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Abstract—Aircraft conflict avoidance is a crucial issue aris-
ing in air traffic management. The problem is to keep a given
separation distance for aircraft along their trajectories. We
focus on an optimal control model based on speed regulation
to achieve aircraft separation. We propose a solution strategy
based on the decomposition of the problem and on the
hybridization of a direct and an indirect method applied on
the obtained subproblems. Numerical results show that the
proposed approach is promising in terms of reduction of
computing time for conflict avoidance.
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I. INTRODUCTION

In the context of Air Traffic Control (ATC), motivated

by safety and efficiency reasons, tools for decision support

are requested. To avoid the risk of collision, distances of

separation must be respected. It is said that two aircraft are

in conflict if the distances between them are less than 5 NM

horizontally and 1000 ft vertically (1 NM (nautical mile) =

1852 m and 1 ft (feet) = 0.3048 m).

Various methods of conflict detection and resolution have

been proposed (see e.g., [8]). They are based on different

strategies that can be exploited to achieve aircraft separation,

such as trajectory (heading), flight level or velocity changes.

Evolutionary computation based algorithms are widely

studied in this context [5]. They are, in general, low time-

consuming, but the global optimal solution and even a

feasible solution (without conflicts) is not garanteed to

be achieved in a given time. Several models of optimal

control also appeared in this domain [1, 10, 11]. They are

mainly based on changes of aircraft trajectories, putting the

trajectory as a command on the system.

Recently, the European project ERASMUS (En-Route Air

traffic Soft Management Ultimate System) [2] considered

speed regulation and suggested a small velocity change

range to enable a subliminal control, that is a speed control

which is even not perceived and is performed without

informing air traffic controllers. Velocity change approaches

have also been recently studied in the context of mixed

integer linear and nonlinear programming [4, 9, 11].

This work focuses on aircraft conflict avoidance problems

solved through speed regulation. We propose an optimal

control approach keeping the flight trajectories and focusing

on velocity variations.

The paper is organized as follows. First, in Section II,

we present an optimal control model for the addressed air

traffic control problem which should be solved by small

speed changes. In Section III, we propose stategies to deal

with computational complexity. Particularly, we propose a

decomposition of the problem by considering different time

periods such that the separation constraints have to be

imposed only in the time periods when the aircraft conflicts

potentially occurr. In Section IV, we present an analytical

resolution based on the Pontryagin’s maximum principle

(PMP) in the other time periods, i.e., the ones where conflict

have already been solved. In Section V, we discuss numerical

results issued to the methods. In Section VI, conclusions are

drawn.

II. OPTIMAL CONTROL MODEL

THROUGH VELOCITY REGULATION

We present an optimal control model to achieve separation

based on speed changes only, keeping the aircraft trajectories

unchanged. The acceleration, ui respective to each aircraft

i, is then the command on the system.

In model (P), xi, vi and ui are respectively the position,

the velocity and the acceleration (control) of aircraft i,

with I = {1, ...,n} and n the number of aircraft involved;

aircraft are expected to be at the same altitude (planar

configuration, same flight level). For each aircraft i, velocity

vi and acceleration ui are bounded (i.e., belonging to [vi, vi]
and [ui, ui] respectively).

We note by t, t0 and tf the time, the initial time and final

time respectively. Moreover, D is the minimum required

horizontal separation distance between two aircraft and di
is the direction (heading) of the ith aircraft. The final time

tf of maneuvers is fixed and identical for all aircraft. The

mathematical model is the following:
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∫ tf

t0

u2
i (t)dt

v̇i(t) = ui(t) ∀t ∈ [t0, tf ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tf ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tf ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [t0, tf ], ∀i ∈ I

xi(t0) = x0
i vi(t0) = v0i ∀i ∈ I

xi(tf ) = x
f
i vi(tf ) = v

f
i ∀i ∈ I

D2− ‖ xi(t)− xj(t) ‖
2≤ 0 ∀t ∈ [t0, tf ], ∀i < j

We choose to minimize a quadratic energy-dependent cost

function depending on speed variations. This criterion takes

into account the contribution of each aircraft and also limits

the penalization inequality between the aircraft.

