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Possibilistic KNN regression using tolerance

intervals
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2 ENAC/MAIAA - 7 avenue Edouard Belin 31055 Toulouse, France

Abstract. By employing regression methods minimizing predictive risk,
we are usually looking for precise values which tends to their true re-
sponse value. However, in some situations, it may be more reasonable
to predict intervals rather than precise values. In this paper, we focus
to find such intervals for the K-nearest neighbors (KNN) method with
precise values for inputs and output. In KNN, the prediction intervals
are usually built by considering the local probability distribution of the
neighborhood. In situations where we do not dispose of enough data
in the neighborhood to obtain statistically significant distributions, we
would rather wish to build intervals which takes into account such distri-
bution uncertainties. For this latter we suggest to use tolerance intervals
to build the maximal specific possibility distribution that bounds each
population quantiles of the true distribution (with a fixed confidence
level) that might have generated our sample set. Next we propose a new
interval regression method based on KNN which take advantage of our
possibility distribution in order to choose, for each instance, the value of
K which will be a good trade-off between precision and uncertainty due
to the limited sample size. Finally we apply our method on an aircraft
trajectory prediction problem.

Keywords: Possibilistic regression, tolerance interval, K-nearest neighbors.

1 Introduction

When dealing with regression problems, it may be risky to predict a point which
may be illusionary precise. In these cases, predicting an interval that contains
the true value with a desired confidence level is more reasonable. In this scope,
one can employ different statistical methods to find a response value prediction
interval. These intervals can be estimated once for the whole dataset based on
residuals. However, the disadvantage of this approach is to assume that predic-
tion interval sizes are independent of test instances. On the other hand, local
estimation methods, such as KNN regression, can be used to find an interval that
is more likely to reflect the instance neighborhood. In order to calculate such
local intervals we have to estimate the probability distribution of the neigh-
borhood. But, Even if we know the family of the probability distribution, the



estimated local interval does not reflect the uncertainty on the estimated distri-
bution which is caused by the limited size of the sample set. The goal of this
paper is to find such interval for KNN.

One interpretation of the possibility theory is in term of families of prob-
ability distributions [3]. For a given sample set, there exists already different
methods for building possibility distribution which encodes the family of proba-
bility distribution that may have generated the sample set[1, 11]. The mentioned
methods are based on confidence bands. In this paper we suggest to use tolerance
intervals to build the maximal specific possibility distribution that bounds each
population quantile of the true distribution (with a fixed confidence level) that
might have generated our sample set. The obtained possibility distribution will
bound each confidence interval independently with a desired confidence level.
On the contrary, a possibility distribution encoding confidence band will bound
all the confidence intervals simultaneously with a desired confidence level. This
is why our proposed possibility distribution has always smaller α-cuts than the
other ones and it still guarantee to obtain intervals which contains the true value
with a desired confidence level. This is particularly critical in domains imposing
some security constraints. We embed this approach into KNN regression in order
to obtain statistically significant intervals. We also propose to take into account
the tolerance interval calculus while choosing the parameter K. The obtained
interval, will be a good trade-off between precision and uncertainty with respect
to the sample size.

This paper is structured as follows: we begin with a background on the possi-
bility and probabilistic interpretation of the possibility theory. We will then look
at the different possibility distribution inferred from the same sample set. In the
fourth section we will see different KNN interval regression algorithm and finally
we compare the mentioned approaches on the prediction of aircraft altitude.

2 Possibility theory

Possibility theory, introduced by Zadeh [14, 5], was initially created in order to
deal with imprecisions and uncertainties due to incomplete information which
may not be handled by a single probability distribution. In the possibility theory,
we use a membership function π to associate a distribution over the universe of
discourse Ω. In this paper, we only consider the case of Ω = R.

Definition 1 A possibility distribution π is a function from Ω to (R → [0, 1]).

