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Abstract. This paper presents some optimal
real-time and post-processing estimators of vehi-
cle position using odometer and map-matched GPS
measurements. These estimators were based on a
simple statistical error model of the odometer and
the GPS which makes the model generalizable to
other applications. Firstly, an asymptotically mini-
mum variance unbiased estimator and two optimal
moving fixed interval filters which are more flexi-
bles are exposed. Then, the post-processing case
leads to the construction of two moving fixed in-
terval smoothers. These estimators are tested and
compared with the classical Kalman filter with sim-
ulated and real data, and the results show a good
accuracy of each of them.

1 Introduction
The development of Field Operational Test (FOT)
and Naturalistic Driving Study (NDS) allow to col-
lect large databases that provide a wealth of infor-
mation regarding driving behavior and more gener-
ally the interactions between driver, vehicle and/or
environment factors (e.g. the SHRP 2 NDS with
about 3000 vehicles in the United States for 2 years
[1], and the EuroFOT project with about 1000 ve-
hicles in Europe for 1 year [2]). These mass data,
generally collected from Floating Car Data (FCD),
can be used both to study global effects by calculat-
ing aggregated indicators such as mean or median,
and also effects at a more local scale by studying
individual speed or accelerate profiles. Some stud-
ies have shown that space-speed profiles (speed ver-
sus vehicle position) are very informative to study
driver behavior and the effects of some infrastruc-
ture elements (for example, behavioral studies at a
signalised intersection [3], or effects of traffic calm-

ing measures such as speed humps and speed cush-
ions [4]). Such studies require relatively accurate
location information.
Global navigation satellite systems (GNSS), such
as the Global Positioning System (GPS), are com-
monly used for vehicle positioning and are based
on measurements of the propagation time of a sig-
nal between each visible satellites and the receiver.
However, GNSS performance is highly dependent
on the environment, and in urban environments
the signal is affected by many errors due to satel-
lite masking and multipath. A common solution
is to use additional sensors such to overcome the
weaknesses of GNSS. In practice, the reliability of
vehicle positioning is obtained by the coupling of
GNSS that provide absolute positioning, with dead
reckoning (DR) system, such as odometer and gy-
roscope, that provides vehicle’s position relative to
an initial position [5, 6, 7]. However, in the long
term the performance of DR systems is poor due to
the accumulation of measurements errors over time.
Thus, positioning information from GNSS and DR
systems are complementary.
Many methods exist for multi-sensor vehicle nav-
igation (e.g. neural networks [8], fuzzy logic [9],
particle filter [10]) but Kalman filtering/smoothing
techniques are the most used for their speed and
ease of implementation [6, 11, 12, 5, 7]. The Kalman
filter/smoother is a recursive algorithm to estimate
a signal from noisy measurements, based on a com-
promise between a predictive dynamic model and a
measurement model. The Kalman filter is a real-
time estimator that uses only the past observations
y(k) (0 ≤ k ≤ t) to estimate the state vector x(t) at
the time t. The basic Kalman filter ([13]), based on
least squares approach, is an optimal estimator un-
der the assumptions of linearity of the system and
the gaussian distribution of the errors. Some ex-
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tensions algorithms have also been developed, such
as the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF), in the case of non-
linear systems. However, in Naturalistic Driving
Studies, data are usually post-processed and it is
desirable to dispose all the measurement data of the
experiment in order to achieve better estimation ac-
curacy. Estimators that take into account both past
and future observations are often called smoothers.
Fixed-Interval Smoothing (FIS) algorithms, based
on Kalman filtering/smoothing theory, involve mea-
surements over a given fixed time interval [0, T ] and
use all the measurements y(k) (0 ≤ k ≤ T, T > t)
to estimate the state vector x(t). Fixed-interval
smoothers are generally two-filter smoothers based
on a combination of a forward and a backward es-
timate : a forward pass that processes a Kalman
filter, and a backward pass that operates back-
ward in time by using the measurements after the
time t. The most popular fixed-interval smooth-
ing algorithms are the Rauch-Tung-Striebel (RTS)
smoother [14], the Main-Fraser smoother [15, 16]
and the Wall-Willsky-Sandell smoother [17]. The
main drawback of these smoothers is that they re-
quire the operation of two filters.
This paper presents some optimal real-time and
post-processing estimators of the distance traveled
by a vehicle on a road segment relative to an initial
position, using odometer and map-matched GPS
measurements. The main contributions of this pa-
per are to propose a simple error model of the sen-
sors which makes the model generalizable to other
applications while being efficient, and to propose
moving fixed interval filter/smoother which allow
flexibility of use. In section 2, the statistical model
is explained and the construction of the estimators
are developed. Firstly, two real-time estimators are
exposed: an asymptotically minimum variance un-
biased estimator and an optimal moving fixed inter-
val filter. Then, a generalization of the two previous
filters in the post-processing case, leads to the con-
struction of two moving fixed interval smoothers.
The effectiveness of these estimators is tested and a
comparison with the Kalman filter is performed in
section 3 with simulated and real data. Finally, a
discussion about the results is proposed.

2 Methodology

2.1 Statistical modelisation

The aim of this study is to estimate the vehicle po-
sition x(ti) at time ti on a road segment. We denote
{X(t) : t ∈ [0, T ]} the continuous random process
representing the vehicle position on the time inter-
val [0, T ], and {X(ti) : i = 1, ..., n} the sampled
process. Let {x(t1), ..., x(tn)} a realization of this
random process. Our aim is to estimate this real-
ization from odometer and GPS noisy data.
Let n and m, two integers with m ≤ n, the num-
ber of measurements respectively provided by the
odometer and the GPS. In the remainder of this
paper, it is assumed that the GPS measurements
are map-matched, so that the vehicle is positioned
on the correct road segment. Many map-matching
algorithms have been developed to identify the cor-
rect road segment on which the vehicle is travel-
ling. Most of these algorithms use navigation data
from GPS and digital spatial road network data and
current map-matching algorithms are described in
[18], but the choice of the correct road segment is
not the subject of this study. We suppose that the
correct road segment have been identified and we
search to determine the vehicle location on that seg-
ment. For example, Taylor et al. (2006) developed
in [19] a map-matching algorithm called OMMGPS
that combine GPS pseudorange observations and
odometer positions to provide a vehicle position at
1s epochs.
In this study, the map-matched GPS measurements
denoted (ygps(t0), . . . , ygps(tm)) represent the curvi-
linear abscissa of the vehicle on the studied road
segment (absolute location). GPS position data
are affected by many errors including atmospheric
and ionospheric errors, satellite orbit errors, satel-
lite clock errors, and multipath errors. We repre-
sent these errors by a white Gaussian noise which
is a classical hypothesis especially in Kalman filter-
ing ([20], [21]), even if current studies have shown
that noises are non centered Gaussian distributions
in urban environments but rather Gaussian mix-
ture ([22]). The odometer measurements denoted
(yod(t0), . . . , yod(tn)) represent the distance trav-
eled by the vehicle from the initial position x(t0)
(relative location). Odometer data are affected by
many errors which are divided into two categories:
systematic errors related to the properties of the
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vehicle (mainly unequal wheel diameters and un-
certainty about the wheelbase) and nonsystematic
errors related to the environment (mainly wheel
slippage due to slippery roads, over-acceleration,
...)([23]). Nonsystematic errors are very difficult to
estimate because any unexpected irregularity can
introduce a huge error, while systematic errors ac-
cumulate constantly over time. In our study, we
propose a simple modeling of odometer errors and
we represented them by a cumulative sum of cen-
tered Gaussian distributions. So the discretized ob-
servation model of these two sensors can be written
as the following system:

