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LOCAL SCORE DISTRIBUTION FOR MARKOVIAN CASE

Abstract. Let A = (Ai)1≤i≤n be a sequence of letters taken in a finite alphabet

Θ. Let s : Θ → Z be a scoring function and X = (Xi)1≤i≤n the corresponding

score sequence where Xi = s(Ai). The local score is defined as follows: Hn =

max1≤i≤j≤n

∑j
k=i Xk. We provide the exact distribution of the local score in

random sequences in several models. We will first consider a Markov model on

the score sequence X, and then on the letter sequence A. The exact P -value

of the local score obtained with both models are compared thanks to several

datasets. They are also compared with previous results using the independent

model.

Key words and phrases: Markov chain, local score, P -value, sequence analysis.

1. Introduction

Biostatistics is becoming a very large discipline improving its tools as the biological

sequence databases are growing. One of the principal goals of the Human Genome Project
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started in 1990 consists in developing and improving the tools of sequence analysis. A lot

of software exists for providing an analysis of the biological sequences. Some of them focus

on the primary structure (succession of the nucleotides, or residues, of the sequence). For

example,

Antheprot (Analyse The Protein, http://antheprot-pbil.ibcp.fr/ie sommaire.html),

Protscale (http://us.expasy.org/cgi-bin/protscale.pl), or

Emboss Octanol (http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/octanol.html),

determine protein or nucleic profiles using score scales. A score scale assigns to each

component a numerical value, called score, reflecting physico-chemical properties. The

two scales most often used are the hydrophobic scale and that corresponding to the para-

meters of secondary structure conformation (a first step to the spatial configuration of

the proteins). Let s(i) be the score of the i-th component of the sequence and H(i) the

score of the segment of a given length L defined as follows:

H(i) =
L−1
∑

k=0

s(i + k).

H(i) is calculated onto a sliding window of length L and plotted as a function of the

amino acid number. These profiles highlight the maximal score and also the related

region of interest. The fixed length can correspond for example to the length of the

cellular membrane, converted into a number of amino acids, if one is studying the most

hydrophobic regions of transmembrane proteins. But the length of the region of interest

is not always known.

The local score is defined as

Hn = max
1≤i≤j≤n

j
∑

k=i

s(k),

and the segment of maximal score does not have a determined length.
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In order to distinguish common events from events of interest, we need to establish

the distribution of the local score. Thus we need to choose a model for the biological

sequences.

Let A:A1A2...An be a biological sequence and Θ the alphabet corresponding to the

biological sequence (for example Θ = {A, C, G, T} if A is a DNA sequence) and let

s : Θ → {smin, ..., 0, ..., smax} be the scoring function, with −smin and smax two non-

negative integers. Let us define Xi by Xi = s(Ai) and X : X1X2...Xn the score sequence,

deduced from A.

Until now the models for local score studies have always been built for the scoring

sequence X. The usual model considers X as a sequence of independent and identically

distributed variables, and is called M0 model. Arratia and Waterman (1994) proved the

existence of a transition phase, with a linear growth of Hn in n : Hn = O(n), when

the average score is positive, and a logarithmic one : Hn = O(ln(n)) when the average

score is negative. Daudin et al. (2003) prove that Hn/
√

n converges in distribution to a

standard Brownian motion when E[Xi] = 0. For an overview of results on the local score,

see Waterman (1995), Durbin et al. (1998), Ewens (2002). The most famous result is the

approximation of Karlin et al. (see Karlin and Altschul (1990) and Karlin and Dembo

(1992)) implemented in BLAST for the sequence alignment problem

P [Hn ≤ ln(n)

λ
+ x] ∼ exp (−Ke−λx) as n → +∞, (1)

where λ and K depend only on the parameters of the sequence model. Note that this work

deals with the hypothesis of a non-positive average score (E[Xi] < 0), what we call the

logarithmic case. The parameter λ is the only root in ]0, 1[ of the equation E[eλXi ] = 1

and is easy to calculate. The parameter K is more difficult and cannot be calculated

easily for the sequence alignment problem. Several recent articles proposed algorithmic
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methods in order to approximate it accurately and rapidly (see Mott (2000), Bailey and

Gribskov (2002) for example). Bacro et al. (2003) propose a direct and simple proof

of (1) and define the parameter K by a new method which is easier to calculate. The

result of Karlin et al. is a better approximation when sequences are becoming longer,

but must be used with caution for short ones. For small proteins the approximation can

be unadapted (see Mercier et al. (2001), for comparison in simple cases).