Note that one of the main difficulties on this optimal

control model is given by the constraints on the state

variables v and x. In the next section, we present resolution

approaches tailored on the problem to achieve its efficient

solution.

III. SOLUTION APPROACH BY

DECOMPOSITION OF THE PROBLEM

A typical solution approach for an optimal control prob-

lem like (P) is based on the application of a direct method.

It is based on a time discretization and leads to the solution

of a nonlinear (continuous) optimization problem (NLP),

which can be solved by standard NLP local solvers. For (P),

the corresponding NLP problem can be difficult to solve

for large-scale problems, mainly due to the large number

of variables and constraints. The complexity of the NLP

corresponding to the direct method is O(np) for the number

of variables and O(n2p+ p2) for the number of constraints,

where n and p are the number of aircraft and the number

of time subdivisions respectively. For example, even on a

simple conflict problem, with only 2 aircraft and a time

window equals to 30′ (with time subdivision equals to 15′′)
the corresponding nonlinear problem has more than 240
variables and 9000 constraints.

We first recall that, in order to perform aircraft separation,

a detection of potential conflict regions and a resolution step

have to be carried out. The two steps can be performed at

the same time by applying a direct method.

We propose to distinguish two discretization steps. The

first one, for the detection, has to be tight enough to check

if all constraints are respected. The second one, for the

resolution, is used to decide the time frequency at which

values the controls are computed and it can be larger than

the previous one. For example, we used 15′′ for the detection

and 1′ or 5′ for the resolution. As discussed in Section

V, this strategy allows to reduce the number of variables

and constraints of the nonlinear optimization problem to be

solved.

Another possibility is to perform a pre-processing step to

detect potential conficts. Given aircraft predicted trajectories,

one can check intersections of the trajectories and identify

spatial regions where the separation constraints must be

checked [7]. Once the different regions have been localized,

one can exploit this information to devise a specific strategy

of resolution aimed at reducing the computational complex-

ity of the problem at hand. The main contribution of this

paper is a strategy based on problem decomposition and

related hybridization of optimal control solution methods.

Let zone be the region where for an aircraft pair separation

constraints have to be verified and postzone be the following

region where all the conflicts have been solved and when the

aircraft are already separated.

For each aircraft i, let xenter
i be the first (by chronological

order) 3D trajectory point for which there exists an aircraft j

(j 6= i) such that the Euclidean distance between xenter
i and

the straight line corresponding to the jth aircraft predicted

3D trajectory is equal to the separation standard D. For each

aircraft i, let t1i be the time to reach xenter
i using the highest

speed vi. Dually, for each aircraft i, let xexit
i be the last 3D

trajectory point for which there exists an aircraft j such that

the Euclidean distance between xexit
i and the straight line

corresponding to the jth aircraft predicted 3D trajectory is

equal to the separation standard D. For each aircraft i, let

t2i the time to reach xexit
i using the lower speed vi.

For n aircraft, setting the entry zone time equals to

t1 := mini∈{1,...,n} t1i and the exit zone time t2 :=
maxi∈{1,...,n} t2i , we define conflict time phases for the

whole problem. The zone and postzone correspond respec-

tively to the time periods [t1, t2] and [t2, tf ],
The postzone being characterized by the absence of sepa-

ration contraints, it represents a subproblem easier to solve

than the initial problem defined on the whole time horizon.

We can apply the PMP [3] as discussed in the next section

on the postzone. On the remaining time window, the direct

method is applied. Numerical integrators of Euler-type are

used to approximate the ordinary differential equations de-

scribing the system dynamic and different time discretization

steps mentioned above are exploited.

IV. APPLICATION OF THE

PONTRYAGIN’S MAXIMUM PRINCIPLE

Without the separation constraint (difficult state con-

straints), we can easily apply the PMP, which gives us an

analytical solution. In the postzone (time window [t2, tf ]),
as the aircraft conflicts have been solved, the necessity to

check separation constraint does not exist anymore. The

velocity and acceleration constraints are checked a posteri-

ori. Hence, for each aircraft i the following optimal control

sub-problem (Pi) can be solved independently. We recall

the assumption that aircraft are expected to be at the same
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altitude (planar configuration, same flight level) so that two-

components vectors appear in the formulation. The distinc-

tion between the two components of the direction (heading)

vector di = (dXi , dYi )
T and the distinction between the

position components xi = (xX
i , xY

i )
T have been done to

make easier the formalism.

