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Abstract

We explore an approach to reasoning about causes via argumentation. We
consider a causal model for a physical system, and we look for arguments about
facts. Some arguments are meant to provide explanations of facts whereas some
challenge these explanations and so on. At the root of argumentation here, are
causal links ({A1, · · · , An} causes B) and also ontological links (c1 is a c2).
We introduce here a logical approach which provides a candidate explanation
({A1, · · · , An} explains {B1, · · · , Bm}) by resorting to an underlying causal link
substantiated with appropriate ontological links. Argumentation is then at work
from these various explanation links. A case study is developed: a severe storm
Xynthia that devastated a county in France in 2010, with an unaccountably high
number of casualties.
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1 Introduction and Motivation
Looking for explanations is a frequent operation, in various domains, from judiciary to
mechanical fields. We consider the case where we have a (not necessarily exhaustive)
description of some mechanism, or situation, and we are looking for explanations of
some facts. The description contains logical formulas, together with some causal and
ontological formulas (or links). Indeed, it is well-known that, although there are simil-
arities between causation and implication, causation cannot be rendered by a simple
logical implication. Moreover, confusing causation and co-occurrence could lead to
undesirable relationships. This is why we resort here to a causal formalism such that
some causal links and ontological links are added to classical logical formulas. Then,
our causal formalism will produce various explanation links [2].

Each causal link gives rise to explanation links, and each explanation link must
appeal to at least one causal link. The ontology gives rise to further explanation links,
although only in the case that these come from explanation links previously obtained:
no explanation link can come only from ontological information. In fact, the ontology
determines a new connective (it can be viewed as a strong implication) which can
induce these further explanation links, whereas classical implication cannot. Indeed,
given an explanation link, logical implication is not enough to derive from it other
explanation links (apart from trivially equivalent ones).

Despite these restrictions, if the situation described is complex enough, there will
be a large number of explanation links, i.e., possible explanations, and argumentation
is an appealing approach to distinguish between all these explanations.

We introduce in section 2 an explicative model, built from a causal model and an
ontological model. Section 4 shows how the explicative model produces explanations.
Section 5 deals with argumentation about explanations and we conclude in section 6.
Section 3 presents a case study: a severe storm called Xynthia, that resulted in 26
deaths in a single group of houses in La Faute sur Mer, a village in Vendée during a
night in 2010.

2 Explicative Model = Causal Model + Ontological Model
The model that is used to obtain explanations and support argumentation, called the
explicative model, is built from a causal model relating literals in causal links and
from an ontological model where classes (which denote types of object as usual in
the literature about ontology) are related by specialization/generalization links. Data
consist of causal links and “is a” relationships (specifying a hierarchy of classes, see
the ontological model in section 2.3) and background knowledge (formulae of a sorted
logic whose sorts are the classes of the aforementioned hierarchy).

From these data, tentative explanations are inferred according to principles using
the so-called ontological deduction links obtained in the explicative model.
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2.1 Closed literals
By a closed literal, we mean a propositional literal or a formula

∃ x : class ¬{0,1}P (x) or ∀ x : class ¬{0,1}P (x)

where x is a variable and P is a unary predicate symbol, preceded or not by negation.
Throughout, a closed literal of the form ∃ x : classP (x) is abbreviated as ∃ P (class)
and ∀ x : classP (x) is abbreviated as ∀ P (class) and similarly for ¬P instead of P .
From now on, when we write simply literal, we mean a closed literal.

Lastly, extension to n-ary predicates is unproblematic except for heavy notation.
Henceforth, it is not considered in this paper for the sake of clarity.

2.2 The causal model
By a causal model [11], we mean a representation of a body of causal relationships
to be used to generate arguments that display explanations for a given set of facts.
Intuitively, a causal link expresses that a bunch of facts causes some effect.

Notation 1 A causal link is of the form

{α1, α2, · · · , αn} causes β

where α1, α2, · · · , αn, β are literals.

These causal links will be used in order to obtain explanation links in section 4.

Example 1 My being a gourmet with a sweet tooth causes me to appreciate some cake
can be represented by

{sweet tooth gourmet} causes ∃ X : cake Ilike(X)

Similarly, my being greedy causes me to appreciate all cakes can be represented by

{IamGreedy} causes ∀ X : cake Ilike(X)

In the figures (e.g., part of the causal model for Xynthia in Fig. 2), each plain black
arrow represents a causal link.

2.3 The ontological model
Our approach assumes an elementary ontology in which specialization/generalization
links between classes are denoted cn

ISA−→ cm.