The problem of the length of the sequences combined with that of the parameter K

motivates the work of Daudin and Mercier (2001) who establish the exact distribution in

the M0 model. This work has several advantages. First, it does not need any hypothesis

on the average score. Second, the exact distribution is ideally adapted for small sequences:

in order to calculate the P -value, P [Hn ≤ a], for an observed local score a, an (a + 1) ×

(a + 1) matrix corresponding to the transition matrix of a suitable process derived from

X is implemented at the power n, with n the length of the sequence. This method is fast

for short sequences but becomes more tedious for very long ones (n > 1000). Thus, the

two results, the approximation of Karlin et al. and the exact method, can be considered

as complementary.

At the present time, Markov chains and their variant, the hidden Markov chains,

have an important role in the interaction between Biology and Mathematics (see Prum

(2001)). The independent model is not adapted for biological sequences because there

exists a dependence between the components, which can be shown in the genetic code

for example. The use of a simple model was dictated more by the complexity of the

mathematical problem of establishing the distribution of the local score than by a real

interest in the model itself. The Markovian model can integrate a certain dependence

between the component; it takes into account the different frequencies of words (words
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of two letters for a Markovian model of order 1) and not only the differences between

the frequencies of each component. For example, let us consider the following score scale

for amino acids which takes +2 for the residues coded as D, E, K, R, H and −1 for the

others. This example is proposed in Karlin and Altschul (1990), for the research of the

most significant amphoteric segments (an amphoteric residue has the property of being

charged positively or negatively according to the medium). Let us study the Human

protein 67-kDa keratin cytoskeletal type II of length n = 643. We deduce from the

sequence the matrix of counts, where P (resp. N) stands for the residues with a positive

(resp. negative) score

P N Total

P 24 110 134

N 110 399 509

The segments of two residues scored +2 appear only 24 times, whereas segments of score

+1 appear 110 times. The probability of the apparition of a segment of high score is

influenced by the sparseness of the couple (+2, +2). This observation can be extanded

to longer words. We still keep in mind that the length of the segment which realizes the

local score is not fixed.

The simplicity of the proof of the exact distribution in M0 model and the importance

of the Markovian model for biological sequences encourage us to generalize the exact

method to Markovian models.

We first consider in this article a Markov model based on the score sequence X, called

the M1−X model, and the exact P -value of the local score is given (see Hassenforder and

Mercier (2003)). Secondly, we consider a Markov model based on the letter sequence
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A, called the M1−A model and the exact P -value is also established. Note that the

Markovian dependence on the letter sequence is better justified biologically, and that

for A as a Markov chain and s a scoring function which is not bijective, the sequence

X = s(A) is not a Markov chain, thus the model M1−A is more realistic than the M1−X

one. The theoretical results are easy to prove and use classic tools of Markov chain

theory.

These new results allow us to compare the M0 model and the Markov chain models

for local score significance. We want to see if the improvments of Makovian models are

significant enough to encourage us to use them instead of the independent model. These

comparisons will be based on exact formulas and thus will focus only on the models.

Simulations have been made using different databases. Different scoring functions are

also used. Several computational problems appear for the Markovian model based on the

letter sequence A.

Section 2 deals with the theoretical P -values with proofs in both Markovian models

on X and A. Numerical comparisons are developed in Section 3, where some details of

the programs are also given. Section 4 provides a conclusion and some perspectives on

the study.

2. Theorical results and demonstrations

The Markov chains will implicitly be of order 1.

2.1 Model for the scoring sequence

Let X = (Xk)k≥1 be a Markov chain of probability matrix Λ = (Λuv)u,v∈Z and γ the initial

distribution.
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Let P =
(

P(i,u)(j,v)

)

be a matrix such that (i, u) and (j, v) belong to

E = {0, ..., a} × {smin, ..., 0, ..., smax} with a ∈ N, (2)

and defined by

P(a,u)(a,v) = Λuv and P(a,u)(j,v) = 0 for j �= a (3)

and for 0 ≤ i ≤ a − 1






































P(i,u)(0,v) = Λuv if i + u ≤ 0

P(i,u)(i+u,v) = Λuv if 1 ≤ i + u ≤ a − 1

P(i,u)(a,v) = Λuv if i + u ≥ a

, and P(i,u)(j,v) = 0 else. (4)

Theorem 2.1. The statistical significance of the local score Hn is given by

(∀a ≥ 0) P [Hn ≥ a] =
∑

u,v

γu · P n
(0,u)(a,v).

