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Finding and Proving the Optimum:
Cooperative Stochastic and Deterministic Search

Jean-Marc Alliot1 and Nicolas Durand1,2 and David Gianazza1,2 and Jean-Baptiste Gotteland1,2

Abstract. In this article, we introduce a global cooperative ap-

proach between an Interval Branch and Bound Algorithm and an

Evolutionary Algorithm, that takes advantage of both methods to op-

timize a function for which an inclusion function can be expressed.

The Branch and Bound algorithm deletes whole blocks of the search

space whereas the Evolutionary Algorithm looks for the optimum in

the remaining space and sends to the IBBA the best evaluation found

in order to improve its Bound. The two algorithms run independently

and update common information through shared memory.

The cooperative algorithm prevents premature and local conver-

gence of the evolutionary algorithm, while speeding up the conver-

gence of the branch and bound algorithm. Moreover, the result found

is the proved global optimum.

In part 1, a short background is introduced. Part 2.1 describes the

basic Interval Branch and Bound Algorithm and part 2.2 the Evolu-

tionary Algorithm. Part 3 introduces the cooperative algorithm and

part 4 gives the results of the algorithms on benchmark functions.

The last part concludes and gives suggestions of avenues of further

research.

1 Background

Evolutionary Algorithms (EAs) appeared in the 60s with Holland [7]

and became popular in the late 80s with Goldberg [4]. They can be

very efficient to solve large dimension problems but are difficult to

handle (many parameters need to be chosen and are very often prob-

lem dependant). They often get trapped in local optima (premature

convergence).

Interval Branch and Bound Algorithms (IBBAs) were first intro-

duced by Hansen [5] in the 90s and combined interval analysis with

a Branch and Bound algorithm to reduce the size of the domain con-

taining the optimum. They are able to prove the optimality of the

solution but can rarely handle large dimension problems.

According to Alander [1] who studied the bibliography on genetic

algorithms from the 50s to 93, very few articles were related to in-

tervals and none of them dealt with IBBA-EA cooperation. In [9],

Jourdan, Basseur and Talbi proposed in 2009 a taxonomy of exact

methods and metaheuristics hybridizations. It appears that most of

the hybridization between metaheuristics and exact methods concern

discrete or combinatorial optimization.

IBBA and EA hybridizations were introduced by Sotiropou-

los [21] in 1997 and used by Zhang [25] in 2007. Both approaches are

integrative combinations, as described by Puchinger and Raidl [19].

In Sotropoulos’ article, the first step of the algorithm uses a branch

and bound to reduce the size of domain to a list of boxes (with a size
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smaller than ǫ). Then a genetic algorithm initializes its population in

every box and updates the upper bound of the minimum searched. A

shrinking box is used to improve the lower bound of the minimum

searched. A new population is generated after updating the bounds

and the corresponding box list. Zhang incorporates a genetic algo-

rithm in the Interval Branch and Bound algorithm to improve the

bounds and the remaining intervals list order.

Our approach is different as the IBBA and the EA cooperate but

run independently. They share and update common information that

helps both of them to accelerate their convergence.

2 Standard algorithms

2.1 Interval branch and bound

The Interval Branch and Bound Algorithm (IBBA) is basically a

Branch and Bound algorithm operating in a search space of intervals.

It requires to re-code the function using interval arithmetic [16].

Let us consider I = {[a, b]|a ≤ b, (a, b) ∈ R
2} the set of compact

intervals in R, and I(R)n the set of n-dimensional interval vectors

(or boxes). The basic operations of interval arithmetic are defined as

follows:

[a, b] + [c, d] = [a+ c, b+ d] (1a)

[a, b]− [c, d] = [a− d, b− c] (1b)

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}] (1c)

[a, b]/[c, d] = [a, b].[1/d, 1/c] if 0 /∈ [c, d] (1d)

The usual real-valued functions (cos, sin, log, and so on) can also be

extended to interval arithmetic. There are now a large number of in-

terval arithmetic implementations with various bindings to different

languages, such as MPFI [20] for C, C++, or SUN interval arithmetic

implementation for Fortran 95 or C++ [13, 14].

In the rest of this document, we shall denote x = (x1, . . . , xn) the

real vectors, and X = (X1, . . . , Xn) the interval vectors (boxes).

