, ae (V)
— JSdQ | + — | JV -e” |dQ=0.
ot (|Qi| Q %] Jq, OF

Introducing the average S; = ‘Qlil fQi J 5 dS2 yields,

9 1 9 AN
w5+ mr [ (v <)o

The flux term is also immediately tractable, since by the divergence theorem, one has

i€EN -

1 a(J S)
d)
ol Jo, o T
which can be rewritten as

/m a%c (JV : ek) Q2 = /m JVi(n-e¥) do(9), (3.3)

where 0€; is the boundary of €;, n is the outward pointing unit vector normal to the surface 9€2;, and do ()
the Lebesgue measure on this surface. The right hand side of (3.3) is immediately calculable as soon as one has
numerical fluxes [3,5,9]. For this case, it is readily seen that there is no difference between the construction of
finite volume method in curvilinear coordinates system and in a Cartesian one.

3.2. Vectorial equation

This case deals with W =V a vector and F(W) = T a tensor, then the hyperbolic equation turns into

a(JV)+i(JT,ek) _o. (3.4)

ot ogk

Momentum equation in fluid dynamics is such a kind of equations.
By using the same procedure as in scalar case, one gets the following discrete scheme,

7 [, 7vee) vy [, s (7o)
— | — JVAQ | + — —(JT-e" | dQ2=0, 3.5
ot <|Qz‘| Q 1] Jq, 0&* (3:9)

and at first glance, this case seems similar to the scalar one. However, since V' is a vector, it has to be stored
component by component on a given basis. The traditional approach consists in taking the scalar product of
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equation (3.4) by the basis vectors e* (resp. ej) and then to obtain scalar equations for the covariant components
of the vector field V¥ (resp. contravariant components V). Then these scalar equations are discretized using
the results of section 3.1. In the sequel, we will designate this method as the projection-integration method.
This approach has one important shortcoming: because the basis vectors are spatially dependent, they do not
commute with the differential operators and therefore source terms appear in the equations (see equation (4.21)
for instance). The approximation of these terms is difficult and moreover it depends on the specific curvilinear
system used.

We therefore advocate the use of the following procedure that we will be called the integration-projection
method.

First we define an average basis in the cell ©; by:

€k Jek dQ,

1
%] Jo,
so that one obtains, assuming that V; j is constant in a cell,

1
|€2]

/ JV Q) = Viﬁkeiyk.
Q;

Here, €, is the kth average vector in the cell €2; with respect to the chosen curvilinear coordinates, and by
definition V; ;, represents the average value of V' along the kth vector according to the corresponding curvilinear
coordinates. The discrete finite volume approximation is then defined by

0 ebk 0
—Vir+— .| —=|(JT-€eF)anr=0, 3.6
Ve + T /Qiagk( ) (3.6)

where (e*) is the contravariant basis associated to (e; ).
This procedure is quite simple and it allows for a general (and implicit) discretisation of the source terms. In
the next section we detail it in the case of 2D polar coordinates.

4. APPLICATION TO 2D POLAR COORDINATES

The construction of finite volume method proposed in section 3 is illustrated in 2D polar coordinates.

4.1. 2D polar coordinates and finite volume method

Let us consider 2D polar coordinates denoted by (r, ) € (0, +oo[x[0, 27) related to Cartesian coordinates
(x, y) by (x, y) = ¢(r, 0) as follows,

r = rcosf,
y = rsinf.
We consider the usual orthonormal basis (e, e,) of R?, and then the covariant basis associated with the
coordinates (r, ) is given by
o — cos e — [ T sin 0
"=\ sing ) T rcost ’

The determinant associated to the transformation ¢ is J = r while the contravariant basis with respect to

(er, ep) is given by
o — [ ©°8 0 of — —sinf
~\ sinf )’ N cos 6 '

S
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Working with the covariant vector ey and the contravariant vector e’ leads to a scale factor r, it is then
appropriate to consider their associated unit vectors,

1
€y — —€y, 6927“69.
T

Then, for instance a vector V' can be written as V = V"e, + V?é;.
Equipped with these notations, we can write down the expressions of gradient and divergence operators. The
gradient of a scalar function S in polar coordinates writes

VS=08.5e + %agsée :
Let us write the vector V as V = Ve, + V9, its divergence is given by
V.-V-= %&(T V") + %89(7"/9) =0, V" + %VT + 99V
Now, consider a tensor T' decomposed as

T=T"¢e.@e.+T" e, 06 +T"" €ye,+T""e)2ey.