Let Sk be the partial sums of the sequence X: S0 = 0 and Sk = X1 + ... + Xk. Let

Tk be the following stopping times: T0 = 0 and Tk+1 = inf{i > Tk; Si − STk
< 0}. By

definition of the Tk, the sequence (STk
) is strictly decreasing, and the Tk are called the

successive times of negative records.

Consider the process U defined by: U0 = 0 and for Tk ≤ j < Tk+1, Uj = Sj − STk
.

Figure 1 illustrates the link between the different processes. We have (see Mercier and

Daudin (2001) for the proof of the following lemma):

Lemma 2.1. Uj = max(Uj−1 + Xj, 0) = (Uj−1 + Xj)
+ and Hn = max1≤k≤n Uk.

Let U∗ be the process stopped in a, with a ∈ N∗. We get U∗
j = Uj if j < τa and

U∗
j = a if j ≥ τa with τa = inf{j ≥ 1; Uj ≥ a}. And finally, let us define the sequence
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Y by: Yn+1 = (U∗
n, Xn+1) for n ≥ 0. The Markov chain Y is homogeneous and takes its

values in E defined in (2).

Lemma 2.2. Y is a Markov chain with probability matrix P =
(

P(i,u)(j,v)

)

(i,u) (j,v)∈E
,

and P(i,u)(j,v) = P [(U∗
n = j)∩ (Xn+1 = v) | (U∗

n−1 = i)∩ (Xn = u)], determined in (3) and

(4).

Proof. For i = a, we have P(a,u)(j,v) = 0 if j ≤ a − 1 because U∗ is stopped in a,

and P(a,u)(j,v) = Λuv for j = a.

For i �= a, we have P(i,u)(j,v) = P [(U∗
n = j) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)].

• If j = 0, as Un−1 only depends on X1, ..., Xn−1 and Xn is a Markov chain of order

1 we have

P(i,u)(0,v) = P [(Xn ≤ −Un−1) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]

= P [(u ≤ −i) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]

= P [(u ≤ −i) ∩ (Xn+1 = v) | (Xn = u)] ,

Thus P(i,u)(0,v) = Λuv if u ≤ −i and 0 else.

• If 1 ≤ j ≤ a − 1, then

P(i,u)(j,v) = P [(Un−1 + Xn = j) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]

= P [(i + u = j) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]

= Λuv si j = i + u and 0 else.

• If j = a, we have

P(i,u)(a,v) = P [(Xn ≥ a − Un−1) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]
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= P [(u ≥ a − i) ∩ (Xn+1 = v) | (Un−1 = i) ∩ (Xn = u)]

= Λuv si i + u ≥ a and 0 else.

Lemma 2.3. The distribution of U∗
n is given by

P [U∗
n = j] =

∑

u,v

γu · P n
(0,u)(j,v).

From Lemma 2.1, we deduce P [Hn ≥ a] = P [U∗
n = a] and using Lemma 2.3 and the

explicitation of the P(i,u)(j,v), Theorem 2.1 is proved.

2.2 Model for the letters sequence

Let Θ be the set of letters. We suppose that the sequence A of these letters is a

1-order Markov chain, with transition matrix Λ = (Λα,β)α,β∈Θ and initial distribution µ.

Let:

E = {0, ..., a} × Θ2 with a ∈ N. (5)

Let us introduce the matrix Q =
(

Q(i,α,β),(j,γ,δ)

)

, where (i, α, β) and (j, γ, δ) are in E,

defined by










































































Q(a,α,β)(a,β,δ) = Λβ,δ






































Q(i,α,β)(0,β,δ) = Λβ,δ if s(β) + i ≤ 0

Q(i,α,β)(s(β)+i,β,δ) = Λβ,δ if 1 ≤ s(β) + i ≤ a − 1

Q(i,α,β)(a,β,δ) = Λβ,δ if s(β) + i ≥ a







































for 0 ≤ i ≤ a − 1

Q(i,α,β),(j,γ,δ) = 0 else.

(6)

We have the following result:
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Theorem 2.2. The statistic significance of the local score Hn is given by the fol-

lowing formula:

(∀a ≥ 0) P [Hn ≥ a] =
∑

α,β,γ,δ

µα · Qn
((s(α),0)+ ,α,β)(a,γ,δ).