yod(ti) = x(ti)− x(t0) +
∑i
k=1 εod,k

with ti = iT
n , i = 1, ..., n

ygps(t′j) = x(t′j) + εgps,j
with t′j = jT

m , j = 1, ...,m

(2.1)

where εod,i and εgps,j are independent gaussian cen-
tered errors with respective variance σ2

od and σ2
gps.

To simplify the model, we assume that the initial
position x(t0) is zero. Thus, the odometer model
and the GPS model described in (2.1) differ only by
measurement errors and sampling rate: a high sam-
pling rate with accumulating errors for the odome-
ter, and generally a lower sampling rate without
accumulating errors for the GPS. The construction
of an estimator x̂(ti) of the vehicle position x(ti)
at the sampling time ti, i = 1, . . . , n from noisy
measurements of GPS and odometer will take into
account advantages and disadvantages of these two
sensors.
Later in the paper, we will denote λ = fod

fgps
the ratio

between the odometer and GPS sampling frequen-
cies (in practice, λ ≥ 1) and we will assume that
λ ∈ N∗, i.e. that for some time ti we have both
odometer and GPS measurements.

2.2 Real-time estimator
In this section, vehicle position is estimated in real-
time, i.e. the position x(ti) at a given sampling time
ti is estimated using only measurements obtained
up to time ti.

2.2.1 Asymptotically minimum variance
unbiased estimator

The main idea is to use odometer measurements,
which has the advantage of having a high sampling

rate and provide good accuracy in the short term,
and to readjust with the GPS measurements, when
they are available, to compensate for the accumu-
lation of positional errors. Our estimator is then
defined as follows:
Definition 2.1. Let λ = fod

fgps
∈ N∗. The estima-

tor x̂∞RT (ti) is a real-time estimator of the vehicle
position at the given sampling time ti, i = 1, . . . , n,
defined recursively as follows: For i = 1, . . . , n,


x̂∞RT (ti) = w1 [x̂∞RT (ti−1) + yod(ti)− yod(ti−1)]

+ w2 ygps(ti) if i ≡ 0 (mod λ)
Otherwise,
x̂∞RT (ti) = x̂∞RT (ti−1) + yod(ti)− yod(ti−1)

(2.2)
where w1 + w2 = 1.

In practice, the initial position is unknown, so we
suppose that:

x̂∞RT (t0) =
{
ygps(t0) if ygps(t0) is available
yod(t0) otherwise

Theorem 2.1. The real-time estimator x̂∞RT de-
fined in definition 2.1 with the following weights:
w1 = λ r+2−

√
λ r(λ r+4)
2 and w2 = −λ r+

√
λ r(λ r+4)
2

where r = σ2
od

σ2
gps

is the ratio between the odometer
and GPS variances, is an asymptotically minimum
variance unbiased estimator. The asymptotic vari-
ance can be written as follows:

V ar[x̂∞RT (ti)]→ σ2
od

λ w2
1 + 1

rw
2
2

1− w2
1

when ti →∞

(2.3)
The recursive definition of the estimator given in

definition 2.1 has the advantage of being simple to
compute. However, in general, recursive algorithms
require more computational resource than iterative
algorithms. So, we give a non-recursive expression
of the real-time estimator with asymptotically min-
imum variance x̂∞RT defined in definition 2.1.

Definition 2.2. Let λ = fod

fgps
∈ N∗ and bxc the

floor function. The estimator x̂∞RT (ti) is a real-time
estimator, with asymptotically minimum variance,
of the vehicle position at the given sampling time
ti, i = 1, . . . , n, defined as follows:

x̂∞RT (ti) =
N∑
j=1

w̃−j x̂
−
j (ti) with N = b i

λ
c+1 (2.4)
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where for j = 1, ..., N ,

x̂−j (ti) = ygps(tg−
i

(j))

+
i∑

k=g−
i

(j)+1

(yod(tk)− yod(tk−1))

with g−i (j) = λb i
λ
c − λ(j − 1)

(2.5)

and the weights w̃−j are defined by{
w̃−j = w2w

j−1
1 if j < N

w̃−N = wN−1
1

with (w1, w2) the weights defined in theorem 2.1.

The equivalence with the recursive expression of
the estimator x̂∞RT given in definition 2.1 is easily
demonstrated by recursion.

Remark 2.1.

1. It is easy to check that the sum of weights w̃−j
is equal to one.

2. For a given sampling time ti, the estimators
x̂−j (ti), j = 1, . . . , N , are also estimators of the
vehicle position at time ti, each estimator be-
ing associated with the j-th GPS measurement
obtained before time ti as shown in Figure 1.
The real-time estimator x̂∞RT is a weighted sum
of these estimators.

[Figure 1 about here.]

The estimator x̂∞RT defined in both (2.1) and (2.4)
uses all measurements obtained up to time ti. How-
ever, with the non-recursive expression (2.4), it is
possible to fix an integer N < b iλc + 1 in order to
obtain a "truncated" estimator that can be more ad-
vantageous to calculate from a computational point
of view. In this case, the integer N represents the
number of GPS measurements (available before the
time ti) used in the computation of the estimator
x̂∞RT . The choice of the value of N is entirely defined
by the user which implies a high flexibility in prac-
tice. We then deduce an expression of the variance
of the estimator x̂∞RT with N fixed, at each sampling
time ti.