The divergence of T is given by the following formula,

1 1 -
V-T=_0.0T€)+ - 0p(rT - &)

1 1
-0-(rT"" e, + r7m? €p) + —0o(r 7" e, +rT?%° €p) .
r r

Now, let V = V7e, + V%€, be a vector which temporal evolution is governed by,

aJV) 8 A
5 +a—§k(JT-e)—0, (4.7)

where T is a tensor.
Applying the procedure developed in the previous section, one gets the following scheme,

a‘/ir a‘/ZO 1 0 k
L P eint — [ -2 (JT-eF)aa=0, 48
o T @0t Qiagk( ) (48)

where V; . and V; ¢ are average values of V" and V', respectively in the cell Q;, while e;r and e; g are average
vectors in the cell €;,

1
= reé, dQ, €0 = —/ Tég ds).
12| /Q %] Ja,



ESAIM: PROCEEDINGS 169

B
4 —+
3 —+
c A
/
2 T /
/
/
D
1+ s
O
| |
I I I I

F1G 1: A cell in polar coordinates.

For simplicity, the tensor T is assumed to be symmetric, i.e. T = T%". We also chose a tensorial mesh so
that the cell ; can be localized by the segments product [rp, ra] x [04, 5] (see Figure 1). Then the average
vectors e; » and e; g can be expressed as

where

and

_ _( costp - . _( —sinbp
€rs = €rc =\ 4ingy ) 05 T C0c T cosfp '

Finally, for any scalar function f = f(r,6), we use the following approximations:

Then equation (4.8) becomes,

|Ql| (ath €;r+ 6,5\/1-,9 61'79) + (TA Tﬁ’: —7Tp T|7:T) (69,4 — 693) + (TA T|’:9 —7p T‘Trﬁ) (eTB — ETA)
D A D (49)
+ (rp—ra) (T‘ng e+ T‘Z’BG ey, — 70 e, — TZ’AB egA) =0.

‘914 |
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It is interesting to expand equation (4.9) on the pair of orthogonal vectors e; , and e; g, which yields

9379,4 Sin(@B*GA)

%] 0:Vir + (05 — 04) (ra TTT’: —rp T + ) (ra—rp) (T"" —T"%)

| Irp 2 1—cos(fp — 64 lo lo4
00 00 (4.10)
oy * Tio,
(65— 04) (ra —rp) L2 =g,
. A 9379,4 sin 9379,4 ~ ~
4] 0iVig + (08 — 04) (ra T —rp T77) + ( )y —rp) (10 =77
o ™D 2 1—cos(fp —04) op 0 (4.11)
AR |
+ (0 —04) (ra —7p) B2 +=0.

Equations (4.10)-(4.11) can be considered as results of integration over ; followed by projections onto e; ,
and e; g of (4.7). This operation is referred to as integration-projection procedure.
It is convenient to compare equations (4.10)-(4.11) with the result of the traditional approach, that is projection-
integration procedure applied to (4.7). The projection of (4.7) onto e, and ey leads to,

Ou(r V) + 0, (rT™) + 0gT™% = T%Y | (4.12)

and

Ou(r V) + 0, (r T™%) + 9pT%% = —T7Y . (4.13)
Equations (4.12)-(4.13) are no longer conservative since they own right hand side source terms, the conservative
character of the original equation (4.7) is lost during the projection operation. This is due to variations of
vectors e, and ey with respect to 6. This kind of source terms does not appear if Cartesian coordinates are
considered in lieu of polar coordinates.
Now, integrating (4.12)-(4.13) yield,

(4]0 Vi + (05 — 04) (ra T —rp T ) + (ra —rp) (110 = T1°7) = / T7%%(r,0) dr df (4.14)
TA ™D B 0a Q
6] 0Vig + (05 — 04) (ra T)°° —rp 1) 4 (ra —rp) (170 = T0%) = - / T (r,0) dr df . (4.15)
A D 0p 04 Q.

i

The comparison of equation (4.10) with (4.14), and (4.11) with (4.15) is summarized in the following result.

Proposition 1. The integration-projection procedure and projection-integration operation applied to vectorial
equation written in 2D polar coordinates are equivalent if and only if the source terms are discretized as follows

0 it
/ T%%(r,0) drdfd = (0p — 0.4) (ra —rp) —2= 5 A
Q;
9379,4 Sin(@BfeA) ~r 6 ~r 0
1-— — 77 -1
+ < 2 1—cos(fp —64) (ra—mp)( lo |9A)’
(4.16)
i+
/ T™0(r,0)drdf = (O — 04) (ra —rp) —= 5 4
Q;

O — 04 sin(fp —04) 500 0,0
B <1 2 1—cos(fp —04) (ra =rp) (T}, = )

Moreover, this discretisation is consistent both on r and 0.
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Note that the discrete version of each source term can be split into a centered (“traditional”) term and a
viscous-like term. The expression of this viscous term is new to the best of our knowledge. Note specially that
it couples the components of the tensor T'.