Notation 2 An ISA−→ link has the form c1
ISA−→ c2 where c1 and c2 are sorts in our

logical language that denote classes such that c1 is a subclass of c2 in the ontology.
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Thus, ISA−→ denotes the usual specialization link between classes. E.g., we have
Hurri

ISA−→ SWind and House1FPA ISA−→ HouseFPA and HouseFPA ISA−→ BFPA1:
the class Hurri of hurricane is a specialization of the class SWind of strong wing,
the class House1FPA of typical Vendée low houses with a single level in flood-prone
area is a specialization of the class HouseFPA of houses in this area, which itself is a
specialization of the class BFPA of buildings in this area.

In the figures (e.g., part of the ontological model for Xynthia in Fig. 1), each white-
headed arrow labelled with is-a denotes an ISA−→ link.

The relation ISA−→ is required to be transitive and reflexive. (1)

Reflexivity is due to technical reasons simplifying various definitions and properties.

2.4 The explicative model
The resulting model (causal model + ontological deduction link) is the explicative
model, from which explanation links can be inferred.

Notation 3 An ontological deduction link has the form Φ1
DEDO−→ Φ2 where Φ1 and Φ2

are two sets of literals.

If Φ1 = {ϕ1} and Φ2 = {ϕ2} are singletons, we may actually omit curly brackets in
the link {ϕ1}

DEDO−→ {ϕ2} to abbreviate it as ϕ1
DEDO−→ ϕ2.

Such a link between literals ϕ1
DEDO−→ ϕ2 actually requires that ϕ1 and ϕ2 are two

literals built on the same predicate, say P . If ϕ1 = ∃ P (c1) and ϕ2 = ∃ P (c2), then
∃ P (c1)

DEDO−→ ∃ P (c2) simply means that ∃ P (c2) can be deduced from ∃ P (c1) due to
specialization/generalization links (namely here, the c1

ISA−→ c2 link in the ontological
model that relate the classes c1 and c2 mentioned in ϕ1 and ϕ2).

Technically, the DEDO−→ links between literals are generated through a single principle:

If in the ontology is the link class1
ISA−→ class2,

then, in the explicative model is the link ∃ P (class1)
DEDO−→ ∃ P (class2)

as well as the link ∀ P (class2)
DEDO−→ ∀ P (class1)

Also, the following links are added ∀ P (classi)
DEDO−→ ∃ P (classi).

(2)

The same principle holds for P replaced by ¬P . That is, from class1
ISA−→ class2,

both ∃ ¬P (class1)
DEDO−→ ∃ ¬P (class2) and ∀ ¬P (class2)

DEDO−→ ∀ ¬P (class1) ensue,
and the links ∀ ¬P (classi)

DEDO−→ ∃ ¬P (classi) are added whenever necessary.

1FPA stands for some precise flood-prone area, BFPA for the buildings in this area, HouseFPA for the
houses in this area and House1FPA for the one floor low houses in this area.
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Let us provide an example from Xynthia, with a predicate Occ so that ∃ Occ(Hurri)
intuitively means: some hurricane occurs.

By means of the ISA−→ link Hurri
ISA−→ SWind,

we obtain the DEDO−→ link ∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind).

The DEDO−→ links between literals introduced in (2) are extended to a relation among
sets of literals (as announced in Notation 3), which is done as follows:

Let Φ and Ψ be two sets of literals,
we add to the explicative model Φ

DEDO−→ Ψ

if for each ψ ∈ Ψ, there exists ϕ ∈ Φ such that ϕ DEDO−→ ψ

and for each ϕ ∈ Φ, there exists ψ ∈ Ψ such that ϕ DEDO−→ ψ.

(3)

From (1), we obtain that ψ DEDO−→ ψ is in the explicative model for each literal ψ.
Accordingly,

Ψ
DEDO−→ Ψ is in the explicative model for each set of literals Ψ. (4)

Back to the hurrican illustration (Hurri ISA−→ SWind), the explicative model contains:
{∃ Occ(Hurri),ItRains} DEDO−→ {∃ Occ(SWind),ItRains}

but it does not contain
{∃ Occ(Hurri),ItRains} DEDO−→ {∃ Occ(SWind)

because, in the latter case, ItRains contributes nothing in the consequent.

Definition 4 Items (2)-(3) give all and only the ontological deduction links Φ
DEDO−→ Ψ

(introduced in Notation 3) comprised in the explicative model.

Summing up, the explicative model consists of the causal links (in the causal
model) together with the ontological deduction links (obtained from the ontological
model). The explicative model contains all the ingredients needed to derive explana-
tions as is described in section 4.