Theorem 2.2. Let N ≥ 1 an integer, r = σ2
od

σ2
gps

and
λ = fod

fgps
∈ N∗. Let x̂−j , j = 1, . . . , N and w̃−j , j =

1, . . . , N respectively the estimators and the weights
defined in definition 2.2. Then the variance of the
real-time estimator x̂∞RT at a sampling time ti, i =
1, . . . , n is written in matrix form as follows:

V ar[x̂∞RT (ti)] = (w̃−)T Σ−w̃− (2.6)

where w̃− = (w̃−1 , . . . , w̃
−
N )T and Σ− is the N ×N

covariance matrix of the estimators x̂−j . The co-
variance matrix Σ− can be decomposed as follows:

Σ− = σ2
gps(IN + rAN(di)) (2.7)

where IN is the identity matrix of size N , di =
i − λb iλc is the number of odometer measurements
between ti and the first time of a GPS measurement
before ti, and AN(di) is a N ×N matrix, function
of di, defined by:

AN(di) =


di di di · · · di

di di + λ di + λ · · · di + λ
di di + λ di + 2λ · · · di + 2λ
...

...
...

. . .
...

di di + λ di + 2λ · · · di + (N − 1)λ


(2.8)

Then, we can also deduce a linear form of the
variance of the real-time estimator x̂∞RT at a sam-
pling time ti, i = 1, . . . , n as follows:

V ar[x̂∞RT (ti)] = σ2
gps[

(1− w1)2 + 2w2N−1
1 (1− w1)

1− w2
1

+ r(di + λ
w2

1 − w2N
1

1− w2
1

)]

(2.9)

where w1 = λ r+2−
√
λ r(λ r+4)
2 is the asymptoti-

cally optimal weight defined in theorem 2.1.

Note that for a fixed N, the variance function de-
fined in (2.9) is periodic with period λ. Moreover,
since x̂∞RT is an asymptotically minimum variance
estimator, the weights w̃−j , j = 1, . . . , N , defined in
definition 2.2 are optimal when N tends to infinity,
i.e. when we have an infinite number of measure-
ments. Thus, if we assume di = 0 and if N tends to
infinity in the variance expression (2.9), we find the
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expression of the asymptotically variance given in
(2.3). The speed of convergence of the variance of
x̂∞RT defined in (2.9) to the asymptotically variance
defined in (2.3) will be examined in the section 3.
However, the estimator x̂∞RT is an asymptotically
minimum variance estimator and it is not optimal
for estimating the vehicle position at a sampling
time ti close to the initial time t0. Therefore we
have also constructed an optimal real-time estima-
tor with minimum variance at each sampling time
ti.

2.2.2 Minimum variance unbiased estima-
tor for a fixed N

In the definition 2.2, we have written a real-time
estimator of the vehicle position as a weighted aver-
age of the estimators x̂−j (j = 1, . . . , N) and we have
determined the optimal weights w̃−j (j = 1, . . . , N)
that minimize the asymptotic variance. In this sec-
tion, we consider the same real-time estimator but
we search the optimal weights w−j (j = 1, . . . , N)
that minimize the variance at each sampling time
ti.

Theorem 2.3. Let N ≥ 1 an integer and
b = (1, . . . , 1)T a vector of length N. Assume that
x̂−j , j = 1, . . . , N are the estimators defined in
definition 2.2 and Σ− is the N × N covariance
matrix of these estimators defined in theorem 2.2.
The estimator x̂optRT (ti) is a real-time estimator
of the vehicle position at the given sampling time
ti, i = 1, . . . , n, defined as follows:

x̂optRT (ti) =
N∑
j=1

ŵ−j x̂
−
j (ti) (2.10)

where the weight vector ŵ− = (ŵ−1 , . . . , ŵ
−
N )T sat-

isfies:

ŵ− = 1
crt

(Σ−)−1b

with crt = bT (Σ−)−1b a constant.
(2.11)

Then, x̂optRT (ti) is a minimum variance unbiased es-
timator of the vehicle position at the sampling time
ti, and its variance at time ti is the following:

V ar[x̂optRT (ti)] = 1
crt

(2.12)

The variance function defined in (2.12) depends
on di and is periodic with period λ. The estimator
x̂optRT is a minimum variance unbiased estimator at
each sampling time ti for a fixed N. However, deter-
mining the optimal weights ŵ−j requires the inver-
sion of the covariance matrix Σ− which is incon-
venient in practice. Furthermore, the expressions
of the optimal weights and the variance of x̂optRT are
not given explicitly in terms of the integer N, which
makes it difficult to study the properties of this es-
timator depending on N. Thus, in some cases, it
may be more advantageous to use the "truncated"
estimator x̂∞RT with a fixed N that have a simpler
expression of weights and variance.

2.3 Post-processing estimator
In this section, we assume that data are post-
processed and we can use all the GPS and
odometer measurements available on the studied
time interval [0, T ]. Thus, unlike the previous
section where we were restricted to use only
measurements obtained up to time ti to estimate
the vehicle position at the sampling time ti, the
objective of this section is to use all available
information to construct a more accurate estimator
than the real-time estimators defined in the section
2.2.

2.3.1 Minimum variance unbiased estima-
tor for a fixed N

The general idea is to extend the real-time estima-
tor defined in definition 2.2 in case we also have
measurements obtained after the sampling time ti.

Definition 2.3. Let λ = fod

fgps
∈ N∗ and bxc the

floor function. Assume that N ≥ 1 is a fixed
integer. The estimator x̂PP (ti) is a post-processing
estimator of the vehicle position at the given
sampling time ti, i = 1, . . . , n, defined as follows:

x̂PP (ti) =
N∑
j=1

(w−j x̂
−
j (ti) + w+

j x̂
+
j (ti))

with
N∑
j=1

(w−j + w+
j ) = 1

(2.13)
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where for j = 1, ..., N ,

x̂−j (ti) = ygps(tg−
i

(j))

+
i∑

k=g−
i

(j)+1

(yod(tk)− yod(tk−1))

with g−i (j) = λb i
λ
c − λ(j − 1)

(2.14)

and

x̂+
j (ti) = ygps(tg+

i
(j))

−
g+

i
(j)∑

k=i+1
(yod(tk)− yod(tk−1))

with g+
i (j) = λb i

λ
c+ λ j

(2.15)

A graph of the estimators x̂−j and x̂+
j is repre-

sented in Figure 2.

In this case, the integer N represents the number
of GPS measurements (available before and after
the time ti) used in the computation of the estima-
tor (i.e. a total of 2N GPS measurements around
ti).

[Figure 2 about here.]

The following lemma gives a general expression
of the variance of the post-processing estimator de-
fined in (2.13).