Definition 2 The α-cut Aα of a possibility distribution π(·) is the interval for

which all the point located inside have a possibility degree π(x) greater or equal

than α :Aα = {x|π(x) ≥ α, x ∈ Ω}

The definition of the possibility measure Π is based on the possibility dis-
tribution π such as Π(A) = sup(π(x), ∀x ∈ A). One interpretation of possibility
theory is to consider a possibility distribution as a family of probability distri-
butions (see [3]). Thus, a possibility distribution π will represent the family of



the probability distributions Θ for which the measure of each subset of Ω will
be bounded by its possibility measures :

Definition 3 A possibility measure Π is equivalent to the family Θ of probability

measures such that

Θ = {P |∀A ∈ Ω,P (A) ≤ Π(A)}. (1)

In many cases it is desirable to move from the probability framework to the
possibility framework. Dubois et al.[6] suggest that when moving from probabil-
ity to possibility framework we should use the “maximum specificity” principle
which aims at finding the most informative possibility distribution. The “most
specific” possibility distribution for a finite mode probability distribution has
the following formula [4] :

π∗(x) = sup(1− P (I∗β), x ∈ I∗β)

where π∗ is the “most specific” possibility distribution, I∗β is the smallest β-
content interval [4]. Therefore, given f and its transformation π∗ we have :
A∗

1−β = I∗β . The equation (1) states that a possibility transformation using [6]
encodes a family of probability distributions for which each quantile is bounded
by a possibility α-cut.
Note that for every unimodal symmetric probability density function f(·), the
smallest β-content interval I∗β of f is also its inter-quantile by taking lower and

upper quantiles respectively at 1−β
2

and 1− 1−β
2

. Thus, the maximum specified
possibility distribution π∗(·) of f(·) can be built just by calculating the β-content
inter-quantile Iβ of f(·) for all the values of β, where β ∈ [0, 1].

3 Inferring possibility distribution from data

Having a sample set drawn from a probability distribution function, one can use
different statistical equations in order to express different kinds of uncertainty
related to the probability distribution that underlies the sample set. Thus, it can
be valuable to take benefit of possibility distributions to encode such uncertain-
ties in a more global manner. Given the properties expected, we can describe
two different types of possibility distribution : possibility distribution encoding
confidence band and possibility transformation encoding tolerance interval. Af-
ter a brief description of the first one, we will focus more deeply on the last one
which is the most suitable for regression.

In frequentist statistics, a confidence band is an interval defined for each value
x of the random variable X such that for a repeated sampling, the frequency
of F (x) located inside the interval [L(x), U(x)] for all the values of X tends to
the confidence coefficient γ. The confidence band of a parametric probability
distribution can be constructed using confidence region of parameters of the
underlying probability distribution [2]. In this case the confidence band or its
maximum specified possibility transformation represents a family of probability



distribution that may has been generated by all the parameters included in the
confidence region used to build the confidence band (see Aregui and Denoeux
[1] and Masson and Denoeux [11]).

A tolerance interval is an interval which guarantee with a specified confidence
level γ, to contain a specified α% proportion of the population. As the sample
set grows, confidence intervals downsize towards zero, however, increasing the
sample sample size leads the tolerance intervals to converge towards fixed values
which are the quantiles. We will call an α tolerance interval(tolerance region)
with confidence level γ, an α-content γ-coverage tolerance interval we represent
it by ITγ,α . Each α-content γ-coverage tolerance, by definition contains at least
α% proportion of the true unknown distribution, hence it can be encoded by
the (1 − α)-cut of a possibility distribution. So for a given γ we represent α-
content γ-coverage tolerance intervals, α ∈ (0, 1) of a sample set by (1−α)-cuts
of a possibility distribution which we name as γ-confidence tolerance possibility
distribution (γ-CTP distribution πCTP

γ ).

Possibility transformation encoding tolerance interval : normal case
When our sample set comes from a univariate normal distribution, the lower
and upper tolerance bounds (XL and XU , respectively) are calculated by the
equation (2) in which X̄ is the sample mean, S the sample standard deviation,
χ2

1−γ,n−1
represents the p-value of the chi-square distribution with n− 1 degree

of freedom and Z
1− 1−α

2

is the critical value of the standard normal distribution

with probability (1 − 1−α
2

) [7]. The boundaries of the α-cut Aα = [XL, XU ] of
the built possibility distribution is defined as follows:

XL = X̄ − kS, XU = X̄ − kS where k =

√

√

√

√

(n− 1)(1 + 1

n
)Z2

1− 1−α

2

χ2

1−γ,n−1

(2)

We obtain the following possibility distribution πCTP
γ :

πCTP
γ (x) = 1−max{α, x ∈ Aα} where Aα = ITγ,1−α (3)

For more detail on the different tolerance intervals see [7]. In the figure (3) we
represented the 0.95 CTP distribution (πCTP

0.95 using equation (2)) for different
sample set drawn from the normal distribution (all having (X,S) = (0, 1)).
The green distribution represents the probability-possibility transformation of
N (0, 1). Note that for n ≥ 100 the tolerance interval is approximately the same
as the estimated distribution.