An interval function F : In → I is said to be an interval extension

of the real-valued function f : Rn → R if f(x) ∈ F (X) whenever

x ∈ X . An interval function F is said to be inclusion monotonic if

X ⊂ Y implies F (X) ⊂ F (Y ).
A result due to Moore ([16], [17]) states that if F is an inclu-

sion monotonic interval extension of f (or more shortly, an inclusion

function), then F (X) contains the range of f(x), for all x ∈X .

Interval methods for solving optimization problems rely on the

above result and the use of deterministic branch and bound tech-

niques to find the optima of f . An initial domain X0 is split into

smaller boxes (branching) evaluated using the inclusion function F
(bounding). The subregions that do not contain a global minimizer

of f are discarded. The basic cut-off test allowing the algorithm to



Algorithm 1 Interval branch and bound (maximization)

1: Q←X0

2: while Q not empty do

3: Extract X with highest priority pX from Q
4: if upperbound(F (X)) < fbest

or width(X) ≤ ǫx
or width(F (X)) ≤ ǫf then

5: Go to step 3

6: else

7: Split X in two sub-boxes X1 and X2

8: for i ∈ {1, 2} do

9: ei ← f(midpoint(Xi))
10: if ei > fbest then

11: fbest ← ei
12: Xbest ←Xi

13: end if

14: Insert Xi into Q, with priority ei
15: end for

16: end if

17: end while

18: return (Xbest, fbest)

discard a subregion X consists in comparing the bounds of F (X)
to the best estimator of the optimum found so far. Boxes that are not

discarded are divided again in smaller boxes until the desired pre-

cision for F (X) is reached (or when X becomes too small). Valid

boxes are inserted in a priority queue, which is sorted according to

an estimator of the quality of the box. In this simple Branch-and-

Bound algorithm, the estimator is just the image of the midpoint of

the box. The search stops when the whole domain has been explored

(the priority queue is empty).

Several refinements of this basic algorithm exist: monotonicity test

when the derivatives of f are available3, concavity test, local search

procedures for enhancing the best estimator, etc. These procedures

may (or may not) be efficient, depending on the problem. In order

to keep this article as simple and clear as possible, we opted to use

the basic algorithm described above, discarding all these refinements.

The interval branch and bound algorithm (IBBA) is described in al-

gorithm 1

2.2 Evolutionary algorithm

Evolutionary algorithms, popularized by David Goldberg ([4]) and

Michalewicz [12], are inspired by Darwin’s theory of evolution. A

population of individuals (points of the search space) is selected ac-

cording to its fitness, and recombined using crossover and mutation

operators. The process is repeated until a termination criterion is met,

as described in algorithm 2.

Several refinements have been introduced in this evolution

scheme, (among others elitism, scaling, sharing). The reader may

refer to [3] for a description of genetic algorithms and other evolu-

tionary algorithms also inspired from evolutionary theory.

In this article, we have used a real-coded genetic algorithm, where

the population is made of N real values vectors. The population is

randomly initialized, with uniform probability, within the bounds of

the search space. Before selecting the pool of parents, a sigma trun-

cation [4] scaling is applied to the fitness values, followed by a clus-

terized sharing (step 4). The selection/reproduction itself is made us-

3 This can be done by hand for simple functions. or using automatic differen-
tiation [2] for complex programs.

Algorithm 2 Evolutionary algorithm (EA)

1: Initialize population

2: while termination criterion is not met do

3: Evaluate raw fitness of population elements

4: Apply scaling and sharing operations on raw fitness

5: Create new population according to new fitness criterion

6: Replace some elements by mutation and crossover

7: end while

8: Return best elements of population

ing the stochastic remainder without replacement [4] principle (step

5).

The crossover and mutation operators are then applied with re-

spective probabilities Pc and Pm (Pc + Pm < 1) to the pool of

parents, as follows:

• crossover: two different elements p1 and p2 are randomly drawn

from the parents’ pool and recombined into two children using an

arithmetic crossover. Each child is defined by αp1 + (1 − α)p2
where α is a real value randomly chosen in a given interval. The

process is repeated ⌊N.Pc

2
⌋ times to create ⌊N.Pc⌋ children.