2.5 Background knowledge
In addition to the explicative model, background knowledge is used for consistency
issues when defining explanation links, as will be seen in Section 4, Notation 5. Back-
ground knowledge consists of logical formulas of sorted logic. Part of this knowledge
is freely provided by the user. Moreover, we take causal and ontological deduction
links to entail classical implication:

{α1, · · · , αn} causes β entails (
∧n

i=1αi)→ β.

α
DEDO−→ γ entails α→ γ.

(5)

Consequently, the rightmost logical formulas (
∧n

i=1αi)→ β and α→ γ from (5),
are necessarily included in the background knowledge.
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3 The Xynthia Example
In this section, we consider as an example a severe storm, called Xynthia, which made
26 deaths in a single group of houses in La Faute sur Mer, a village in Vendée during
a night in February 2010. It was a severe storm, with strong winds, low pressure, but
it had been forecast. Since the casualties were excessive with respect to the strength
of the meteorological phenomenon, various investigations have been ordered. This
showed that various factors combined their effects. The weather had its role, however,
other factors had been involved: recent houses and a fire station had been constructed
in an area known as being susceptible of getting submerged. Also, the state authorities
did not realize that asking people to stay at home was inappropriate in case of flood-
ing given the traditionally low Vendée houses. From various enquiries, including one
from the French parliament2 and one from the Cour des Comptes (a national juridic-
tion responsible for monitoring public accounts in France)3 and many articles on the
subject, we have plenty of information about the phenomenon and its dramatic conse-
quences. We have extracted a small part from all this information as an illustration of
our approach.

3.1 Classes and predicates for the Xynthia example
The classes we consider in the causal model are the following ones: Hurri, SWind,
BFPA, House1FPA, HouseFPA, and BFPA have already been introduced in §2.3,
together with a few ISA−→ links. Among the buildings in the flood-prone area FPA, there
is also a fire station FireSt. Besides Hurri, we consider two other kinds of natural
disasters NatDis: tsunami Tsun and flooding Flooding. As far as meteorological
phenomena are concerned, we restrict ourselves to very low pressure VLP, together
with the aforementioned Hurri and SWind, and add high spring tide HST to our list
of classes.

Two kinds of alerts Alertmay be given by the authorities, Alert-Evacuate AlertE
and Alert-StayAtHome AlertS. Also, PeopleS expresses that people stay at home.
There exists an anemometer (able to measure wind strength) with a red light, described
by OK Anemo meaning that it is in a normal state and Red Anemo meaning that its
light is on, which is caused by strong wind, while during a hurricane the anemometer
is in abnormal state.

The following predicates are introduced: Flooded and Vict I, applied to a
group of building, respectively meaning that flooding occurs over this group, and that
there were victims in this group (I ∈ {1, 2, 3} is a degree of gravity, e.g. Vict 1,
Vict 2 and Vict 3 respectively mean, in % of the population of the group: at least
a small number, at least a significant number and at least a large number of victims).

Remember that Occ means that some fact has occurred (a strong wind, a disaster,
. . . ), similarly a unary predicate Exp means that some fact is expected to occur.

2http://www.assemblee-nationale.fr/13/rap-info/i2697.asp
3www.ccomptes.fr/Publications/Publications/Les-enseignements-des-

inondations-de-2010-sur-le-littoral-atlantique-Xynthia-et-dans-le-Var
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∃ Exp(VLP) causes ∃ Exp(SWind),
∃ Occ(Hurri) causes ¬ OK Anemo,

{∃ Occ(SWind), OK Anemo} causes Red Anemo,
{¬∃ Occ(SWind), OK Anemo} causes ¬ Red Anemo,

∃ Occ(NatDis) causes ∃ Occ(Alert),
∃ Exp(NatDis) causes ∃ Occ(Alert), ∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

 causes ∃ Occ(Flooding),

∃ Occ(Flooding) causes ∀ Flooded(BFPA),
∀ Flooded(BFPA) causes ∀ Vict 1(BFPA),
∃ Occ(AlertS) causes ∃ Occ(PeopleS),{

∃ Occ(PeopleS),
∀ Flooded(House1FPA)

}
causes ∀ Vict 2(House1FPA),{

∀ Vict 2(House1FPA),
∀ Flooded(FireSt)

}
causes ∀ Vict 3(House1FPA).