Lemma 2.1. Let N ≥ 1 an integer and x̂−j and
x̂+
j , j = 1, . . . , N , the estimators defined in defini-

tion 2.3. Let ŵ = (ŵ−1 , . . . , ŵ
−
N , ŵ

+
1 , . . . , ŵ

+
N )T the

weight vector of length 2N . The variance of the
post-processing estimator x̂PP defined in definition
2.3 can be written as follows:

V ar[x̂PP (ti)] = wTΣ w (2.16)

where Σ is the 2N × 2N covariance matrix of the

estimators x̂−j and x̂+
j defined by Σ =

[
Σ− 0
0 Σ+

]
with Σ− and Σ+ respectively the N ×N covariance
matrix of the estimators x̂−j and x̂+

j . Furthermore,
we can decomposed Σ− and Σ+ as follows:

Σ− = σ2
gps(IN + rAN(di)) and

Σ+ = σ2
gps(IN + rAN(λ− di))

(2.17)

where IN is the identity matrix of size N , di =
i − λb iλc is the number of odometer measurements
between ti and the first time of a GPS measurement
before ti, and AN(di) is a N ×N matrix, function
of di, defined in (2.8).

Then, we search the optimal weights (w−j , w
+
j )

(j = 1, . . . , N) that minimize the variance of the
post-processing estimator x̂PP at each sampling
time ti. Intuitively, we give more weight to the
estimators x̂−j (ti) and x̂+

j (ti) associated with GPS
measurements obtained at times close to ti. The
minimum variance unbiased estimator x̂optPP (ti) of
the vehicle position at the sampling time ti is
similar to the minimum variance unbiased esti-
mator x̂optRT (ti) defined in theorem 2.3 by taking
ŵ = (ŵ−1 , . . . , ŵ

−
N , ŵ

+
1 , . . . , ŵ

+
N )T as weight vector,

Σ defined in lemma 2.1 as covariance matrix, and
b = (1, . . . , 1)T a vector of length 2N . Thus the
constant crt becomes the constant cpp = bT (Σ)−1b.
However, as in the case of the real-time estimator,
the computation of the optimal weights ŵ−j and ŵ+

j

requires the inversion of the covariance matrix Σ
which is inconvenient in practice. Thus, we study
the post-processing estimator with asymptotically
minimum variance.

2.3.2 Asymptotically minimum variance
unbiased estimator

Theorem 2.4. Let N ≥ 1 an integer, r = σ2
od

σ2
gps

and λ = fod

fgps
∈ N∗. Let x̂−j and x̂+

j , j = 1, . . . , N ,
the estimators defined in definition 2.3. Assume
that (w1, w2) are the weights defined in theorem 2.1.
Then x̂∞PP (ti) is an asymptotically minimum vari-
ance unbiased estimator of the position of the vehi-
cle at the sampling time ti, defined as follows:

x̂∞PP (ti) = w̃1x̃
−
PP (ti) + w̃2x̃

+
PP (ti) (2.18)

where
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x̃−PP (ti) =
N∑
j=1

w̃−j x̂
−
j (ti) and

x̃+
PP (ti) =

N∑
j=1

w̃+
j x̂

+
j (ti)

(2.19)

with
{
w̃−j = w̃+

j = w2w
j−1
1 for j < N

w̃−N = w̃+
N = wN−1

1
.

The weights (w̃1, w̃2) whose sum is equal to one,
can be written as follows:

w̃1 = V ar[x̃+
PP (ti)]

V ar[x̃−PP (ti)] + V ar[x̃+
PP (ti)]

and

w̃2 = V ar[x̃−PP (ti)]
V ar[x̃−PP (ti)] + V ar[x̃+

PP (ti)]

where

V ar[x̃−PP (ti)] = σ2
gps[

(1− w1)2 + 2w2N−1
1 (1− w1)

1− w2
1

+ r(di + λ
w2

1 − w2N
1

1− w2
1

)] and

V ar[x̃+
PP (ti)] = σ2

gps[
(1− w1)2 + 2w2N−1

1 (1− w1)
1− w2

1

+ r(λ1− w2N
1

1− w2
1
− di)].

Then, we deduce the following expression for the
variance of the estimator x̂∞PP :

V ar[x̂∞PP (ti)] = V ar[x̃−PP (ti)]V ar[x̃+
PP (ti)]

V ar[x̃−PP (ti)] + V ar[x̃+
PP (ti)]

(2.20)

As for the asymptotically minimum variance real-
time estimator, when N is fixed, we obtain a trun-
cated estimator. The asymptotic variance is ob-
tained when N tends to infinity in the expression
(2.20).

3 Data processing and discus-
sion

In this section, we present simulation and real data
results and a comparison of the different estima-
tors defined in the previous section with a classical
Kalman filter. They have been obtained on a DELL
T3400 workstation equipped with a Intel E8400 core
2 duo processor. The Kalman filter is constructed
using only the odometer and GPS measurements
in order to fairly compare this Kalman filter with
the real-time estimators defined in the section 2.2.
Thus, the state vector is only composed with one
component xi where xi is the distance traveled by
the vehicle at time ti from the initial position x0.
The dynamic equation is given by:

xi+1 = xi + (yod,i+1 − yod,i) + εod,i (3.1)

where yod,i is the odometer measurement at time ti
and εod,i ∼ N(0, σ2

od). The measurement equation
using only GPS measurement is given by:

ygps,i+1 = xi+1 + εgps,i (3.2)

where ygps,i is the GPS measurement at time ti and
εgps,i ∼ N(0, σ2

gps).
Then the step prediction is performed as follows:{

x̂i+1|i = x̂i|i + (yod,i+1 − yod,i)
Pi+1|i = Pi|i + σ2

od
(3.3)

where x̂i|i is the state estimate at time ti knowing
the measures until ti, and Pi|i is the related covari-
ance matrix of the estimation error (here, Pi|i is
a real number). The update step is performed as
follows:

Ki+1 = Pi+1|i (Pi+1|i + σ2
gps)−1

x̂i+1|i+1 = x̂i+1|i +Ki+1(ygps,i+1 − x̂i+1|i)
Pi+1|i+1 = (1−Ki+1)Pi+1|i

(3.4)
The filter is initialized as follows:{

x̂0|0 = ygps(t0)
P0|0 = σ2

gps
(3.5)