• mutation: ⌊N.Pm⌋ elements are drawn from the pool of parents.

For each drawn vector, a number k of values is randomly selected,

and a Gaussian noise is added to the selected values, thus provid-

ing the mutated vector. Assuming the vectors are of dimension n,

k is randomly chosen so that k ≤ n. This creates ⌊N.Pm⌋ chil-

dren.

At the end of the crossover/mutation process, the parents are replaced

by their respective children and the new generation of N population

elements replaces the previous one. The process is repeated until a

termination criterion – maximum time here – is met.

We could have chosen other evolutionary algorithms such as

Particule Swarm Optimization [10], Differential Evolution [23] or

CMA-ES [6]. These algorithms might (or might not) have been more

efficient than a real-coded EA. However, the goal of this article is not

to find the fastest or most efficient algorithm, but to show how the

two approaches (stochastic and deterministic) cooperate. We there-

fore chose the algorithm we were the most comfortable with.

3 Parallel cooperative algorithm

When hybridizing the genetic and interval branch and bound algo-

rithms, we adopted the following cooperation scheme. The two al-

gorithms run in parallel. Shared memory is used to exchange infor-

mation between the two programs. A third thread is used to perform

some common operations on elements of both threads.

3.1 IBBA thread

The Branch and bound thread is very similar to the Branch and bound

algorithm described in section 2.1. The thread is described in algo-

rithm 3.

The main differences between the IBBA algorithm and IBBA

thread of the cooperative algorithm are outlined below:

• Shared memory is used to retrieve the best evaluation found by

the evolutionary algorithm (step 4). This best evaluation is used to

update the bounding value of the IBBA thread, thus speeding up

the process of cutting intervals.



Algorithm 3 Cooperative algorithm, IBBA thread

1: Q←X0

2: while Q not empty do

3: Synchronization point for UPDATE thread

4: fbestag ← GetFromSharedMem(fbestag)
5: fbest ← max(fbest, fbestag)
6: Extract X with best priority pX from Q
7: if upperbound(F (X)) < fbest

or width(X) ≤ ǫx
or width(F (X)) ≤ ǫf then

8: Go to step 6

9: else

10: Split X in two sub-boxes X1 and X2

11: for i ∈ {1, 2} do

12: ei ← f(midpoint(Xi))
13: if ei > fbest then

14: fbest ← ei
15: bestbb← midpoint(Xi)
16: Xbestbb ←Xi

17: PutToSharedMem(bestbb)
18: end if

19: Insert Xi into Q, with priority ei
20: end for

21: end if

22: end while

23: Signal EA thread and stop

• When the IBBA thread finds a better overall element, it updates

the shared memory, and makes this element available for the EA

thread (step 17).

• When the IBBA thread ends, we are sure that we have found a

global optimum and the IBBA thread sends a signal to the EA

thread and then terminates (step 23).

Other operations are performed on the priority queue of the IBBA

thread by the UPDATE thread at the synchronization point. They are

described in section 3.3.

3.2 EA thread

The evolutionary algorithm thread is also very similar to the evolu-

tionary algorithm described in section 2.2. This thread is described

in algorithm 4.

Algorithm 4 Cooperative algorithm, EA thread

1: Initialize population

2: while (termination criterion not met) or (no signal from IBBA

thread) do

3: Synchronization point for UPDATE thread

4: Evaluate raw fitness of population elements

5: PutToSharedMem(fbestag)
6: bestbb← GetFromSharedMem(bestbb)
7: Replace worst population element by bestbb
8: Evaluate bestbb raw fitness

9: Apply scaling and sharing operations on raw fitness

10: Create new population according to new fitness criterion

11: Replace some elements by mutation and crossover

12: end while

13: Return best element of population

The main differences are outlined below:

• The EA thread puts in shared memory the best evaluation found

so far (step 5), which will be retrieved by the IBBA thread.

• The EA thread gets from the shared memory the best element

found so far by the IBBA thread (step 6) and then replaces its

worst population element by this element.

Other operations are performed by the UPDATE thread on the EA

population at the synchronization point (step 3). These operations are

described in section 3.3.