Possibility transformation encoding tolerance interval : distribution
free case The problem of non-parametric tolerance interval was first treated
by Wilks [13]. Wald [12] generalized the method to the multivariate case. The
principle for finding a distribution free α-content γ-coverage tolerance interval
or region of continuous random variable X is based on order statistics. For more



information on finding k in (2) values for distribution free tolerance intervals
and regions see [13, 12, 7]. Note that when constructing possibility distributions
encoding tolerance intervals based on Wilks method which requires finding sym-
metrical head and tail order statistics (Wald definition does not have the sym-
metry constraint), we obtain possibility distributions which do not guarantee
that our α-cuts include the mode and they are not also the smallest possible
α-cuts. In fact, for any symmetric unimodal distribution, if we choose the Wilks
method, we will have tolerance intervals which are also the smallest possible
ones and include the mode of the distribution. For the calculation of the sam-
ple size requirement for tolerance intervals see [7]. In figure 1, we have the blue
curves which represent the distribution-free 0.95-confidence tolerance possibility
distribution for a sample set of size 450 (0.95 DFCTP distribution) drawn from
N (0, 1) and the green distribution which represent the possibility transformation
for N (0, 1). In figure (2), we used two different sample set with n = 194 to build
two different 0.9 DFCTP distributions. In this example, in order to reduce the
required sample size, we restricted the biggest α to 0.98.
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Fig. 1. Distribution free 0.95-confidence
tolerance possibility distribution for a sam-
ple set with size 450 drawn from N (0, 1).
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Fig. 2. Distribution free 0.9-confidence tol-
erance possibility distributions for a sample
set with size 194 drawn from N (0, 1).

4 Interval prediction with K-Nearest Neighbors

4.1 K-Nearest Neighbors (KNN)

Smoothing is the process of creating an approximating function that looks for
capturing relevant patterns in the data, while filtering noise. In a classical re-
gression problem, we have m pairs (−→x i, yi) of data where −→x i is a vector of input



variables and yi is the response value. These data follows an unknown mean
function r with a random error term ǫ defined as:

yi = r(−→x i) + ǫi, where E(ǫi) = 0. (4)

A KNN estimator is a local estimator of the function r based on the neighborhood
of the considered instance. A KNN is defined as follows :

r̂(−→x ) = (

n
∑

i=1

Kb(−→x −−→x i))
−1

n
∑

i=1

Kb(−→x −−→x i)yi (5)

where Kb(u) =
1

2b
I(|u| ≤ b) (I(·) is the indicator function) is an uniform kernel

with a variable bandwidth b = d(k), where d(k) is the distance between −→x and
its furthest K-nearest neighbors. Mack [10] considered the KNN estimator in a
general case with kernels other than the uniform kernel. In the same work, he
studied the bias and variance of this more general KNN estimator.

4.2 Possibilistic KNN with fixed K

In some problems, we are not only interested in obtaining the most probable
regression response value, but we would rather look for intervals which for all
input instances simultaneously contain their corresponding response values with
a desired probability. It means that the frequency of all the response variables
which are contained in their corresponding prediction intervals is at least the
prefixed given value. As we saw in the definition of smoothing, equation (4), we
suppose that the error is a random variable. Based on our a priori knowledge
about the distribution of the error we can use different statistical methods to
predict a such intervals.