(Pi)



















































min
ui

∫ tf

t2

u2
i (t)dt

v̇i(t) = ui(t) ∀t ∈ [t2, tf ]

ẋX
i (t) = vi(t)d

X
i ∀t ∈ [t2, tf ]

ẋY
i (t) = vi(t)d

Y
i ∀t ∈ [t2, tf ]

xX
i (t2) = x

Xt2

i xY
i (t2) = x

Yt2

i vi(t2) = vt2i

xX
i (tf ) free xY

i (tf ) free vi(tf ) = v
tf
i

We apply on (Pi) the indirect method. We introduce the

co-state variables zi0, z
i
1, z

i
2, z

i
3, where zi1, z

i
2, z

i
3 are associ-

ated to xX
i , xY

i and respectively vi. Writing the Hamiltonian

Hi = zi0u
2
i + zi1vid

X
i + zi2vid

Y
i + zi3ui ,

the co-state equations are:

żi1 = −
∂Hi

∂xX
i

= 0 , żi2 = −
∂Hi

∂xY
i

= 0 ,

żi3 = −
∂Hi

∂vi
= −(zi1d

X
1 + zi2d

Y
1 ) .

By fixing zi0 = −1, by using the PMP [3], we obtain:

u∗
i = argmin

ui

Hi =
zi3
2
.

Solving the differential system composed by state and co-

state equations and introducing six real constants Ai, Bi, Ci,

Di, Ei and Fi, we obtain:

(Si)











































































































zi1(t) = Ai and zi2(t) = Bi ,

zi3(t) = −(Aid
X
i +Bid

Y
i )t+ Ci ,

ui(t) = −
Aid

X
i +Bid

Y
i

2
t+

Ci

2
,

vi(t) = −
Aid

X
i +Bid

Y
i

4
t2 +

Ci

2
t+Di ,

xX
i (t) = −

Ai(d
X
i )2 +Bid

X
i dYi

12
t3

+
Ci

4
dXi t2 +Did

X
i t+ Ei ,

xY
i (t) = −

Aid
X
i dYi +Bi(d

Y
i )

2

12
t3

+
Ci

4
dYi t

2 +Did
Y
i t+ Fi .

From the terminal (position) conditions, xX
i (tf ) is free

and xY
i (tf ) is free, the PMP implies (transversality condi-

tions: zi1(tf ) = 0, zi2(tf ) = 0, see [3]) that the real constants

Ai and Bi are both equal to zero. This reveals that the

optimal control corresponds to a constant acceleration.

This optimal acceleration depends only on the initial and

final velocities (vt2i and v
tf
i ) and on the time window ex-

tremities (t2 and tf ). More precisely, we obtain the following

solution system for each instant t belonging to [t2, tf ]:































































































ui(t) =
v
tf
i − vt2i
tf − t2

,

vi(t) =
v
tf
i − vt2i
tf − t2

(t− tf ) + v
tf
i ,

xX
i (t) =

v
tf
i − vt2i
tf − t2

dXi
t2

2
+ (v

tf
i −

v
tf
i − vt2i
tf − t2

tf )d
X
i t

− (
v
tf
i − vt2i
tf − t2

(t2 − tf ) + v
tf
i )dXi t2 + x

Xt2

i ,

xY
i (t) =

v
tf
i − vt2i
tf − t2

dYi
t2

2
+ (v

tf
i −

v
tf
i − vt2i
tf − t2

tf )d
Y
i t

− (
v
tf
i − vt2i
tf − t2

(t2 − tf ) + v
tf
i )dYi t2 + x

Yt2

i .

Hence, starting from t2, the problem can be analytically

solved. Thus, just a discretization of the time window [t0, t2]
is needed.

V. NUMERICAL RESULTS

In this section, we discuss numerical results obtained

by applying the proposed strategies to solve the conflict

avoidance problem. A computer 2.53 GHz / 4 Go RAM

and the MatLab v. 7 environment are used. Data problems

were randomly generated with the following characterics.