4.2. Tools for practical implementation

In this section we gather together tools that are important for pratical implementation of a part or of the
full model system composed of a continuity and momentum equations

0 (4.17)

{ O(nV)+V.(nV RV +nl)

Here, n is the density per unit mass, V is the velocity and I the unit tensor. Both the Cartesian version of
system (4.17) and its counterpart in 2D polar coordinates are investigated, and the results obtained by both
methods are compared.

The cells of the mesh used in Cartesian coordinates are quadrilaterals while they are curved ones in 2D polar
coordinates system. In the two cases, we use the same nodes to construct the mesh, but we emphasize that the
cells are different from one coordinates system to another. In Figure 2 are displayed two such kinds of meshes
where the number of radial cells N, = 3 while those of azimuthal ones is Ny = 6. The radial and azimuthal
mesh steps are denoted by Ar and A# accordingly, so that for a uniform mesh in azimuthal direction, one has

Ag=2r

Ne-

Fi1G 2: Cartesian and polar meshes.

In finite volume method implementation, we need to know the value of areas of mesh cells. Consider a generic
cell ©; in 2D polar coordinates localized by its four nodes A, B, C, and D as in Figure 1, the measure of this
area is given by,

A
1Qlr,0 = (7‘ + 77“) ArAf. (4.18)

If these nodes are used to construct a cell €; in a Cartesian coordinates, the measure of the area of this cell will
be

A
1 ey = (r + TT) Ar sin Af. (4.19)
Now, by taking Af small i.e. A — 0 in equation (4.19), one gets
|Qi|r,0 ~ |Qi|x,yv

which makes obvious the fact that for large Ny, meshes obtained in Cartesian and 2D polar coordinates systems
are approximately equal.
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Next, we are interested in evaluating the integral of normal vectors along edges of mesh cells. The tricky one
seems to be those corresponding to curved edges as shown in Figure 3. Thanks to the divergence theorem,

%ndlzo,

we deduce

/ndl:/ ndl,
AB AB

which can be immediately calculated by knowning only the coordinates of the nodes A and B.

A

IS

B

F1G 3: Normals.

We are now concerned with the construction of numerical fluxes for hyperbolic equations written in general
curvilinear coordinates in 2D. Assume we have in our hand a numerical flux procedure, consult [3,5,9] for more
details. The following is a possible algorithm that allows us to construct a numerical flux in general curvilinear
coordinates of cells 2; and €2;:

e Write the vectorial quantities of cells Q; and €2; according to the orthogonal basis (n;;, 7i;) of the
intercell boundary 0f2;; between the cells ©; and ;, (n;; being the outward pointing unit vector
normal to the 9€2;; directed from the cell ; to the cell ;, 7;; is an unit vector orthogonal to n;;). Let
Q; and Q; be the results of this step;

e Compute the flux ®;; with the states Q; and Q_j with respect to the intercell boundary 9€;; by using
a chosen numerical flux [3,5,9];

e Project the flux ®;; onto the cells ; and €2; to get fluxes ®; and ®; respectively, according to

D, =(P;j-er)eir+ (Pij-€0)eip,
Q= (Pij-ejr)ejr+ (Pij-ejo)ejo,

where (e; r, €;¢) is the average vector basis in the cell Q;, (e;,-, €;,9) is those of the cell Q;.

We turn now to numerical tests in 2D polar coordinates in order to validate our approach.
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4.3. Advection equation test

The first test concerns a scalar advection equation with a
constant azimuthal velocity,

which in polar coordinates takes the form,
Oprn + O0p(rnVy) + 0g(nVy) = 0.
We consider the following initial conditions (Fig. 4):
Y(r,0) €
e for the density: n(r,0) =nog,
e for the velocity: V,.(r, ) = 0 and Vy(r, §) = 1,

where ng and V} are constants. For our test, nop = 1 and
Vo =0.5.

For the boundary conditions we set a null flux. FI1G 4: IC with Cartesian mesh.

In this case, we obtain similar results with Cartesian and polar methods: the solutions are preserved as
expected. The error in both cases is in the order of machine epsilon. Note that for scalar equation, only the
cell areas are different but the flux is the same whence the similar results.