Table 1: Part of the causal model for Xynthia

3.2 The causal and ontological models for the Xynthia example
The classes and the ontological model are given in Fig. 1.

BFPA

(is−a) (is−a)

FireSt HouseFPA

(is−a)

House1FPA

(is−a)
(is−a)

FloodingTsun Hurri

NatDis

(is−a)

SWind

(is−a)
(is−a)

Alert

(is−a)

AlertE AlertS

VLP

OK_Anemo

PeopleS

HST

Red_Anemo

Figure 1: Ontological model for Xynthia ( ISA−→ links and constants)

Part of the causal model is given in Table 1 and in Fig. 2. It represents causal
relations between (sets of) literals. It expresses that an alert occurs when a natural
disaster is expected, or when a natural disaster occurs. Also, people stay at home
if alerted to stay at home, and then having one level home flooded results in many
victims, and even more victims if the fire station itself is flooded,. . .

3.3 The explicative model for the Xynthia example

The explicative model can be built, which contains various DEDO−→ links between literals.
For instance, from Hurri

ISA−→ SWind, the links
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Occ(SWind)
Occ(HST)

Occ(VLP)

E

E

Occ(Flooding)E

E A

Flooded(BFPA) Vict_1(BFPA)

A

3
22

Flooded(FireSt)

Vict_2(House1FPA)

Vict_2(House1FPA)
Occ(AlertS) Occ(PeopleS)

Flooded(House1FPA)

Vict_3(House1FPA)

E E
A

A

A

A
A

Occ(SWind)

E

Red_Anemo
OK_Anemo

Occ(SWind)

E

OK_Anemo

¬

Red_Anemo¬

Exp(VLP)

Exp(NatDis)

Occ(NatDis)

E

Exp(SWind)

E

E

E

Occ(Alert)

E

Occ(Hurri)

E _
¬ OK_Anemo 

Figure 2: Part of the causal model for Xynthia

∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind), and
∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind) are obtained.
And similarly, from {HouseFPA ISA−→ BFPA, House1FPA

ISA−→ HouseFPA},
we obtain House1FPA ISA−→ BFPA by (1), from which we consequently get the link
∀ Flooded(BFPA) DEDO−→ ∀ Flooded(House1FPA).

Fig. 3 represents some causal and DEDO−→ links which are part of the explicative model.
In the figures, white-headed arrows represent DEDO−→ links. Remember that each black-
headed arrow represents a causal link, from a literal or, in the case of a forked entry,
from a set of literals.

Flooded(FireSt)

A

Vict_2(House1FPA)
3Vict_3(House1FPA)

A

Flooded(House1FPA)

A

Occ(SWind)
Occ(HST)

Occ(VLP)

E

E

Occ(Flooding)E

E A

Flooded(BFPA) Vict_1(BFPA)

A

Occ(AlertS) Occ(PeopleS)

E E

Figure 3: Part of the explicative model: data used to explain why there were numerous
victims in low houses in the flood-prone area House1FPA

4 Explanations

4.1 Introducing explanation links
The explicative model (it consists of causal and ontological links) allows us to infer
explanation links. We want to exhibit candidate reasons that can explain a fact by
means of at least one causal link. We disregard “explanations” that would involve only
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links which are either classical implications (→) or DEDO−→ links: some causal information
is necessary for an “explanation” to hold. Here is how causal and ontological links are
used in order to obtain (tentative) explanations in our formalism.

Notation 5 Let Φ,∆ and Ψ be sets of literals. An explanation link

Φ explains ∆ unless ¬ Ψ

is intended to mean that Φ explains ∆ provided that, given Φ, the set Ψ is possible:
if adding Φ ∪ Ψ to available data (i.e., background knowledge and formulas from (5))
leads to an inconsistency, then the explanation link cannot be used to explain ∆ by Φ.

Ψ is called the provision set of the explanation link.
When the set Ψ is empty, we may omit the “ unless ¬ ∅” (i.e., “unless ⊥”) part.

Throughout the text, we write as usual
∧

Φ for
∧

ϕ∈Φ ϕ and ¬Ψ for ¬
∧

Ψ.
We set the following equivalences between explanation links, so that the leftmost

link can under any circumstance be substituted for the rightmost link and vice-versa:

Φ explains ∆ is equivalent to Φ explains ∆ unless ¬ Φ.
Φ explains ∆ unless ¬ Ψ is equivalent to Φ explains ∆ unless ¬ (Φ ∪Ψ).

(6)
Let us now describe how explanation links are inferred from the explicative model.

First is the case that ∆ is a singleton set.

4.2 Explaining a singleton from a set of literals
The basic case consists in taking it that a direct causal link Φ causes β between a set
of literals Φ and a literal β provides an explanation such that the cause explains the
(singleton set of) effect: see (7a).