In machine learning problems, it is common to suppose that the response
variable yi in regression is a random variable distributed with N (f(xi), σ

2

i )
where σ2

i = V ar(ǫi) and estimate yi by its maximum likelihood estimation

ŷi = N (f̂(xi), σ̂2
i). Based on the normality assumption of the errors, there

are two methods used in order to estimate N (f(xi), σ
2

i ). In the case of ho-
moscedasticity (the variance of the distribution is constant) for all error terms,
the sample variance of the residuals will be used as the estimation of the variance
of error. This method is usually used for global approaches like ordinary least
square estimation, SVM or neural networks in which the model is assumed to
be homoscedastic, or with negligible heteroscedasticity. The heteroscedasticity
(the variance depends on the input vector) may also be ignored when we do not
dispose of enough data in order to perform significant evaluations. In the other
hand, if we assume that our model is heteroscedastick, one can estimate the dis-
tribution of the error by a normal distribution which its mean is still estimated
by the KNN estimated value and its variance is estimated by the variance of the
sample set in the neighborhood of xi. Since KNN is a local estimation method
used for situations where it is less efficient to use a global model than a local one,
exploiting the neighborhood of the input data to estimate the local distribution
of error may be justified.



However, if the distribution of the error is estimated locally, it does not take
into account the sample size, therefore the estimated quantiles of the error or
the response variable may not contain the desired proportion of data. In order
to have a more cautious approach, we propose to build a possibility distribution
with α-cuts which guarantee to contain, with a confidence level γ, the (1− α)%
proportion of the true unknown distribution. Possibility distributions for the
neighborhood of −→x i built by γ confidence bands guarantee with confidence level
γ, that all its α-cuts simultaneously contains at least (1 − α)% proportion of
true unknown distribution that may have generated the neighborhood of −→x i

(the simultaneous condition holds for one input instance). If we consider a γ-
CTP distribution πCTP

γ , it guarantee that each α-cut, independently, will contain
(1− α)% proportion of the true unknown distribution that may have generated
the data. Of course, this property is weaker, but it is sufficient in the case of
interval prediction and it leads to more specific possibility distributions. Thus,
given a input vector −→x we will take the mean X̄ = r̂(−→x ) and the standard
deviation S as the standard deviation of the yi of the K nearest instances. After
choosing a value for the confidence level γ (usually 0.95) we build πCTP

γ using

Equation 3. Now we will use the πCTP
γ distribution for each instance to obtains

intervals which ensure us to have simultaneously (1−α)% of the response variable
for all input instances. It means that for all input vector −→x i the percentage of
α-cuts which contains the corresponding yi will be at least γ (for ex: 0.95).

4.3 KNN Interval regression with variable K using 0.95 CTP
distribution

It is common to fix K and use a weighted KNN estimator, we will call this
combination as “KNN regression” or “KNN regression with fixed K”. The fixed
K idea in KNN regression comes from the homoscedasticity assumption. In this
section we propose to use the tolerance interval to find the “best” K for each xi.
Let the sample set containing the K-nearest neighbors of xi be Kseti. For each
xi, we begin by a initial value of K and we build the 0.95 CTP distribution of
Kseti. Now taking the K which yields the most specific 0.95 CTP distribution
means that for each xi, we choose the value of K that has the best trade off
between the precision and the uncertainty to contain the response value. Indeed,
when K decreases the neighborhood considered is more faithful but uncertainty
increases. On the contrary, when K increases, the neighborhood becomes less
faithful but the size of the tolerance intervals decrease. In fact the mentioned
possibility distribution takes into account the sample size, so its α-cuts will
reflect the density of neighborhood. Thus, by choosing the K that minimizes a
fixed α-cut (the 0.05-cut in our case) ensures to have the best trade off between
the faithfulness of the neighborhood and the uncertainty of the prediction due
to the sample size.

The idea is to use prediction intervals which are the most reasonable. For in-
stance, for each given −→x i and k, the 0.05-cut of the πCTP

γ contains at least, with
a prefixed γ confidence level, 95% of the true distribution that may have gener-
ated yi, because it contains at least 0.95% of the population of the true unknown



Algorithm 1 Possibilistic local KNN
1: MINK ← K

2: IntervalSizemin ← Inf

3: for all i ∈ 5, . . . ,MAXK do

4: Kseti ← Find the K nearest neighbors of xi

5: IntervalSize ← 0.05-cut of 0.95 CTP distribution of Kseti
6: if IntervalSize ≤ IntervalSizemin then

7: MINK ← i

8: IntervalSizemin ← IntervalSize

9: end if

10: end for

normal distributions that may have generated the Kseti. This approach explores
the neighborhood for the value of k that is the most statistically significant. The
MINK and MAXK in the algorithm 1 are global limits which stop the search
if we did not found the best K. This may occurs when we have some area of
the dataset where the response variable is relatively dense. In practice, we know
that this kind of local density is not always a sign of similarity, therefore we put
these two bounds to restrict our search in the region where we think to be the
most likely to contain the best neighborhood of xi.