Proof. Let us denote Sk the partial sums associated with the sequence of the

s(Ak): S0 = 0 and Sk = s(A1) + ... + s(Ak). Consider the sequence of stopping times Tk

defined by: T0 = 0 and Tk+1 = inf{i > Tk; Si − STk
< 0}.

Let U be the sequence defined by U0 = 0 and for Tk ≤ j < Tk+1, Uj = Sj − STk
=

s(ATk+1) + ... + s(Aj). We have in particular UTk
= 0 for all k ≥ 0. The sequence U is

positive but not necessarily bounded. As proved in Mercier and Daudin (2001), we have

got the following results:

Lemma 2.4.

Uj = max(Uj−1 + s(Aj), 0) = (Uj−1 + s(Aj))
+ and Hn = max

1≤j≤n
Uj .

Consider U∗ the process from U stopped in a, where a is in N∗.

U∗
j = Uj if j < τa and U∗

j = a if j ≥ τa with τa = inf{j ≥ 1 ; Uj ≥ a}.

In the case of an i.i.d. sequence A (see Mercier and Daudin (2001)), U∗ is a Markov

chain of order 1 and it is therefore easy to establish the distribution of U∗
n, but this is no

longer true in the case of a Markovian sequence A. In order to establish the distribution

of U∗
n, consider the chain Z = (Zn) defined by:

(∀ j ≥ 0) Zj+1 = (U∗
j , Aj, Aj+1),

which is of order 1 and for which the set of states is E as defined in (5).
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Lemma 2.5 (Transition matrix of Z) (Zk)k≥1 is a Markov chain with transition

matrix Q =
(

Q(i,α,β)(j,γ,δ)

)

, with (i, α, β) and (j, γ, δ) in E, where the Q(i,α,β)(j,γ,δ) are

given by (6). We have:

Q(i,α,β)(j,γ,δ) =

P
[

(U∗
n = j) ∩ (An = γ) ∩ (An+1 = δ) | (U∗

n−1 = i) ∩ (An−1 = α) ∩ (An = β)
]

.

Lemma 2.6 (Distribution of U∗
n)

P [U∗
n = k] =

∑

α,β,γ,δ

µα · Qn
((s(α),0)+ ,α,β)(k,γ,δ)

From Lemma 2.4, we deduce P [Hn ≥ a] = P [U∗
n = a]. Theorem 2.2 is deduced from

Lemma 2.6 and the explanation of the Q(i,α,β)(j,γ,δ) given by (6).

3. Numerical comparisons

3.1 Empirical and theorical P -values

We simulate 10,000 letter sequences of a given length n on the amino-acid alphabet,

using two different models: the independent model where letters are independently and

identically distributed, model noted IID, and a Markovian one, noted MC. Parameters of

the simulated sequences are derived from a real protein (Human protein 67-kDa keratin

cytoskeletal type II). For each sequence of the dataset, the local score is calculated using

a given scoring function s. The parameters of the different models are also derived from

the dataset, model M1−A, and from both the dataset and the scoring function s for the

models standing on the scoring sequences, model M0 and M1−X .

For each observed local score a, an empirical P -value, noted pemp is calculated as
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followed

pemp(a) = Pemp[Hn ≥ a] =
Na

N

where N is the number of sequences of the dataset (N = 10, 000) and Na is the number

of sequences of the dataset with a local score equal or up to a. The different theorical

P -values, noted ptheo when the method is not specified, are also derived.

ptheo = pK for the approximated P -value of Karlin et al.,

= pM0
for the exact P -value with M0 model,

= pM1−X
for the exact P -value with Markovian model on X.

Simulating letter sequences assume us to be under the null hypothesis “sequences are

ordinary”, or “common”, and to get every sequence of same length. This last point

allows us to estimate an empirical P -value: we need to observe realisations of Hn, for a

fixed length n.

In order to evaluate the accuracy of the P -values using the Markovian model on

letters, noted pM1−A
, we also use SCOP database and more precisely the old parseable

file 1.37 of SCOP, used by Bailey and Gribskov (2002), that contains about 10,000 non-

redundant sequences.

ptheo = pM1−A
for the exact P -value with Markovian model on A.

We cut the end of the sequences to obtain the same length.

