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Abstract. In parametric methods, building a probability distribution
from data requires an a priori knowledge about the shape of the distri-
bution. Once the shape is known, we can estimate the optimal parameters
value from the data set. However, there is always a gap between the es-
timated parameters from the sample sets and true parameters, and this
gap depends on the number of observations. Even if an exact estima-
tion of parameters values might not be performed, confidence intervals
for these parameters can be built. One interpretation of the quantitative
possibility theory is in terms of families of probabilities that are upper
and lower bounded by the associated possibility and necessity measure.
In this paper, we assume that the data follow a Gaussian distribution, or
a mixture of Gaussian distributions. We propose to use confidence inter-
val parameters (computed from a sample set of data) in order to build a
possibility distribution that upper approximate the family of probability
distributions whose parameters are in the confidence intervals. Starting
from the case of a single Gaussian distribution, we extend our approach
to the case of Gaussian mixture models.

1 Introduction

In 1978, Zadeh introduced the possibility theory [5] as an extension of his theory
of fuzzy sets. Possibility theory offers an alternative to the probability theory
when dealing with partial knowledge or epistemic uncertainty. A possibility dis-
tribution contains all the probability distributions that are respectively upper
and lower bounded by the possibility and the necessity measure. In this scope, a
probability-possibility distribution has been proposed [3]. Our method is based
on the probability-possibility transformation [3] We assume that we have an
a priori knowledge about the shape of the distribution, hence we have to es-
timate the unknown parameters of the distribution with respect to the data.
Considering the amount of available data , it may be illusionary to expect to
have an exact (or even a good) estimation of these parameters. In the case of
Gaussian distributions, statistical approaches can be employed in order to build
confidence intervals. Under some assumptions, the same kind of intervals can be



computed for Gaussian mixture. The uncertainty associated with the parameters
value cannot be encoded by the estimated probability distribution. However, in
some critical domain, such as risk management, taking into account this kind of
uncertainty can be a crucial issue. The idea of the paper is to handle this type
of uncertainty by building possibility distributions that bound the set of prob-
ability distributions, which have parameters in the confidence intervals. Thus,
the possibility distribution built represents the family of acceptable probability
distributions given a set of data and knowing the shape of the distribution. This
paper is structured as follows: we begin with a background on the possibility
theory and more specifically on the probabilistic interpretation of the possibil-
ity theory and the probability-possibility transformation. Then we see how to
build the mean and variance confidence intervals for a Gaussian distribution
with respect to a set of data. In the third section, we propose a method for
constructing the maximal specific possibility distributions that bounds all the
Gaussian distributions which have their parameters in their corresponding con-
fidence intervals. Finally, we extend these results to Gaussian mixture models
under some assumption and simplifications.

2 Background

A possibility distribution π is a function from Ω to (R → [0, 1]). It has been
proved in [2] that a possibility distribution π represents the family of the proba-
bility distributions Θ for which the measure of each subset of Ω will be bounded
its possibility measures. In the following, we will note p the density function of
a probability distribution (sometimes referred directly as probability distribu-
tion) and P its cumulative distribution function. Given a probability distribution
p, a confidence interval Iα is a subset of Ω such as P (Iα) = α. A possibil-
ity measure Π is equivalent to the family Θ of probability measures such that
Θ = {P |∀A ⊆ Ω,P (A) ≤ Π(A)}. We define I∗α, also referred as quantile, as the
smallest confidence interval with probability measure equal to α (this interval
is unique only if p have finite number of modes). In many cases it is desirable
to move from the probability framework to the possibility framework. Dubois et
al.[3] suggest that when moving from the possibility to probability framework we
should use the ”maximum specificity” principle which aims at finding the most
informative possibility distribution. Formally the maximum specificity principle
is defined as follow. This kind of transformation (probability to possibility) may
be desirable when we are in presence of weak source of knowledge or when it
is computationally harder to work with the probability measure than with the
possibility measure. The ”most specific” possibility distribution function for a
finite mode probability distribution function has the following formula [3] :

πt(x) = sup{1− P (I∗α), x ∈ I∗α} (1)

where πt is the ”most specific” possibility distribution, I∗α is the α confidence
interval.