4.4. Isothermal Euler system

The following tests concern the isothermal Euler system. Here, we consider a scalar and a vectorial equations.
As consequence, as well as the areas, the computation of the fluxes is different.
More precisely, we are interested in the following dimensionless system where the temperature is supposed
constant,
on+V.nV)=0,
{ O(nV)+V.(nVeV)+Vn=0.
We use this system for two test cases. The first one considers a constant density and an azimuthal velocity.
With the second one, the Gresho test, we can compare the two methods on a stationary solution.

(4.20)

4.4.1. Constant density and velocity
The initial conditions in this test are a constant density and an azimuthal velocity:

e for the density: n(r,0) = ng, V(r,0) € Q,
e for the velocity: V,.(r,0) = 0 and Vp(r,0) = Vg, V (r,0) € Q,

where ng and Vj are constants, typically ng = 1 and Vi = 0.5 for our test.
For the boundary conditions we impose slippery walls.

Figures 5 represent the Cartesian and polar results.
Note here that a radial velocity appears and comes from the source term. Indeed, if we consider the isothermal
Euler system in polar coordinates, we obtain:

on + 0. (rnV,.) + 9g(nVp) =0,
oV, 4+ 0r(r(nV,2 4+ n)) + 0gnV, Vg = nV@ +n, (4.21)
0rV + 0,r(nVyVy) + 0p(nVE +n) = —nV,Vy.
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FiG 5: Cartesian results for density at ¢ = 0.83, 1.69 on first line; polar results for density at ¢ = 0.82,1.65 on
second line.

With the initial conditions, the second equation of the system (4.21) becomes,
orV, = nV92 .

As consequence, a centripetal force appears and then a radial velocity is created.

We note that the numerical results (Fig. 5) match those of physical problems in which a radial velocity appears
and then a new profile of the density is obtained. Nevertheless, even if the Cartesian and the polar methods
present similar results, it is difficult to compare the two approaches in absence of a stationary solution.

4.4.2. Gresho test

The aim of this last test is to compare explicitly the polar and the Cartesian methods with a stationary
solution.
To have a stationary solution, first, we suppose,

V,=0 and 0y =0.
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With these assumptions, system (4.21) becomes,

atn = 0,
orVy +1r0,n = nV02 ,
0V =0.

We have a stationary solution if the velocity and the density satisfy,

rOpn = nV92 .

175

(4.22)

(4.23)

For example, if we choose the velocity as a constant,
Vo=1,

with equation (4.23), we obtain the following density
profile,

n(r) =n(1l)r.
For the boundary conditions we choose influx and
outflux computed from the density and the velocity
analytic profiles.

Figure 6 shows density profiles for stationary solution
(black) and polar and Cartesian methods (respec-
tively, blue and red) with a small Ny = 4, where
n(1) = 2 is chosen. Note that even if the mesh is not
refined in 6, the polar method gives a solution close
to the stationary one whereas the Cartesian method
solution is completely different. As consequence, in
this case, when Ny is small, the polar method is
better than the Cartesian one.

Error

T
polar ——
cartesien

Error
o
>

T

n n ! L L
500 600 700 800 900
Nbtheta

L L
0 100 200 300 400 1000

F1G 7: Polar and Cartesian L?—errors density.

Initial Condition

Density
N
I
L
Y

" Initial Condition

F1G 6: Density profiles for stationary, polar and
Cartesian solutions.

F1a 8: Density profiles for polar solutions in the cases :

stationary and Nr = 10, 20, 50 with Ny = 4.
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Figure 7 shows the L2—error for the density computed with polar and Cartesian methods, which confirms
the superiority of the polar scheme over the Cartesian one. Errors remain small when the polar method is used
for small Ny. Nevertheless, as we already noted in the previous part, when Ny becomes large, the polar and
Cartesian methods tend to be equivalent, as it should be. In addition, we note that whatever the Ny chosen,
the L?—error is the same in polar method. Indeed, the error depends only on the chosen N, (Fig. 8).

5. CONCLUSION

In this paper, finite volume methods in general curvilinear coordinates for hyperbolic conservation laws have
been investigated. This approach has been applied to realistic problems coming from fluid dynamics in tokamak
geometry, precisely in 2D polar coordinates. Comparison with finite volume in Cartesian coordinates system
has confirmed the advantage to use our approach.

Fourthcoming works will consist in extending our approach to toroidal geometry, and to unstructured meshes,
and to apply the obtained schemes to physical problems of fusion in tokamaks, for instance ELM instabilities
and edge turbulence plasmas simulations.
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