If β = ∃ P (c) or β = ¬ ∃ P (c), a more interesting case arises. Take β = ∃ P (c)
for instance. Since the causal link expresses that the effect of Φ is ∃ P (c), it means that
for any subclass c′ of c, ∃ P (c′) could be caused by Φ (unless a logical inconsistency
would indicate that ∃ P (c′) cannot be the case in the presence of Φ and background
knowledge and all the formulas from (5)). Accordingly, Φ can be viewed as explaining
∃ P (c′). This is the reason for (7b).

{
Φ causes β

}
yields: Φ explains {β}. (a){

Φ causes ∃ β
∃ δ DEDO−→ ∃ β

}
yields: Φ explains {∃ δ}, unless ¬ {∃ δ}. (b)

(7)

(5) yields
∧

Φ → β (case (7a)) as well as
∧

Φ → ∃ β and ∃ δ → ∃ β (case (7b)),
hence adding β (case (7a)) or ∃ β (case (7b)) to the provision set makes no difference,
thereby justifying the equivalences in (6).

If Φ = {ϕ} is a singleton set, we may abbreviate Φ explains {β} as ϕ explains β.
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Here are a couple of examples from the Xynthia case. First, that flooding occurred
can be explained by the conjunction of very low pressure, strong wind, as well as high
spring tide. In symbols, ∃ Occ(VLP),

∃ Occ(SWind),
∃ Occ(HST)

 causes ∃ Occ(Flooding)

yields  ∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

 explains ∃ Occ(Flooding)

Second, expecting a hurricane can be explained from expecting very low pressure:{
∃ Exp(VLP) causes ∃ Exp(SWind)
∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)

}
yields

∃ Exp(VLP) explains ∃ Exp(Hurri)
Third, that all buildings in the flood-prone area are flooded can be explained by flood-
ing:

∃ Occ(Flooding) causes ∀ Flooded(BFPA)
yields

∃ Occ(Flooding) explains ∀ Flooded(BFPA)
In the figures, dotted arrows represent explanation links (to be read explains), these

arrows being sometimes labelled with the corresponding provision set.

{delta}

beta

delta

Phi beta

delta

Phi

Figure 4: The schema of the explanation link from (7)

We now introduce explanation links between sets of literals, extending the notion
of explanation links from sets of literals to literals presented so far. Since it is an
extension, we keep the same name explanation link.

4.3 Explaining a set of literals from a set of literals
The patterns (7) inducing an explanation for a single observation (a singleton set) are
now extended so that they can be used to obtain an explanation for a set of observations:

Let Φ1,Φ2,∆,Ψ1 and Ψ2 be sets of literals and β be a literal.
If we have Φ1 explains ∆ unless ¬ Ψ1, and

Φ2 explains {δ} unless ¬ Ψ2, (8)
then we get Φ1 ∪ Φ2 explains ∆ ∪ {δ} unless ¬ (Ψ1 ∪Ψ2).
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Notice that the condition in (8) is that Ψ1 ∪ Ψ2 must be possible (it is not enough
that Ψ1 be possible and that Ψ2 be possible —the same applies to (10) below).

Still further explanation links can be generated from these, by following DEDO−→ links:

If we have


Φ explains ∆ unless ¬ Ψ

Φ0
DEDO−→ Φ

∆
DEDO−→ ∆1


then we get Φ0 explains ∆1 unless ¬ Ψ.

(9)

Let us return to our example. Applying (7a), that all the buildings in the flood-prone
area are flooded can be explained by flooding (this is shown at the end of section 4.2).
This explanation link (Φ is {∃ Occ(Flooding)} and ∆ is {∀ Flooded(BFPA)})
can be exploited through (9), letting Φ0 = Φ and ∆1 = {∀ Flooded(HouseFPA)}.
I.e., that all houses in the flood-prone area are flooded can also be explained by flood-
ing: {

∃ Occ(Flooding) causes ∀ Flooded(BFPA)
∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)

}
yields

∃ Occ(Flooding) explains ∀ Flooded(HouseFPA)

Psi

Psi

Phi

Phi0 Phi0

Phi

Delta

Delta1 Delta1

Delta

Figure 5: Explanation links follow DEDO−→ links [cf (9)]

The last, but not least, way by which explanation links induce further explanation
links is transitivity (of a weak kind because provision sets are unioned).