In the following, we will note g(µ, σ2) for a Gaussian distribution of mean
µ and variance σ2, g(x, µ, σ2) for its density function and G(x, µ, σ2) for its
cumulative distribution function. Having a set of n pieces of data, the confidence
interval of probability 0.95 of the mean µ, evaluated from the data, is obtained
as follows :

µ− 1.96 ∗ σ√
n
< µ < µ+ 1.96 ∗ σ√

n
. (2)

The confidence interval of probability β = 1 − α of the variance σ2, evaluated
from the data, is obtained as follows :
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where χ2
β

2
,n−1

is the density of Chi-squared distribution with n − 1 degrees of

freedom evaluated for x = β
2
. In what follows, we will denote respectively con-

fidence interval of the mean and the variance by [µmin, µmax] and [σ2

min, σ
2

max],
given a confidence level.

3 Possibility distribution for a family of Gaussian

distribution

When data follows a normal distribution with unknown mean µ and standard
deviation σ, a direct estimation of these parameters may be risky if only a low
amount of data are available. In the previous section, we have described the con-
fidence intervals for means and variance given a set of data (for simplification,
we always take α = 0.95 for the intervals in the following). If the estimation of
these parameters is a critical issue of a decision process, it may be interesting to
take into account the normal distributions that may have generated the data. In
this scope, we propose to construct the most specific possibility distribution that
contains the family Θ = {g(µ, σ2)|µ ∈ [µmin, µmax], σ

2 ∈ [σ2

min, σ
2

max]} of Gaus-
sian distributions which have mean and variance parameters in the confidence
intervals. We name Φ the set of possibility distributions obtained by transform-
ing each distribution in Θ. So Φ = {π|π = Tr(p), p ∈ Θ} where Tr(g) is the
probability-possibility transformation of a g.

Proposition 1 Given Θ = {g(µ, σ2)|µ ∈ [µmin, µmax], σ
2 ∈ [σ2

min, σ
2

max]} the

family of Gaussian distributions which have mean and variance parameters in

the confidence intervals, the possibility distribution defined by

πΘ(x) = Sup{π(x), π ∈ Φ}

encodes all the probability family Θ. πΘ has the following definition :

πΘ(x) =







1 if x ∈ [µmin, µmax]
1− 2 ∗G(x, µmin, σ

2

max) if x < µmin

1− 2 ∗G(2 ∗ µmax − x, µmax, σ
2

max) if x > µmax



Where [µmin, µmax] is the mean confidence interval [σ2

min, σ
2

max] is the variance

confidence interval.

Proposition 2 : The possibility distribution πΘ is the most specific possibility

distribution which encodes all the Gaussian distributions of the family Θ.

In this section, we have described the construction of πΘ and we have proved that
πΘ is the most specific distribution that encodes all the Gaussian distributions
that have parameters inside the confidence intervals.

4 Possibility distribution for a family of Gaussian

mixture model

In this section, we propose to build a possibility distribution that encodes a
family of Gaussian Mixture Model (GMM). As for the simple Gaussian case, the
idea is to compute the confidence interval of the parameters of an estimated from
a data set. Since the possibility distribution that bounds all of these GMMs may
be difficult to compute and not handy to use, we compute directly a trapezoid
possibility distribution that describes faithfully this family. A Gaussian mixture
model is a weighted sum of K different Gaussian distribution as described by
the equation below:

p(x) =

k
∑

i=1

ωi ∗ g(x, µi, σ
2

i ) (4)

where ωi is the weight of the ith Gaussian density, µi its mean and σ2

i its

variance. The mixture weights has to satisfy the following constraint :
∑k

i=1
ωi =

1. There are several techniques available for estimating the GMM parameters
from data, Maximum Likelihood Estimation being the most popular one [4]. In
the following, we assume that our sample set comes from an unknown GMM
density function with a known number of components. We follow the same idea
than in Section 3. We note Γ the family of GMM distributions which have
parameters inside the confidence intervals. The computation of the trapezoid
distribution for family of GMM is done by following these steps :

1. Computing the confidence intervals of the parameters and identifying the
family of GMMs Γ .+

2. Computing the maximal possibility degree for the modes of the components.
3. Identifying the 0.05-cut of the possibility distribution which encodes the

whole GMMs family.
4. Building the trapezoid distribution.