Later in the document, the Kalman filter will be
denoted x̂KFRT . More details on the Kalman filter
can be found in [24] and [25].
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3.1 Simulation results
Given a reference vehicle trajectory length of 4000m
and traveled in about 300s, the odometer and map-
matched GPS data were simulated from the model
2.1 with an odometer error standard deviation σod
equal to 0.05m and a GPS error standard devia-
tion σgps equal to 3m. These sensor simulated data
represent the measurement data yod(ti) and ygps(ti)
at each time ti used in the calculation of each es-
timators. We suppose that the odometer and GPS
frequencies are respectively equal to 10Hz and 1HZ,
so that the ratio λ is equal to 10. 100 simulations of
GPS and odometer measurements were generated,
each simulation involved generating a new set of
sensor data of the reference distance traveled and
computing the estimated location at each time ti
with each estimators defined in the previous sec-
tion (real-time estimators and post-processing esti-
mators) and with a Kalman filter. For each estima-
tor, the Root Mean Square Error (RMSE) for all
100 simulations was computed every second (i.e. at
each time ti for which a GPS measurement is avail-
able).
The RMSE is a good measure of the accuracy of an
estimator and has the advantage of being expressed
in the same units as the quantity being estimated
(i.e. in meters). The RMSE of an estimator X̂ of a
vector X is defined as follows:

RMSE(X̂) =
√
MSE(X̂)

=
√
E((X̂ −X)T (X̂ −X))

=

√√√√ 1
n

n∑
i=1

(X̂i −Xi)2

(3.6)

where X̂i (resp. Xi) is the i-th component of the
vector X̂ (resp. X). There are other types of er-
rors (e.g. mean absolute error, geometric average
error), but the choice of the MSE is justified by its
interpretation in terms of bias and variance:

MSE(X̂) = [Bias(X̂)]2 + V ar(X̂) (3.7)

where Bias(X̂) = E[X̂] − X. Thus, the best
estimator between two unbiased estimators is
the one that has the smallest variance, and an
unbiased estimator of minimum variance is gen-
erally regarded as the best estimator possible. It

is moreover well as real-time estimator x̂optRT and
post-processing estimator x̂optPP were built.

Figures 3 and 4 contain the RMSE of the ve-
hicle location obtained with each estimator. In
these two figures, the RMSE of the simulated
sensors are represented by green circles for GPS
and blue dots for the odometer. Each estimator
(real-time and post-processing) is compared with
the Kalman filter x̂KFRT defined in the beginning of
the section 3 (denoted x_hat_RT_KF in Figure
3 and 4) and represented by orange dashed line.
Figure 3 presents the comparaison between the
RMSE of the vehicle location obtained with the
real-time estimators defined in section 2.2 and the
Kalman filter x̂KFRT . The chocolate dashed line
represent the asymptotically minimum variance
estimator x̂∞RT (denoted x_hat_RT_inf in Figure
3) defined recursively in theorem 2.1 and initialized
with x̂∞RT (t0) = ygps(t0). The turquoise line
represented the truncated estimator x̂∞RT with
a fixed N defined in theorem 2.2 (and denoted
x_hat_RT_inf_Nfix in Figure 3) and the red line
represent the minimum variance estimator x̂optRT

for a fixed N defined in theorem 2.3 (and denoted
x_hat_RT_opt_Nfix in Figure 3). These two
estimators depending on N were computed for
three different values of N:

• N=4 is a small value chosen at random;

• N=20 is the threshold above which the dif-
ference between the standard deviation of the
minimum variance estimator

√
V ar[x̂optRT (ti)]

defined in theorem 2.3 (with di = 0 since the
time step is 1s and the GPS frequency is 1Hz)
and the square root of the asymptotic variance
of x̂∞RT defined in (2.3) is less than 0.1m;

• N=40 is the threshold above which the dif-
ference between the standard deviation of the
truncated asymptotically minimum variance
estimator

√
V ar[x̂∞RT (ti)] with N fixed defined

in theorem 2.2 (with di = 0) and the square
root of the asymptotic variance of x̂∞RT defined
in (2.3) is less than 0.1m.

Figure 3 shows that the Kalman filter is the best es-
timator of the vehicle location, mainly at each time
ti of the beginning of the path, but after around
50s the RMSE curve of the Kalman filter and that
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of the asymptotically minimum variance estima-
tor x̂∞RT are merged. Similarly, when N=20, the
RMSE curve of the minimum variance estimator√
V ar[x̂optRT (ti)] is approximately merged with the

RMSE curve of the Kalman filter, and it is the same
for the truncated version of the estimator x̂∞RT when
N=40. The average and maximum RMSE of each
estimator represented in Figure 3 are given in Table
1. These values confirm the results described in Fig-
ure 3. The asymptotic standard deviation achieved
by all estimators and equal to

√
V ar[x̂∞RT (ti)] when

ti →∞ can be calculated with the formula given in
(2.3). We then obtained an optimal standard devia-
tion equal to 0.68m which corresponds approxima-
tively to the RMSE obtained with each estimator
after 50s when N is sufficiently large.

[Figure 3 about here.]

[Table 1 about here.]

Figure 4 and Table 2 are similar to Figure 3 and
Table 1 but with a comparison between the Kalman
filter and the post-processing estimators defined in
section 2.3. Thus, the turquoise line represents the
truncated estimator x̂∞PP with a fixed N defined in
theorem 2.4 (and denoted x_hat_PP_inf_Nfix in
Figure 4) and the red line represents the minimum
variance estimator x̂optPP for a fixed N defined after
the lemma 2.1 (and denoted x_hat_PP_opt_Nfix
in Figure 4). These two estimators depending on
N were computed for N=4 as in the real-time case
and also for the two following values:

• N=17 is the threshold above which the dif-
ference between the standard deviation of the
minimum variance estimator

√
V ar[x̂optPP (ti)]

(with di = 0) and the square root of the asymp-
totic variance of x̂∞PP obtained in (2.20) when
N tend to infinity, is less than 0.1m;

• N=36 is the threshold above which the dif-
ference between the standard deviation of the
truncated asymptotically minimum variance
estimator

√
V ar[x̂∞PP (ti)] with N fixed defined

in theorem 2.4 (with di = 0) and the square
root of the asymptotic variance of x̂∞PP ob-
tained in (2.20) when N tend to infinity, is less
than 0.1m.

Figure 4 and Table 2 show that when we use mea-
surements obtained after time ti (post-processing

case), the accuracy of the estimate of the position
of the vehicle is improved and is better than us-
ing the Kalman filter except at the end of the path
where a side effect appears. The asymptotic stan-
dard deviation achieved by all estimators when N
is sufficiently large, except on the boundaries, and
corresponding to

√
V ar[x̂∞PP (ti)] when N → ∞ in

(2.20), is equal to 0.49m.