If
{

Φ explains ∆ unless ¬ Ψ1

Γ ∪∆ explains Θ unless ¬ Ψ2

}
then Φ ∪ Γ explains Θ unless ¬ (Ψ1 ∪Ψ2).

(10)

11



Gamma

Phi

Delta

Gamma

Psi1 U Psi2

Psi2

Theta

Theta

Phi

Psi1

Delta

Figure 6: Transitivity of explanations among sets of literals (10)

Now, we have defined the notion introduced in Notation 5:

Definition 6 The explanation links Φ explains ∆ unless ¬ Ψ introduced in Notation 5
arising from the explicative model are those and only those resulting from applications
of (7), (8), (9) and (10).

The reader should keep in mind that Φ must always be included in the set to be checked
for consistency, as is mentioned in Notation 5 (cf (6)).

Definition 6 is such that we can neither explain Φ by Φ itself nor explain Φ by
Φ0 if all we know is Φ0

DEDO−→ Φ. Intuitively, providing such “explanations” would be
cheating, given the nature of an explanation: some causal information is required.

4.4 More examples detailed
Let us start with an example from Xynthia illustrating the use of the patterns (7b) and
(9) depicted in Fig. 4 and 5.

In the causal model for Xynthia, we focus on the causal link

∃ Exp(VLP) causes ∃ Exp(SWind)

In the ontological model for Xynthia, we consider the following ontological links Hurri
ISA−→ SWind

Hurri
ISA−→ NatDis


which give rise, in the explicative model, to the DEDO−→ links below{

∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)
∃ Exp(Hurri) DEDO−→ ∃ Exp(NatDis)

}
We are looking for Exp(NatDis) to be explained by Exp(VLP) hence we consider{

∃ Exp(VLP) causes ∃ Exp(SWind)
∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)

}

12



and we apply (7b) in order to obtain, as a first step,

∃ Exp(VLP) explains ∃ Exp(Hurri) unless ¬ ∃ Exp(Hurri)

over which we apply (9) using the ontological deduction link obtained above, that is,

∃ Exp(Hurri) DEDO−→ ∃ Exp(NatDis)

in order to arrive at

∃ Exp(VLP) explains ∃ Exp(NatDis) unless ¬ ∃ Exp(Hurri)

Please observe that applying (9) actually requires ∃ Exp(VLP) DEDO−→ ∃ Exp(VLP)
which is obtained by using (4).

That a natural disaster occurs can be explained from the fact that very low pressure
is expected. However, if ¬∃ Exp(Hurri) holds (it is impossible that some hurricane
be expected), then this explanation no longer stands (because the effect of the causal
link underlying it is strong wind and the explanation chain here identifies hurricane as
the kind of strong wind expected).

Let us now turn to an example showing how a chain of explanations can be con-
structed by means of transitivity (10) applied over explanations already detailed above.
The fact that  ∃ Occ(VLP),

∃ Occ(SWind),
∃ Occ(HST)

 causes ∃ Occ(Flooding)

is in the explicative model allowed us to conclude ∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

 explains ∃ Occ(Flooding) (i)

and the fact that{
∃ Occ(Flooding) causes ∀ Flooded(BFPA)
∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)

}
is in the explicative model allowed us to conclude

∃ Occ(Flooding) explains ∀ Flooded(HouseFPA). (ii)

Hence chaining the explanations (i) and (ii) through (10) by letting Γ = ∅ yields ∃ Occ(VLP)
∃ Occ(SWind),
∃ Occ(HST)

 explains ∀ Flooded(HouseFPA) (iii)

Let us now suppose that we have multiple observations

{∀ Flooded(BFPA),Red Anemo}.
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From {∃ Occ(SWind), OK Anemo} causes Red Anemo,
we get {∃ Occ(SWind), OK Anemo} explains Red Anemo.

Then, from (iii), using (8) we get
∃ Occ(VLP)
∃ Occ(SWind),
∃ Occ(HST),
OK Anemo

 explains {∀ Flooded(HouseFPA),Red Anemo} (iv)

Also, from Hurri
ISA−→ SWind we get ∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind)

Thus from (iii), using (9), we get ∃ Occ(VLP)
∃ Occ(Hurri),
∃ Occ(HST)

 explains ∀ Flooded(HouseFPA) (v)

However, since ∃ Occ(Hurry) causes ¬ Red Anemo, we do not get


∃ Occ(VLP)
∃ Occ(Hurri),
∃ Occ(HST),
OK Anemo

 explains {∀ Flooded(HouseFPA),Red Anemo} .