3.2 The scoring functions

The scoring functions, or score scales, which are used by biologists and rely on ra-

tional scores are very definite and quite various (see for example Kyte and Doolittle

(1982)). Results with rational scores can be deduced from the integer case, but the time
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of computation is increasing as it is a function of the range of the scores (one can see in

Table 1 that the time of computation of the theorical P -value for Markovian models is

directly linked with this range). In order to limit the global time of computations, we

prefer to create scoring functions very similar to that proposed by biologists, but with

integer scores (see Table 2). The score function 4 corresponds to that proposed by Karlin

and Altschul (1990) for an hydrophobic example.

3.3 Measures for comparison

Three different measures are calculated to evaluate the possible improvments.

Bailey and Gribskov (2002) proposed a new method for evaluating the P -values of

the local score for sequence alignment: the PSE (P -value Slope Error). Let m be the

least-squares estimation of the slope:

log(ptheo) = m · log(pemp) + b,

where pemp and ptheo are defined in Section 3.1. They defined PSE by PSE = 1 − m,

which gives an indication of the direction and magnitude of the errors. Logarithmic plot

has the advantage of focusing the measure on the queue of the distribution.

Mean square error, noted MSE, is also calculated using the log(P -value). Mean

square error between pemp and pM1−X
, for example, is given by:

MSE(pemp, pM1−X
) =

1

#a
·
∑

a

[

log(pemp(a)) − log(pM1−X
(a))

]2
,

where #a is the number of different observed local scores.

We also use the Kullback distance, noted dKL. Let p = (p1, ..., pκ) and q = (q1, ..., qκ)

be two discrete distributions, dKL(p, q) is given by:

dKL(p, q) =
κ

∑

i=1

pi · log2

(

pi

qi

)

.
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We derive the different distributions, empirical and theorical, from the P -values using the

obvious equality: P [Hn = a] = P [Hn ≥ a]−P [Hn ≥ a + 1]. Note first that the Kullback

distance is not symetric, and secondly that we need to cluster the extreme values to avoid

null probabilities.

As we will see in Section 3.5, the different measures give similar conclusion.

3.4 About the programs

We use the algorithm kiss() with a period of 225 (see Robert (1996)) to simulate our

data.

For the exact P -values in all three models, a matrix at a given power n corresponding

to the length of the sequences has to be calculated. Using a binary decomposition, the

complexity of the programs should be as indicated in Table 1.

We do not use the same method to compute the model based on A because the

considered matrix Q (see (6)) is too large. We use the fact that it is also particularly

sparse in this model: for example, for a = 9 and an alphabet of 20 amino acids, we have a

4,000×4,000 matrix, and there are at most 20 terms different from zero in each horizontal

line. The implementation problems come both from large amount of memory required

and the slow execution speed.

Even with such an improved program, the computation is not adapted (exponential

growth time with the value of the local score a). This results from the fact that the

matrices are still large and the implemented structure is not adapted for not so sparse

a matrix: the matrix Q2 is not as sparse as Q. Critical threshold seems to be about

30% of filling. The main idea for improving the programs is to use the fact that Q is

actually built up with blocks which are partially filled with lines of Λ: the lines of Λ are

distributed in the different column-blocks defined by the value of i and j for Q. Consider
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the following numerical example with a simple scale [−1; 0; +1], and a = 2. The matrix

corresponds to an 800×800 matrix. (The size of which prohibits inclusion in this article).

Thus, as the property can also be seen in the matrix P of the Markovian model on X,

we give the numerical example for P . With

Λ =





















0.5 0.25 0.25

0.1 0.4 0.5

0.33 0.33 0.34





















and a = 2, we get:

P =













































































0.5 0.25 0.25 0 0 0 0 0 0

0.1 0.4 0.5 0 0 0 0 0 0

0 0 0 0.33 0.33 0.34 0 0 0

0.5 0.25 0.25 0 0 0 0 0 0

0 0 0 0.1 0.4 0.5 0 0 0

0 0 0 0 0 0 0.33 0.33 0.34

0 0 0 0 0 0 0.5 0.25 0.25

0 0 0 0 0 0 0.1 0.4 0.5

0 0 0 0 0 0 0.33 0.33 0.34
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








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
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





We have few numerical results with the letter model, as it is much more time consuming.