[Figure 4 about here.]

[Table 2 about here.]

3.2 Real data results
In this section, real data collected from a trip pro-
vided on test tracks at Versailles-Satory (France)
were used. The trip length was around 4000m and
a travel time of 300s. The odometer measurements
have been collected on CAN (Controller Area Net-
work) bus of the vehicle and have been provided
at a 10Hz sampling frequency. Two GPS were also
located on the roof of the vehicle: A GlobalSat BR-
355 GPS receiver (with SIRF Star III) and a Thales
Sagitta RTK-GPS receiver. The BR-355 GPS pro-
vides position measurements at a 1Hz sampling fre-
quency with a 10m accuracy and the RTK-GPS
(Real-Time Kinematic Global Positioning System)
provides position measurements at a 10Hz sampling
frequency with a centimeter accuracy. Thus, the
RTK-GPS measurements were used as the "true"
locations of the vehicle and were considered as the
reference trajectory. A simple map-matching algo-
rithm was used in order to project the GPS mea-
surements on the road, and the position measure-
ments from the odometer and the two GPS were
synchronized in time. According to the accuracy
of the sensors, we assume that the standard devia-
tions of the errors of the odometer σod and the GPS
σgps are respectively equal to 0.03m and 3m. The
ratio λ between the odometer and GPS sampling
frequencies is equal to 10 as in the previous section.
Tables 3.a and 3.b contain the RMSE of the ve-
hicle location of each estimator on the complete
trip, and the total computation time of the esti-
mated positions with each estimator at each time
ti with a sampling frequency of 10Hz. The Kalman
filter is compared with the real-time estimators in
Table 3.a. For comparaison, the values of N are
the same as in the previous section with simu-
lated data. Contrary to previous results obtained
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with simulated data, Table 3.a shows that the min-
imum variance estimator x̂optRT and the truncated
version of the estimator x̂∞RT with a fixed N are
better than the Kalman filter and the asymptoti-
cally minimum variance estimator x̂∞RT . However
the results show that the GPS is more accuracy
(RMSE=3.07m) than all the real-time estimators
except the minimum variance estimator x̂optRT with
N=4 (RMSE=2.59m). Furthermore, increasing the
interval smoothing (i.e. increase the value of N)
does not improve the accuracy of the real-time esti-
mators that depend on N. Table 3.b shows that all
the post-processing estimators are better than the
real-time estimators and are more accuracy than
the GPS. However the computational time of the
post-processing estimators are bigger than the real-
time estimators mainly when N is large.

[Table 3 about here.]

3.3 Discussion
The asymptotically minimum variance estimator
x̂∞RT is similar to the Kalman filter x̂KFRT with a fixed
gain K which is optimal when the estimation time
ti tends to infinity. Indeed, the weights (w1, w2)
defined in definition 2.1 and theorem 2.1 are fixed
which saves computation time (twice as fast as the
Kalman filter with the real data). Furthermore, the
construction of x̂∞RT provides a simple expression of
the asymptotic variance (equation (2.3)). However,
the optimality of these weights only at infinity im-
plies a poor accuracy of the estimator x̂∞RT at the
beginning of the trip, even if its convergence to the
optimal estimator is relatively fast (50s with the
simulated data). Thus, when the vehicle distance
traveled to be estimated is quite long in time, the
estimator x̂∞RT can be more effective.
By definition, the estimator x̂optRT is the optimal esti-
mator at each time ti for a N fixed and the Kalman
filter x̂KFRT is the optimal estimator using all mea-
surements available up to ti. Therefore, at a given
time ti, the Kalman filter x̂KFRT (ti) is similar to the
estimator x̂optRT (ti) with N = b iλc + 1 (correspond-
ing to use all measurements up to time ti). The
Kalman filter x̂KFRT (ti) then corresponds to x̂optRT with
a non-fixed interval filtering which increases over
time. However, contrary to the simulation results,
the real data results have shown that increasing the
size of the interval filtering, by increasing N, does

not improve the accuracy of the estimator x̂optRT . In-
deed, adding too much information to estimate the
position at a sampling time ti can bias the estima-
tion. Measurements obtained at times close to ti
are supposed to contain the most accurate infor-
mation to estimate the position at time ti unless
such measures are very noisy. In the case of noisy
measurements around ti, it is better to increase
the interval filtering (or the interval smoothing in
the post-processing case) even if the computational
time increase. Thus, the best estimator could be
an estimator with a variable interval filtering that
would be optimal at each time ti even if the compu-
tation time of such an estimator would certainly be
large. However, it is important to note that Tables
3.a and 3.b give the computational time to estimate
the whole trip, i.e. a vector of size n containing the
estimated distance traveled at each time ti, which
benefits recursive estimators as the Kalman filter.
But if we want only one estimated distance traveled
at a given time ti, a recursive expression requires to
compute all the estimated distance up to ti, which
can significantly increase the computational time
when ti is large. For example, with the real data
used in section 3.2, the computational time of the
estimated position at time ti = 300s is respectively
6.30ms for the Kalman filter and 2.45ms for the es-
timator x̂optRT with N = 20. Thus, in some cases,
the estimator x̂optRT (ti) is faster to compute, even if
the computational time depends on the size of the
interval filtering or smoothing.
Finally, the estimator x̂optRT (resp. x̂optPP ) is accurate
but requires the inversion of a matrix of size N ×N
(resp. 2N×2N) which can be a disadvantage when
N is large. In such cases, the truncated version of
x̂∞RT (resp. x̂∞PP ) with a fixed N can be a good alter-
native. Indeed, this estimator is faster to compute
than x̂optRT (resp. x̂optPP ) for the same N and converge
to the optimal estimator when N tends to infinity,
even if it is on average less accuracy.

4 Conclusion
Some real-time and post-processing estimators of
the distance traveled by a vehicle on a road segment
was developed and compared to a classic Kalman
filter. These estimators were based on a simple sta-
tistical error model of the odometer and the GPS
which makes the model generalizable to other ap-
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plications. Firstly, a recursive asymptotically min-
imum variance filter, similar to the Kalman filter
with a fixed gain K which is optimal when time
tends to infinity, was developed. This estimator is
two times faster to compute than the Kalman fil-
ter and converges quickly to the optimal estimator
(error less than 1m after 50s with simulated data).
Then, two more flexible filters was developed us-
ing only measurements included in a moving fixed-
interval: an optimal filter that requires the inver-
sion of the covariance matrix, and a truncated ver-
sion of the asymptotically minimum variance filter
that is less accurate but have a simpler expression of
weights and variance. Real-data results have shown
the interest of using moving fixed-interval filter in-
stead of recursive filter such as the Kalman filter:
the error can be averaged less than 3m with a good
choice of filtering window size. Finally, two moving
fixed-interval smoothers derived from the two pre-
vious filters was also developed for post-processing
cases. These smoothers estimate the vehicle po-
sition at a time t by using the measurement over
a specified window around t. Taking into account
both past and future observations allows to achieve
better estimation accuracy (error less than 2m with
real data).
In future work, the robustness of the estimators pre-
sented in this paper will be tested. Furthermore,
this work have shown the interest of using moving
fixed-interval filter/smoother but the choice of the
best filtering/smoothing windows size for the whole
trip is difficult. The development of a nonfixed-
interval filter/smoother with an optimal windows
size at each time t could be a good alternative even
if it would certainly be at the expense of a higher
computation time.