3.3 UPDATE thread

The UPDATE thread is triggered every t seconds. It is described in

algorithm 5.

Algorithm 5 Cooperative algorithm, UPDATE thread

1: loop

2: Sleep for duration t
3: Wait for and then Suspend EA thread and IBBA thread

4: for i = 1 to N do

5: dmin ← +∞
6: NQ← Q
7: while NQ not empty and dmin 6= 0 do

8: Extract (X, pX ) from NQ
9: if upperbound(F (X)) < fbest then

10: Suppress X from Q
11: else

12: if elt(i) ∈X then

13: dmin ← 0
14: else

15: if distance(elt(i),X) < dmin then

16: dmin ← distance(elt(i),X)
17: Xc ←X

18: end if

19: end if

20: end if

21: end while

22: if dmin = 0 then

23: if pX < f(elt(i)) then

24: Reinsert X with new priority f(elt(i)) in Q
25: end if

26: else

27: elt(i)← Project(elt(i), Xc)
28: end if

29: end for

30: Resume EA thread and IBBA thread

31: end loop

The thread first waits for the IBBA and the EA thread to reach

their synchronization point, and suspends them before performing

any operation.

The thread then examines in turn the N elements of the population

of the EA thread. For each element elt(i), it performs a lookup in the

priority queue Q of the IBBA thread. This queue contains all the

interval vectors (boxes) of search space that are still valid. For each

element elt(i), the thread finds the minimal distance dmin of this

element to the closest box Xc in queue Q (in the process the thread

also suppresses from Q boxes whose upper-bounds are lower than

the current best evaluation in step 10). Then:

• if dmin is equal to zero, then we have found a box X that contains

elt(i) and elt(i) is in an admissible zone of search space. Thus



elt(i) is kept inside the EA population. If f(elt(i)) is better than

the current priority pX of box X that contains elt(i) then we

have found a better estimator for the maximum in box X , and the

priority of box X in queue Q is updated to f(elt(i)).
• if dmin is not zero then elt(i) is outside the admissible search

space. Then we project elt(i) on the closest box Xc and replace

in the EA population elt(i) by this projection.

The projection algorithm is simple and described in algorithm 6.

Algorithm 6 Projection algorithm (step 27 of algorithm 5))

1: for j = 1 to n do

2: if elt(i)(j) 6∈Xc(j) then

3: if upperbound(Xc(j)) < elt(i)(j) then

4: elt(i)(j)← upperbound(Xc(j))
5: else

6: elt(i)(j)← lowerbound(Xc(j))
7: end if

8: end if

9: end for

elt(i) is a real vector in R
n, while Xc is an interval real vector in

I(R)n. For each dimension j we check if elt(i)(j) is inside interval

Xc(j). If elt(i)(j) is not inside the interval then we replace elt(i)(j)
by the closest element of interval Xc(j), which is either the upper

bound or the lower bound of Xc(j).
The UPDATE thread has two main goals:

1. Put all the population elements of the EA thread back into the ad-

missible search space. This will increase the speed of convergence

of the EA, and will also take the EA out of local minima as soon

as these minima have been ruled out by the IBBA thread. In fact,

on some examples developed in section 4 we will see that even

the best element of the EA thread can be suppressed and projected

elsewhere by the UPDATE thread when this element is inside a

local optimum.

2. Re-sort the IBBA priority queue, thus focusing the search in the

IBBA thread on the “interesting” part of the search space, and

increasing the IBBA convergence speed.

The UPDATE thread is a costly one, especially when there are

many boxes in the priority queue Q. Thus, it should not be triggered

too often, but often enough to fulfil its two goals. For simplicity’s

sake, we have only presented here a simple strategy (timer interval)

for triggering this thread. But other, more efficient strategies can be

used to trigger it, based on the size of the priority queue, the evolution

of the population in the EA thread. Moreover, some implementation

tricks can be used to accelerate it. However, again for simplicity’s

sake, we present in the following results the simple, basic algorithm.

3.4 Understanding the algorithm

In this section we are going to graphically present a few examples in

order to understand how the cooperative algorithm works. Statistical

tests and results will be presented in section 4.

We will first consider the Griewank function in dimension 6.