The trajectory paths are straight. The horizontally separation

norm is 5 NM. Most of the aircraft have a small operating

time (i.e., time before the first potential conflict), which

is less than 15′. Velocities are bounded, based on the

ERASMUS project, by a small speed range, namelly: [vt0i −
6%vt0i , vt0i + 3%vt0i ] (where vt0i is the initial velocity of

aircraft i). Acceleration are bounded, based on Eurocontrol’s

base of aircraft data [6], namelly ui = −ui = 4000 NM / h2.

Terminal conditions are returning to the initial velocities

(vt0i ) at final time (tf = 30′). The number of aircraft,

the collision proximity (i.e., the minimal distance between

aircraft which could occur if no maneuvers are done), and

the initial aircraft velocities are reported in Table I.

In Table II, we compare the results obtained by applying

a direct method, with detection step and resolution step

equal to 15′′ and 1′ respectively, on the whole time window

(without considering the postzone) and the results obtained

by decomposing the problem and applying the direct and

the indirect methods as described in the previous sections.
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Table I
TEST PROBLEMS CHARACTERISTICS: NUMBER OF AIRCRAFT, COLLISION

PROXIMITY, AND INITIAL VELOCITY FOR PROBLEMS WITH 4 AND 6 AIRCRAFT.

instances number of aircraft collision proximity initial velocity

pb n4a 4 0 NM 400 NM / h

pb n4b 4 2 NM 400 NM / h

pb n6b 6 2 NM 400 NM / h

pb n6c 6 3 NM 400 NM / h

Table II
COMPARISON OF NUMERICAL RESULTS OBTAINED WITHOUT AND WITH

APPLICATION OF THE PMP ON THE POSTZONE : VALUE OF OBJECTIVE FUNCTION,

NUMBER OF ITERATIONS, CPU TIME, FOR 4 AIRCRAFT PROBLEMS.

Application of the PMP on the POSTZONE

without with

instances objective it. time objective it. time

pb n4a 1.8 × 104 258 22′ 1.9 × 104 148 1′54′′

pb n4b 8.0 × 103 228 16′30′′ 1.0 × 104 188 3′20′′

From Table II, we can see that with the application of

the PMP on the postzone, the CPU times are significantly

reduced with respect to the classical resolution based on

the direct method applied on the whole time window, up

to 90% (see pb n4a). The application of the PMP on the

postzone allows us to tackle larger aircraft conflict avoidance

problems because it reduces the time window where the

direct method is applied, hence it reduces the number of

variables and constraints of the NLP. We can then solve 6
aircraft conflict avoidance problems, as show in Table III,

we compare results obtained by using different resolution

time discretization steps. Like in Table II, the detection step

is 15′′ and we applied the PMP on the postzone.

Table III
COMPARISON OF NUMERICAL RESULTS WITH DIFFERENT CONTROL TIME

DISCRETIZATION STEPS: VALUE OF OBJECTIVE FUNCTION, NUMBER OF

ITERATIONS, CPU TIME, FOR 6 AIRCRAFT PROBLEMS.

Control time DISCRETIZATION step

1′ 5′

instances objective it. time objective it. time

pb n6b 1.6 × 104 342 21′ 1.7 × 104 43 0′35′′

pb n6c 1.0 × 104 317 20′ 1.0 × 104 51 0′44′′

From Table III, we emphasize the importance of the

resolution time discretization step. We can see that with the

resolution step equals to 5′, the CPU times are significantly

reduced with respect to the configuration with the resolution

step equals to 1′, up to 97% (see pb n6b). The two above

comparisons (Tables II and III) show, on the one hand, the

advantage of the application of the PMP on the postzone, and

on the other hand, the benefit to hybridize the two methods

to solve larger aircraft conflict avoidance problems.

VI. CONCLUSION

We considered an optimal control model for aircraft

conflict resolution based on speed changes. We proposed a

strategy based on hybridization of the direct method applied

to the conflict zone and the indirect method applied to

postzone where conflicts have been solved. First numerical

results validate our approach. They show that the proposed

decomposition strategy is beneficial in the context of the

considered control problem, significantly reducing the com-

putational time for solving the aircraft conflict avoidance

problem.
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