5 Appendix A: Nomenclature

x(ti) vehicle position at time ti, ti ∈
[0, T ]

yod(ti), ygps(ti) odometer and map-matched GPS
measurements at time ti, ti ∈
[0, T ]

σ2
od, σ

2
gps variances of the odometer and the

GPS

r ratio between the variance of the
odometer and the variance of the
GPS

λ ratio between the sampling fre-
quency of the odometer and the
sampling frequency of the GPS

di Number of odometer measure-
ments between the time ti and the
first time of a GPS measurement
before ti

N Number of GPS measurements
used in the computation of the
fixed-interval filter/smoother

x̂KFRT (ti) Kalman filter estimator of the ve-
hicle position at time ti

x̂∞RT (ti) Real-time unbiased estimator of
the vehicle position at time ti with
asymptotically minimum variance

x̂optRT (ti) Real-time unbiased estimator of
the vehicle position at time ti with
minimum variance for a fixed N

x̂∞PP (ti) Post-processing unbiased estima-
tor of the vehicle position at time
ti with asymptotically minimum
variance

x̂optPP (ti) Post-processing unbiased estima-
tor of the vehicle position at time
ti with minimum variance for a
fixed N

6 Appendix B: Proofs of The-
orems

Proof of Theorem 2.1:
Unbiased: Since εod,i and εgps,j are centered er-
rors, it is easy to prove that E[x̂∞RT (ti)−x(ti)] = 0,
i.e. the estimator is unbiased.
Convergence of variance: Considering only
the sampling time where we have both odometer
and GPS measurements, the two equations defined
in (2.2) can be written as follows: x̂∞RT (tλj) =
w1 [x̂∞RT (tλ(j−1))+

∑λj−1
k=λ(j−1)(yod(tk+1)−yod(tk))]+

w2 ygps(tλj), j = 1, . . . ,m. Thus, the variance
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of the estimator can be represented as an
arithmetico-geometric sequence: V ar[x̂∞RT (tλj)] =
w2

1 V ar[x̂∞RT (tλ(j−1))] + w2
1 λ σ2

od + w2
2 σ2

gps, j =
1, ...,m. Since |w2

1| < 1, the sequence converges
and its limit is σ2

od
λ w2

1+ 1
rw

2
2

1−w2
1

where r = σ2
od

σ2
gps

.
Calculation of asymptotically optimal
weights: The sum of weights is equal to one.
Thus, the asymptotic variance can be written as a
function of one variable defined on [0, 1] as follows:
ϕ(w1) = σ2

od
λw2

1+ 1
r (1−w1)2

1−w2
1

. Since ϕ is convex on
[0, 1], ϕ has a global minimum which satisfies the
quadratic equation ϕ′(w1) = 0. This equation has
only one solution on [0, 1]: w1 = λ r+2−

√
λ r(λ r+4)
2 .

Proof of Theorem 2.2:
The matrix form 2.6 of the variance of x̂∞RT is
derived from the definition 2.4. Furthermore, for
a given sampling time ti and for j = 1, . . . , N ,
V ar[x̂−j (ti)] = σ2

gps+(di+(j−1)λ)σ2
od according to

the definition of the estimators x̂−j given in 2.14, and
Cov(x̂−j (ti), x̂−j′(ti)) = V ar[

∑i
k=g−

i
(j)+1 εod,k] =

(di + (j − 1)λ)σ2
od by independence of εod,i, which

proves the expression 2.17 of the covariance matrix
Σ−. Now, it remains to show the linear expression
2.9 of the variance of x̂∞RT . We have shown that:
V ar[x̂∞RT (ti)] = (w̃−)T Σ−w̃− = σ2

gps[(w̃−)T w̃− +
r (w̃−)T AN(di) w̃−] where
(w̃−)T w̃− =

∑N
j=1(w̃−j )2 = w2

2
∑N−1
j=1 (w2

1)j−1 +
(w2

1)N−1 = (1 − w1)2 1−(w2
1)N−1

1−w2
1

+ (w2
1)N−1 =

(1−w1)2+2w2N−1
1 (1−w1)

1−w2
1

and (w̃−)T AN(di) w̃− = (w̃−)T (diHN +

λ∆N) w̃− with HN =

1 · · · 1
...

. . .
...

1 · · · 1

 and

∆N =



0 · · · · · · · · · 0
... 1 · · · · · · 1
...

... 2 · · · 2
...

...
...

. . .
...

0 1 2 · · · N − 1


.

We prove easily that (w̃−)T HN w̃− =
(
∑N
j=1(w̃−j ))2 = 1 and if we decompose ∆N

as follows:

∆N =


0 · · · · · · 0
... 1 · · · 1
...

...
. . .

...
0 1 · · · 1

+



0 · · · · · · · · · 0
... 0 · · · · · · 0
...

... 1 · · · 1
...

...
...

. . .
...

0 0 1 · · · 1



+ · · ·+


0 · · · · · · 0
...

. . .
...

...
0 · · · · · · 0
0 · · · 0 1


= C1 + C2 + . . .+ CN−1

we obtain that:
(w̃−)T ∆N w̃− =

∑N−1
k=1 ((w̃−)T Ck w̃−) =∑N−1

k=1 (
∑N
j=k+1(w̃−j ))2 =

∑N
k=2(

∑N
j=k(w̃−j ))2

where
∑N
j=k w̃

−
j =

∑N−1
j=k w2w

k−1
1

1−wN−k
1

1−w1
+

wN−1
1 = wk−1

1 (1− wN−k1 ) + wN−1
1 = wk−1

1 .
Then we deduce that (w̃−)T ∆N w̃− =∑N
k=2 w

2(k−1)
1 = w2

1−w
2N
1

1−w2
1

which completes the
proof of the expression 2.9.