Fig. 7 displays another example from Xynthia of various possible explanations
(represented by dotted lines) labelled as 1, 1a, . . . The sets of literals, from which the
explanation links start, are framed and numbered (1) to (4). These sets are not disjoint,
some literals are then duplicated for readability and the copies are annotated with (bis).
Transitivity of explanations is again at work, e.g.,

• set 1 explains ∀ Vict 1(BFPA) (label 1+1a+1b)
It is obtained by transitivity over explanation links 1, 1a and 1b.

• set 4 explains ∀ Vict 2(House1FPA) (label 1+1a+2)
It follows from explanations 1, 1a and 2. The latter results from explanation
1+1a together with the ∀ Flooded(BFPA) DEDO−→ ∀ Flooded(House1FPA)
link.

• set 4 explains ∀ Vict 3(House1FPA) (label 1+1a+2+3)
Explanation 3 results from the ∀ Flooded(BFPA) DEDO−→ ∀ Flooded(FireSt)
link together with explanations 1+1a+2.
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Figure 7: A few explanations for victims

5 Argumentation
The explicative causal model allows us to infer explanations for a set of statements and
these explanations might be used in an argumentative context [3, 4]. Let us first provide
some motivation from our case study, Xynthia.

An explanation for the flooded buildings is the conjunction of the bad weather con-
ditions (very low pressure and strong wind) and high spring tide (see Fig. 2). Let us
take this explanation as an argument. It can be attacked by noticing: a strong wind is
supposed to trigger the red alarm of the anemometer and no alarm was shown. How-
ever, this counter-argument may itself be attacked by remarking that, in the case of a
hurricane, that is a kind of strong wind, the anemometer is no longer operating, which
explains that a red alarm cannot be observed.

Let us see how to consider formally argumentation when relying on an explicative
model and explanations as described in sections 2 and 4. Of course, we begin with
introducing arguments.

5.1 Arguments
An argument is a tuple (Φ,∆,Ψ,Θ) such that Θ yields that

Φ explains ∆, unless ¬Ψ

is an explanation link according to Definition 6. The components of the argument are:

• Φ, the explanation, a set of literals.

• ∆, the statements being explained, a set of literals.
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• Ψ, the provision of the explanation (see Section 4), a set of formulas.

• Θ, the evidence, comprised of formulas (e.g.,
∧

Φ → γ), causal links (e.g.,
Φ causes β), and ontological deduction links (e.g., ∆

DEDO−→ {β}).

Back to (iii) in the example from Xynthia in section 4.4, that the FPA houses are
flooded is explained by the set of literals

Φ =

 ∃ Occ(VLP)
∃ Occ(SWind)
∃ Occ(HST)


on the grounds of the following set consisting of two causal links and one ontological
deduction link

Θ =



∃ Occ(Flooding) causes ∀ Flooded(BFPA), ∃ Occ(VLP)
∃ Occ(SWind)
∃ Occ(HST)

 causes ∃ Occ(Flooding),

∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)


That is, (iii) gives rise to the argument (Φ, {δ},Ψ,Θ) where
• The explanation is Φ.

• There is a single statement being explained, i.e., δ = ∀ Flooded(HouseFPA).

• The provision of the explanation is empty.

• The evidence is Θ.

As for the argumentation part, our approach is concerned with sense-making. I.e.,
there is complex information that needs to be made sense of, and our approach is meant
to provide a way to organize that information so that the key points are identified. This
is a primary task in argumentation, as argumentation (even in computational guise) is
much more than evaluating arguments, and in any case, does not begin with evaluating
arguments [4]. Accordingly, our approach does not aim at evaluating a collection of
arguments and counterarguments (as in the sense of determining extensions or identi-
fying warranted arguments).

5.2 Counter-arguments
A counter-argument for an argument (Φ,∆,Ψ,Θ) is an argument (Φ′,∆′,Ψ′,Θ′)
which questions

1. either Φ (e.g., an argument exhibiting an explanation for ¬Φ)

2. or ∆ (e.g., an argument exhibiting an explanation for ¬∆)

3. or Ψ (e.g., an argument exhibiting an explanation for ¬Ψ)
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4. or any item in Θ (e.g., an argument exhibiting an explanation for the negation of
some θ occurring in Θ)

5. or does so by refutation: i.e an argument exhibiting an explanation for a state-
ment known to be false and using any of Φ, Θ, Ψ and ∆. In this case, at least
one of Φ′, Θ′, Ψ′ intersects one of Φ, ∆, Θ, or Ψ.