Confidence intervals of the parameters of a GMM. We only consider the
confidence intervals for the parameters of the Gaussian component densities, and
we let the weights ωi constant. As pointed out previously, the rationale behind
the definition of GMMs is that our observations comes from a set of independent
Gaussian distributions. In this scope, we assume that the parameters µi and σ2

i



of each Gaussian are estimated with respect to ni = ωi ∗n piece of data (where n
is the size of the dataset used for building the GMM), i.e. the ratio of data equals
to the weights associated to the distribution. Once we have ni, the confidence
interval of the parameters µi and σ2

i are computed as previously.
Identification of the modes. The modes of a GMM are the local maximum
of the density function. However, it has been shown that the identification of
the modes of a GMM is a hard problem [1]. In order to simplify the calculus, we
will compute the maximum possibility degree for the means (i.e. the modes) of
the Gaussian components. Then, we compute intervals by taking into account
the mean confidence intervals. These intervals will be used in order to build the
trapezoid distribution.
Identification of the 0.05-cuts. As for the family of Gaussian distributions,
we want that the 0.05-cuts of the trapezoid trapΓ contains all the 95% quantiles
of the GMMs in Γ . We obtain the values of these intervals by considering the
two extreme largest GMM densities in Γ which is the followings :

∀, i gextrem(x) =

k
∑

i

ωi ∗ g(x, µimin, σ
2

jmax)(x)

Building the trapezoid distribution trapΓ Having the set of triples mi =
{µimin, µimax, π

∗(µi)} and the interval [a0.05, d0.05], we can define trapΓ = (a, b, c, d)
where [a, d] is the support of the distribution and [b, c] its core. trapΓ is the con-
vex hull of points defined by the triples, which bounds the possibility value of
the modes of the GMMs, and the 0.05-cuts. Thus, the lower bound of the core
b is the lowest intersection between the line y = 1 and the lines that cross the
point (µimin, π

∗(µi)) and the point (a0.05, 0.05).
The trapezoid trapΓ has the following properties :

• it upper-bounds all the probability-possibility transformation of the modes
of all the components of the GMMs in Γ .

• the 0.05-cuts of trapΓ contains all the 95% quantiles of the GMMs in Γ .

However, it is not guaranteed that trapΓ upper-bound all the probability-possibility
transformation the GMMs in Γ , even for the α-cuts with α ≥ 0.05.

5 Illustration

For illustration, we consider a set of data that are generated by the GMM p(x) =
0.7 ∗ g(x, µ1 = −2, σ1 = 0.8) + 0.3 ∗ g(x, µ2 = 4, σ2 = 1.5). We suppose that the
parameters have been estimated with 200 pieces of data. Figure 1 illustrates this
results for n = 200 and n = 50.

We can observe that the size of the core and the support increase quickly
when the number of data decreases. This is due to the fact that we assume that
each component is estimated independently with the corresponding ratio of data.
This makes that the more the GMM complex is (i.e. the more component it has)
the larger the dataset is needed in order to have an acceptable estimation of the
parameters.



Fig. 1. trapΓ for the distribution p(x) = 0.7 ∗ g(x,−2, 0.8) + 0.3 ∗ g(x, 4, 1.5) with
n = 200 on the left and n = 50 on the right.

6 Conclusion

In this paper, we have described how to construct a possibility distribution from
a set of data that is generated from a Gaussian distribution, or a Gaussian mix-
ture model. We first compute confidence intervals for the parameters. Then, we
built a possibility distribution that contains all the Gaussian distributions that
have their parameters into their corresponding confidence intervals. In the case
of GMM, we build a trapezoid that has good properties with respect to the
modes and the 0.95 quantile. This approach can be useful in domains where a
high level of confidence is required, due to safety or security reasons (aeronautic,
medical applications, risk analysis). The method has the advantage to compute a
possibility distribution that encodes both the probabilistic knowledge, the uncer-
tainty due to the amount of data available and the complexity of the shape of the
probability distribution. In the future, we will focus on the exact computation of
the mode of the GMMs in order to have a better approximation of the most spe-
cific possibility distribution that encodes Γ . We also plan to embed this method
into machine learning approaches such as Bayesian classifiers or regression when
confidence intervals of the error are computed by local estimation.
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