Proof of Theorem 2.3:
We search the optimal weights ŵ− =
(ŵ−1 , . . . , ŵ

−
N )T that minimize the variance of

the estimator under the condition that the sum of
weights is equal to 1, i.e. the following constraint
optimization problem:{

min
w

wTΣ−w
subject to wTb = 1

This is an optimization problem of a quadratic func-
tion with an equality constraint. The Lagrange
multiplier method is used to solve this optimization
problem. The Lagrangian function is L(w, λ) =
wTΣ−w + λ(1 − wTb) where λ is the Lagrange
multiplier. The first optimality condition is:

∂L

∂w = 0 ⇔ 2Σ−w−λb = 0 ⇔ w = 1
2λ(Σ−)−1b

(6.1)
Note that the covariance matrix Σ− is symmetric
positive definite and so invertible. Adding the con-
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straint, we obtain:

wTb = 1 ⇔ bTw = 1 ⇔ λbT (Σ−)−1b = 2

⇔ λ = 2
crt

where crt = bT (Σ−)−1b is a constant.

Finally, substituting in (6.1), we obtain the op-
timal weights ŵ− = 1

crt
(Σ−)−1b. Then, since

V ar[x̂optRT (ti)] = (ŵ−)T Σ−ŵ−, we deduce the ex-
pression of the variance, which completes the proof.

Proof of Lemme 2.1:
The estimators x̂−j and x̂+

j are independent, so
Cov(x̂−j (ti), x̂+

j (ti)) = 0, and then:

V ar[x̂PP (ti)] =
N∑
j=1
{(w−j )2 V ar[x̂−j (ti)]

+ (w+
j )2 V ar[x̂+

j (ti)]}

+ 2
∑

1≤j<j′≤N
{w−j w

−
j′ Cov(x̂−j (ti), x̂−j′(ti))

+ w+
j w

+
j′ Cov(x̂+

j (ti), x̂+
j′(ti))}

with ∀j = 1, . . . , N and j < j′, the expres-
sion of V ar[x̂−j (ti)] and Cov(x̂−j (ti), x̂−j′(ti)) have
been proven in theorem 2.2, V ar[x̂+

j (ti)] =
σ2
gps + (jλ − di)σ2

od according to (2.15), and
Cov(x̂+

j (ti), x̂+
j′(ti)) = V ar[

∑g+
i

(j)
k=i+1 εod,k] = (jλ−

di)σ2
od by independence of εod,i.

Proof of Theorem 2.4:
The estimator x̃−PP (ti) is equivalent to the estima-
tor x̂∞RT (ti) defined in definition 2.2. Thus, by sym-
metry, we deduce the expression of x̃+

PP (ti) and
then that the estimator x̂∞PP (ti) defined in (2.18) is
an asymptotically minimum variance unbiased es-
timator of the position of the vehicle at the sam-
pling time ti. Since

∑N
j=1 w̃

−
j =

∑N
j=1 w̃

+
j = 1,

we normalize x̂∞PP (ti) weighting by (w̃1, w̃2) such
that their sum is equal to one. The expression of
weights (w̃1, w̃2) are then deduce by the weighted
least squares method. Finally, the expression of
the variance of x̃−PP (ti) is derived from the equiv-
alence between this estimator and x̂∞RT (ti). Thus,
V ar[x̃−PP (ti)] = V ar[x̂∞RT (ti)] whose expression is

given in (2.9), and the expression of V ar[x̃+
PP (ti)]

is deduced using lemma 2.1: V ar[x̃+
PP (ti)] =

(w̃−)t Σ+w̃− = (w̃−)t σ2
gps(IN + r AN (λ− di)) w̃−

which completes the proof.
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Figure 1: Graph of estimators x̂−j , j = 1, . . . , N .
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Figure 2: Graph of estimators x̂−j and x̂+
j , j = 1, . . . , N .
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a) RMSE when N=4
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b) RMSE when N=20
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c) RMSE when N=40
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Figure 3: RMSE of real-time estimators (x̂∞RT and x̂optRT ) and Kalman filter.
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a) RMSE when N=4
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b) RMSE when N=17
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c) RMSE when N=36
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Figure 4: RMSE of real-time estimators (x̂∞PP and x̂optPP ) and Kalman filter.
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Mean RMSE (m) Max RMSE (m)
Odometer 1.72 2.55

GPS 2.97 3.60
x̂∞RT 0.79 3.01

x̂∞RT with N fixed (N=4) 2.57 3.08
x̂∞RT with N fixed (N=20) 1.31 3.01
x̂∞RT with N fixed (N=40) 0.86 3.01
x̂optRT with N fixed (N=4) 1.51 3.01
x̂optRT with N fixed (N=20) 0.83 3.01
x̂optRT with N fixed (N=40) 0.78 3.01

x̂KFRT 0.71 3.01

Table 1: Mean and maximum RMSE of the real-time estimators compared to the Kalman filter.
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Mean RMSE (m) Max RMSE (m)
Odometer 1.72 2.55

GPS 2.97 3.60
x̂optPP with N fixed (N=4) 1.07 1.86
x̂optPP with N fixed (N=17) 0.62 1.62
x̂optPP with N fixed (N=36) 0.59 1.62
x̂∞PP with N fixed (N=4) 1.82 2.18
x̂∞PP with N fixed (N=17) 1.04 1.69
x̂∞PP with N fixed (N=36) 0.66 1.65

x̂KFRT 0.71 3.01

Table 2: Mean and maximum RMSE of the post-processing estimators compared to the Kalman filter.
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a) Real-time estimators b) Post-processing estimators
RMSE
(m)

Computing
time (s)

Odometer 20.59 -
GPS 3.07 -
x̂KFRT 4.37 0.06
x̂∞RT 4.50 0.03
x̂∞RT (N=4) 3.21 0.26
x̂∞RT (N=20) 3.91 1.01
x̂∞RT (N=40) 3.93 1.94
x̂optRT (N=4) 2.59 0.28
x̂optRT (N=20) 3.08 1.10
x̂optRT (N=40) 3.52 2.09

RMSE
(m)

Computing
time (s)

Odometer 20.59 -
GPS 3.07 -
x̂optPP (N=4) 2.28 0.54
x̂optPP (N=17) 1.54 1.94
x̂optPP (N=36) 1.54 3.97
x̂∞PP (N=4) 2.42 0.49
x̂∞PP (N=17) 1.67 1.78
x̂∞PP (N=36) 2.08 3.72

Table 3: RMSE and computing time of the real-time and post-processing estimators compared to the
Kalman filter.
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