5 Application to aircraft trajectory prediction

In this section, we compare the effectiveness of the regression approaches men-
tioned previously with respect to an aircraft prediction problem. Our data set is
composed of 8 continuous precise regression variables and one precise response
variable. The predictors are selected among more than 30 features obtained by
a principal component analysis on a variables set giving informations about the
aircraft trajectory, the aircraft type, its last positions and etc. Our goal is to
compare these methods when predicting the altitude of a climbing aircraft 10
minutes ahead. Because the trajectory prediction is a critical task, we are in-
terested in predicting intervals which contains 95% of the time the real aircraft
position, thus we mainly use the inclusion percentage to compare method results.
The database contains up to 1500 trajectories and all the results mentioned in
the following are computed from a 10-cross validation schema. In a first attempt
we will use 2

3
of instances will to tune the hyper-parameters. Then all of instances

will serve to validate the results using a 10-cross validation schema. In the hyper-
parameters tuning we used the Root Mean Squared Error (RMSE) of response
variable (trajectory altitude) to find the best fixedK and localK. The final result
for the fixed K was K = 11 with RMSE = 1197 and (MINK ,MAXk) = (7, 30)
with RMSE = 1177 for KNN regression with variable K. The kernel function
used in our methods was the Tricube kernel Kb(u) = 70

81b
(1 − |u|3)3 I{|u|≤b} .

The RMSE found by the two approaches demonstrate that, for this data set, the
variable K selection method is as efficient as the conventional fixed K method.
We used the following methods to estimate a prediction interval for our response



variable : “KNN Interval regression with variable K using 0.95 CTP distribu-
tion” (VKNN-CTP), “KNN interval regression using 0.95 CTP distribution”
(KNN-CTP), “KNN Interval regression with global normal quantile” (KNN)
and “KNN Interval regression with local normal quantile” (LKNN). The table
below contains the mean interval size together with their standard deviation
in parenthesis and the inclusion percentage of the compared methods. We can
notice that the conventional fixed K KNN approaches (KNN-normal global and
local) are not enough underestimate the confidence interval size. As expected,
the KNN approaches based on the 0.95 CTP distribution, always over estimate
these intervals. The most specific estimation is made with the VKNN-CTP al-
gorithm. Figure 4 shows the histogram of different values of K found by using
the 0.95 CTP distribution. We can observe that the values of K are uniformly
distributed along the range with a maximum reached for K = 25. It suggest, as
expected, that the dataset is not homoscedastic.

KNN LKNN KNN-CTP VKNN-CTP

Inclusion percentage 0.933 0.93 0.992 0.976

0.95 Interval size (A0.05) 4664 (0) 4694 (1397) 7865 (2341) 5966 (1407)
Table 1. Inclusion percentage compared to the interval size.
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CTP distribution.



6 Conclusion

In this work, we propose a method for building a possibility distribution encod-
ing tolerance intervals of a sample set drawn from a normal distribution with
unknown parameters. The α-cuts of the πCTP

γ distribution bound the (1− α)%
proportions the true unknown normal distribution with the confidence level γ,
regardless of the size of the sample set. Then, we embed these new kind of pos-
sibility distributions into a KNN regression algorithm. The suggested method
is valuable to be employed for heteroscedastick data. This approach exploits
the neighborhood in order to find an “optimal” K for each input instance. The
possibility distribution allows us to choose intervals for the prediction that are
guaranteed to contain a chosen amount of possible response values. We compared
our approach with classical ones on an aircraft trajectory prediction problem. We
show that classical KNN provide smaller confidence intervals which fail to guar-
antee the required level of inclusion percentage. For future works, we propose to
build in the same way the possibility distributions encoding prediction intervals
[8][9]. We will also extend this approach to normal mixtures and distribution
free sample sets.
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