Griewank is a classical example [18], even if not a very good one

regarding global optimization, as Locatelli has shown in [11] that

the function becomes easier to optimize for large dimensions with

stochastic algorithms. Moreover the Griewank function is partially

separable, which makes convergence of both EA and IBBA algo-

rithms extremely fast.

It is now customary to use a variant of the Griewank function, the

rotated Griewank function [22].

f(x) =
D
∑

i=1

zi
4000

−
D
∏

i=1

cos(
zi√
i
) + 1 with z = M(x− o)

where M is a random rotation matrix and o a random vector. To have

results easy to read we maximize here the function g(x) = 1
1+f(x)

The rotated Griewank function is not separable . The non-

separability of the variables turns the inclusion function of the IBBA,

which is very efficient for the regular Griewank function, into a very

inefficient one. It is currently impossible to find the optimum of the

R-Griewank function with a simple IBBA algorithm as soon as D is

larger than 7. Thus 6 is a good value to see how the cooperative algo-

rithm works, and to compare the convergence of all three algorithms.

On Figure 1, we first compare the cooperative algorithm with the

standard Evolutionary Algorithm and with the Branch and Bound

algorithm4. These results are only an indication of the general be-
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Figure 1. Comparison Cooperative/AG/BB (6 variable Griewank)

haviour of the cooperative algorithm, and statistical results will be

presented in the next section. It is already clear however that the co-

operative algorithm is much faster than both the EA and the IBBA

algorithms, while proving the result, as the IBBA does.

On Figure 2, we see how the cooperative algorithm finds and

proves the optimum in 25s. The red line is the value of the internal
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Figure 2. Understanding cooperative (6 variable Griewank)

4 In all figures, AG+BB=cooperative algorithm, AG=evolutionary algorithm,
BB=branch and bound. The x-axis is in seconds, the y-axis is the fitness.



best evaluation found by the EA thread. The green line is the internal

value of the best evaluation found by the IBBA thread. Deep blue

crosses are the times when the EA thread sends to the IBBA thread

a better evaluation than the one that the IBBA has. The pink crosses

are the times when the IBBA thread sends to the EA thread a better

element than the one the EA thread has. The light blue crosses are

the times when the UPDATE thread destroys the best element of the

EA thread because it is outside the searchable domain (the EA thread

is stuck in a local optimum). We can see on this figure that the algo-

rithms collaborate in an extremely efficient way. All mechanisms are

used during the run.

With 8 variable, the IBBA algorithm can never find a solution in

a reasonable amount of time, while the cooperative algorithm can.

The EA algorithm performance on the 8 variable function depends

on luck as it can sometimes get stuck in a local optimum (the coop-

erative algorithm never does).
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Figure 3. Understanding cooperative (8 variable Griewank)

On Figure 3, we have a detail of the convergence of the cooperative

algorithm on the 8 variable rotated Griewank. We choose one of the

example with the longest running time, in order to clearly see what

happens here. The EA algorithm is usually dragging up the IBBA

(deep blue crosses), at least at the beginning of the search. However,

from 40s and up to 45s, it is the IBBA which is taking the EA al-

gorithm out of local minima. After 45s, the algorithm is already in

the vicinity of the optimum. The IBBA is more efficient than the EA

in performing a local optimization (all the pink crosses at the top of

the graphic). The light blue crosses at the top are simply the result

of the IBBA thread “killing” search space at a very fast pace. The

global optimum is found with the required precision at the last pink

cross (85s). Thereafter, the algorithm is just completing the proof by

searching and cutting the remaining search space (the last clear blue

crosses).

As a last example we will discuss the Michalewicz function [18]:

f(x) =
D
∑

i=1

sin(xi)

(

sin(
ix2

i

π
)

)20

This function is difficult to optimize because of the steepness of the

curve (the 20-th power), and is interesting because there are very few

results available for large D. In [18], the highest D for which the

optimum is presented is D = 10, and the same goes for [15] and [8].

Of course, the optimum is never proved as it is found by stochastic

algorithms. It was thus a challenge to find and prove the optimum

of the Michalewicz function for D = 12 variables. The function

optimized is g(x) = f(x) +D, in order to keep g positive.
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Figure 4. Understanding cooperative (12 variable Michalewicz)

On Figure 4 we see how the cooperative algorithm behaves. The

cooperation is present all the way up to the optimum. On Figure 5,

we have displayed the times when the IBBA thread had to kill the

best element of the EA thread which was stuck in a local optimum.