Type (5) counter-arguments do not directly oppose an item in the argument being
challenged. They rather question such an item by using it to provide an argument whose
conclusion is wrong. The presence of such an item is ensured by checking that the
challenged argument and the counter-argument indeed share something in common,
i.e., that the intersection is not empty. Otherwise, in the case that the intersection is
empty, then the two arguments have nothing in common, hence none can be viewed as
a counter-argument to the other.

These counter-arguments have the form of an argument. They explain something
that contradicts something in the challenged argument.

Dispute.
Let us consider the illustration at the start of this section: The argument (that the houses
in the flood-prone area are flooded is partly explained by a strong wind) is under attack
on the grounds that the anemometer did not turn red – indicating that no strong wind
occurred. The latter is a counter-argument of type 5 in the above list. Indeed, the
statement explained by the counter-argument is Red Anemo that has been observed to
be false. The explanation uses ∃ Occ(SWind), i.e., an item used by the explanation
and then belonging to Φ in the attacked argument.

Taking Red Anemo to be a falsehood, the counter-argument (Φ′,∆′, ∅,Θ′) results
from Θ′ yielding that{

∃ Occ(SWind)
OK Anemo

}
explains {Red Anemo}

where
• The explanation is

Φ′ = {∃ Occ(SWind),OK Anemo}

• The statement being explained is
∆′ = {Red Anemo}

• The evidence is

Θ′ =

{{
∃ Occ(SWind)
OK Anemo

}
causes Red Anemo

}
Notice that Φ′ does intersect Φ.

This is a counter-argument because, taking the anemometer being red as falsity, it
is an argument which uses the occurring of a strong wind to conclude the anemometer
being red. As explained above in the general case, such a type (5) counter-argument
uses an item (a strong wind occurring) from the argument being challenged, in order to
conclude a falsity (the anemometer being red).
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Dispute (continued)
This counter-argument has in turn a counter-argument (of type 1.). It explains the
misbehavior of the anemometer by the occurrence of an hurricane (that is a strong
wind), and then explains the negation of an item OK Anemo of the explanation Φ′ of
the counter-argument. The anemoter not getting red, instead of being explained by
the absence of a strong wind, is explained by the fact that the wind was so strong (an
hurricane) that the anemometer misbehaved.

So, the counter-counter-argument is: (Φ′′,∆′′, ∅,Θ′′) resulting from Θ′′ yielding
that: {

∃ Occ(Hurri)
}

explains {¬OK Anemo}
where

• The explanation is
Φ′′ = {∃ Occ(Hurri)}

• The statement being explained is

∆′′ = {¬OK Anemo}

• The evidence is

Θ′′ = {∃ Occ(Hurri) causes ¬OK Anemo}

The dispute can extend to a counter-counter-counter-argument and so on as the
process iterates.

6 Conclusion
The contribution of our work is firstly to propose a new logic-based formalism where
explanations result from both causal and ontological links. It is important to stress that
our approach reasons from causal relationships which are given, in contrast to a num-
ber of models for causality that aim at finding causal relationships (e.g., [8, 9]). This
causal-based approach for explanations, already defended in [1], is relatively differ-
ent from other work on explanations that rely on expert knowledge and are considered
as useful functionalities for expert systems and recommender systems (for a synthetic
view on explanations in these domains, see [5, 10, 14]. We then show how these ex-
planation links may be interestingly used as building blocks in an argumentative con-
text [3]. It has similarities with the work by [12], who argue that, in the context of
knowledge-based decision support systems, integrating explanations and argumenta-
tion capabilities is a valuable perspective.

Although explanation and argumentation have long been identified as distinct pro-
cesses [13], it is also recognized that the distinction is a matter of context, hence they
both play a role [7] when it comes to eliciting an answer to a “why” question. This is
exactly what is attempted in this paper, as we are providing “possible” explanations,
that thus can be turned into arguments. The argument format has some advantages
inasmuch as its uniformity allows us to express objection in an iterated way: “pos-
sible” explanations are challenged by counter-arguments that happen to represent ri-
val, or incompatible, “possible” explanations. Some interesting issues remain to be
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studied. Among others, comparing competing explanations according to minimality,
preferences, and generally a host of criteria.

We have designed a system in answer set programming that implements the ex-
plicative proposal introduced above. Indeed, answer set programming [6] is well fitted
for this kind of problem. One obvious reason is that rules such as (5), (8) or (9) can
be translated literally and efficiently. Also ASP is known to be good for working with
graphs such as the one depicted in the figures of this text. We plan to include our system
in an argumentative framework and think it will be a good basis for a really practical
system, able to manage with as a rich and tricky example as the Xynthia example.
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