3.5 Numerical results

We highlight the real improvment the Markovian model M1−X can achieve compared

with the M0 model in Figure 2. We plot the Kullback distance between the empirical dis-
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tribution and the exact distribution using model M0, dKL(emp, M0), versus the Kullback

distance between the empirical distribution and that calculated using the Markovian

model on the scoring sequence, dKL(emp, M1−X). The advantage of using the M1−X

model for establishing the statistical significance of an observed local score is consider-

able and clear in this figure: the line ′x = y′ is close to the vertical axis due to the

different scales of the two axes. It seems that there is no particular influence of the mean

score E[X]. Simulation with n = 50 and E[X] = −1.19 apart, one can observe that the

Kullback distance seems to increase with the length n.

The measures (MSE, PSE, dKL defined in Section 3.3) used on the different exam-

ples which correspond to the logarithmic case (E[X] < 0) are summarized in Table 3.

We give the average of each measurements between empirical values and the theorical

values, using the approximation of Karlin et al. and the exact methods for the M0 and

M1−X models. The averages are calculated on 14 values both for IID sequences and

MC sequences. These 14 values correspond to the different cases studied for E[X] < 0,

making length and scoring function used vary. For the IID case, the scoring sequences

are also independent and identically distributed, thus we expect to get measures close

to zero for the exact method using both the M0 and M1−X models. The corresponding

averages allow us to appreciate the accuracy of our method of comparison, in respect

to the problem of parameter estimation and to the precision of the measuring. For the

Markovian dataset, we can see that even if the scoring sequences are not Markovian, the

model M1−X gives very good average measurements, on the same order that of the IID

case, and that the improvment of model M1−X over model M0 is of real interest (more

than a factor 10−1 for MSE and dKL measures). For the linear case, with E[X] > 0, we

obtain similar results: MSE(pemp, pM0
) = 8.79·10−2 and MSE(pemp, pM1−X

) = 5.70·10−3
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for n = 100, scoring function number 5 of Table 2, with E[X] = +0.02.

The parameters of the Markovian model on the letter sequence, model M1−A, are

estimated on truncated sequences (n = 100) of a non-redundant database (SCOP, old

parseable file 1.37). Due to a considerable time calculation, only one case is presented.

The scoring function used is the second one given in Table 2 and corresponds to a mean

score E[X] equal to −1.5. The numerical results are given in Table 4 (see also Figure 3).

Note that time calculation is too excessive for the model M1−A for observed local score a

up to 10. Thus the comparison between the different models, including the model M1−A,

is done only for the small values of a (a ≤ 9). Both Markovian models achieve a real

improvment on real sequences, especially for model M1−A.

We also want to compare the exact method with the M1−X model and the ap-

proximation of Karlin et al. (see Figure 4) to indicate a possible length threshold for

which the asymptotic approximation is just as accurate as the exact method. This figure

clearly shows the asymptotic property of the approximation, but we cannot determine

any threshold because the accuracy also greatly depends on the mean score E[X]. (For

E[X] close to zero, the approximation is not good at all even for sequences with length up

to the mean length of real sequences, ≃ 350 residues, whereas for strongly negative mean

score, see E[X] = −3.3 in Figure 4, Karlin ’s approximation gives not-so-bad results

even for length equal or less than 50.) The line ′x = y′ does not appear in the figures

because it is too close to the vertical axis (see the different scales of the two axes): the

improvment is very considerable.
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4. Conclusion and perspectives

As is already known, the asymptotic approach must be used for long sequences, but

we have also shown that the exact methods are preferable in the case of mean score

average 0, even for not-so-small sequences. Results in this case (accuracy and speed)

should be compared with the Brownian approach of Daudin et al. (2003).

The Markovian model is performed on the score sequence for scoring function with

reasonable range and the numerical results achieved point out the real advantage of this

model.

The computation of the exact method with the Markovian model on the letters

requires that significant work be done (before it can be efficently utilized). Easy im-

provments of computation using mathematical properties could be made which allow the

important benefit of such a model to be realized.

The comparisons are done with a “mathematical” approach which focuses on the

distribution itself. Biologists’ use of P -value stands more on the rank of the most ex-

ceptional sequences deduced from the P -values. Studies should be completed using this

aspect. Accuracy of the different methods should also be measured using sensibility and

specificity criteria.
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clarifying this article.
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Waterman, M.S. (1995). Introduction to Computational Biology (eds. Chapman and

Hall), London.

20



Table 2. Score functions used for the numerical examples.