This happens often because the function has a lot of local optima and

because the vicinity of the optimum is extremely small due to the

steepness of the function.
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Figure 5. Killing local minima (12 variable Michalewicz)

The optimum is

x = [2.202881, 1.570808, 1.284998, 1.923050, 1.720462, 1.570800,
1.454402, 1.756096, 1.655724, 1.570792, 1.497731, 1.696620]
g(x) = 23.64957, f(x) = 11.64957 with ǫx = 10−3 and

ǫf = 10−4.

4 Statistical tests and results

In Table 1, statistical results on the rotated Griewank function are

presented on 100 runs using the EA alone, the IBBA alone, and the

cooperative algorithm. The search space is [−400, 600]n with n ∈
{6, 7, 8, 9, 10}. The time was limited to 1800 seconds. We used a

3.40GHz Intel Xeon E3-1270.

The Evolutionnary Algorithm (described in part 2.2) parameters

are: 1000 chromosomes, Pc = 0.5 and Pm = 0.3. An arithmetic

crossover is used with α ∈ [−0.5, 1.5]. The mutation operator adds

a random noise in the [−0.5, 0.5] interval to each variable of the

function. We set σ = 2 for sigma truncation scaling and used the

clusterized sharing described by Yin and Germay [24]. The algorithm



stops when the distance between the current best element and the

optimum (1 in this case) is less than 10−4, or when the alloted time

(1800s) is over.

For the Interval Branch and Bound Algorithm, ǫx and ǫf (see al-

gorithm 1) were set to 10−2 and 10−4. The algorithm stops when the

Q list is empty, or when the alloted time is over.

The same parameters and stopping criteria are used for the coop-

erative algorithm.

size 6 7 8 9 10

EA Found 100 94 92 83 15
Mean 204 864 972 1340 1678

Sigma 92 356 389 430 34

IBBA Found 71 0 0 0 0
Mean 284

Sigma 192

Cooperative Found 100 100 100 100 100
Mean 50 62 156 215 267

Sigma 18 47 85 317 105

Table 1. Rotated Griewank function, statistical results on 100 runs

For each algorithm, Table 1 gives the number of runs that found

the optimum in less than 1800 seconds, the mean time duration, and

the corresponding standard deviation in seconds.

Results show that the IBBA can only deal with small dimensions

(≤ 6) in a reasonable time. The EA approach is sensitive to dimen-

sion as well. The EA would certainly give much better results if its

parameters and operators were optimized for the Griewank function

but we did not concentrate on this issue. The Cooperative Algorithm

always gives much better results than the IBBA and EA.

5 Conclusion

In this article, we have presented a cooperative algorithm that com-

bines the advantages of the global stochastic optimization techniques

and the global deterministic techniques, and we have shown that this

algorithm is able to speed up the convergence of the stochastic al-

gorithm. But the most important result is that this algorithm is able

to prove the optimality of the result for very difficult functions such

as R-Griewank or Michalewicz, up to 12 variables, while the best

available result was, as far as we know, currently limited to 6 to 8

variables.

We have also focused on presenting the algorithm as clearly as

possible, using only a standard evolutionary algorithm and a standard

interval branch and bound algorithm, leaving out all the acceleration,

modifications and implementation tricks. The results presented are

thus easily reproducible with off-the-shelf algorithms. For simplic-

ity’s sake and lack of space, we have also limited our presentation to

two functions but we have run similar tests on many more functions

(Rastrigin, Schwefel, etc. . . ) with similar excellent results.

We think that this cooperative algorithm is currently the best algo-

rithm available for proving the optimality of the result for complex

and deceptive functions up to a number of variables which had, to

our knowledge, never been reached.

Our next paper will present the modifications of the EA and the

IBBA algorithms, along with the implementation optimizations that

we have developed. These improvements speed up the cooperative

algorithm by a factor of up to 50 and enable for example to find and

prove the optimum of the Michalewicz function with 12 variables in

less than 150 seconds on a “standard” dual core processor.
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