Score function 1

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

F, K A, L D, R E, N, W H, Q, Y S C V G M I

P, T

Score function 2

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

A, I, W E, K, D, G, H N, T C, R L Q S V Y F

M, P

Score function 3

-2 -1 0 +1 +2

A, D, N, C, E, G, P, Q, W K, M F, H, S,

T I, L, R V, Y

Score function 4

-2 -1 0 +1 +2

K, R D, E, H, G, P, S, A, C, I, L, V

N, Q T, W, Y F, M

Score function 5

-2 -1 0 +1 +2

I, L, V A, C, F, G, P, S, D, E, H, K, R

M T, W, Y N, Q
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Table 3. Mean of the three different measures defined in Section 3.3 (PSE corresponds

to P -value Slope Error, MSE to Mean Square Error, dKL to Kullback distance) between the

empirical values and the theorical values (K for the approximation of Karlin et al., M0, resp.

M1−X , for the exact method using model M0, resp. M1−X) for independent and identically

distributed sequences (IID) and for Markovian sequences (MC).

IID generated sequences MC generated sequences

MSE PSE dKL MSE PSE dKL

K 9.47 · 10−2 0.182 8.32 · 10−1 3.85 · 10−1 0.391 1.76

M0 5.88 · 10−3 0.026 2.66 · 10−3 9.87 · 10−2 0.153 4.20 · 10−2

M1−X 5.07 · 10−3 0.022 2.74 · 10−3 7.98 · 10−3 0.038 3.66 · 10−3

Table 4. SCOP: PSE corresponds to P -value Slope Error, MSE to Mean Square Error, dKL

to Kullback distance. The numerical results are calculated with the empirical P -values and the

different theorical values: K for the approximation of Karlin et al., M0 (resp. M1−X , M1−A)

the exact values with model M0 (resp. M1−X , M1−A); and with the corresponding distributions

for Kullback distance. For the M1−A model, the measurements are given for only small observed

local score a (a ≥ 9) and we also give the different measurements for comparison.

SCOP database (n = 100, Scoring function 2)

a ≤ 35 a ≤ 9

MSE PSE dKL MSE PSE dKL

K 2.91 · 10−2 0.102 6.44 · 10−2 5.16 · 10−4 −0.169 3.84 · 10−2

M0 2.89 · 10−2 0.095 6.91 · 10−2 3.18 · 10−4 0.267 1.94 · 10−2

M1−X 1.58 · 10−2 0.061 6.14 · 10−2 1.60 · 10−4 0.138 1.19 · 10−2

M1−A - - - 1.18 · 10−4 0.105 9.91 · 10−3

22



32

k

0

k k

k

1 4

a

T T

U

U*

T TT

S

U

k

k

Fig. 1. Link between processes Sk, Uk and U∗

k , with Sk the partial sums of the sequence X,

Tk the successive times of negative records, U0 = 0 and Uj = Sj − STk
for Tk ≤ j < Tk+1, and

U∗ the process stopped in a for a an observed local score.
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Improvment of model M1-X versus model M0

Score function 4, E[X]=-0.01
Score function 3, E[X]=-0.22
Score function 2, E[X]=-1.19

Dataset = MC letter sequences

Fig. 2. Plot-plot of Kullback distances: dKL(emp, M1−X) (resp. dKL(emp, M0)) is the

Kullback distance between empirical distribution of Hn and the theorical distribution calculated

using the exact method with model M1−X (resp. M0). Letter sequences of the dataset are

simulated using the Markovian model. Score functions and parameters of the simulated sequences

vary to obtain different mean scores E[X ]. Numbers close to the points correspond to the length

n of the simulated letter sequences. The different scoring functions are given in Table 2.
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Fig. 3. SCOP: Plot-plot of logarithm of the P -values calculated for all observed local

scores a on SCOP database and only for small observed ones. The length n is 100, and the score

function used is number 1 in Table 2. Measurements corresponding to this example are given in

Table 4.
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Fig. 4. Plot-plot of Kullback distances: dKL(emp, K) (resp. dKL(emp, M1−X)) is the

Kullback distance between empirical distribution of Hn and the theorical distribution calculated

using the approximation of Karlin et al. (resp. the exact method with model M0). Score functions

and parameters of the simulated sequences vary to obtain different mean scores E[X ]. Numbers

close to the points correspond to the length n of the simulated letter sequences. The different

scoring functions are given in Table 2.
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