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Mohammad Ghasemi Hamed 1,2, Mathieu Serrurier1, and Nicolas Durand1,2

1 IRIT - Université Paul Sabatier
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Abstract. In some regression problems, it may be more reasonable to
predict intervals rather than precise values. We are interested in finding
intervals which simultaneously for all input instances x ∈ X contain a β

proportion of the response values. We name this problem simultaneous
interval regression. This is similar to simultaneous tolerance intervals for
regression with a high confidence level γ ≈ 1 and several authors have
already treated this problem for linear regression. Such intervals could
be seen as a form of confidence envelop for the prediction variable given
any value of predictor variables in their domain. Tolerance intervals and
simultaneous tolerance intervals have not yet been treated for the K-
nearest neighbor (KNN) regression method. The goal of this paper is
to consider the simultaneous interval regression problem for KNN and
this is done without the homoscedasticity assumption. In this scope, we
propose a new interval regression method based on KNN which takes
advantage of tolerance intervals in order to choose, for each instance,
the value of the hyper-parameter K which will be a good trade-off be-
tween the precision and the uncertainty due to the limited sample size
of the neighborhood around each instance. In the experiment part, our
proposed interval construction method is compared with a more conven-
tional interval approximation method on six benchmark regression data
sets.

1 Introduction

When dealing with regression problems, it may be risky to predict a point which
may be illusionary precise. Due to the existence of learning biases, especially the
limited amount of available data and the necessarily incomplete language used
for describing them, the obtained model does not describe exactly the true un-
known model. In situations with lack of sufficient observations to obtain precise
results or when the considered model is too complex, one may rather want to
find intervals which are the most likely to contain a desired proportion of the
population of the response values. Such intervals are mostly used in application
demanding a high level of confidence, like aircraft trajectory prediction, security
systems. The most common approach to estimate these prediction intervals is to
use statistical inference to calculate confidence intervals on the error’s variable.



However, this corresponds to a confidence interval about the error and not about
the real prediction value. Another disadvantage of this approach is to assume
that the prediction interval sizes are constant and so independent of the consid-
ered instance.

It is known that taking a quantile of an estimated distribution using a sample
set having a limited number of instance is not a statistically approved way to
infer an interval that must contain a desired proportion of the true unknown
distribution that might have generated this sample set. This is because the esti-
mation procedure did not take into account the uncertainty related due to the
limited sample size used for estimating the distribution. In statistics, there are
already many ways to build confidence intervals around a prediction variable like
prediction intervals, tolerance intervals, confidence intervals of quantiles and si-
multaneous confidence intervals of quantiles, etc. and each of them has its own
properties. In this work, we are interested in intervals which have similar proper-
ties to the simultaneous tolerance intervals for regression. Simultaneous interval
regression, introduced in this paper, could be seen as a form of confidence en-
velop for the real value of the prediction variable Y given any value of predictor
variables in their domain x ∈ X . This concept is similar to simultaneous toler-
ance interval for regression with an high confidence level γ ≈ 1. This type of
approach is different to quantile regression introduced by Koenker and Bassett
(1978) [8] in which conditional quantile of the response variable Y given the
predictor values X = x is calculated. Quantile regression is much more flexible
than least square regression when dealing with heterogeneous conditional dis-
tributions, because it makes no distributional assumption about the error term
in the model and just provide a conditional distribution of the prediction given
the predictor values [9]. Quantile regression focus on the direct estimation of
regression quantile and ignores the uncertainty related to the limited number
of observations. Some authors have already treated the problem of confidence
intervals for regression quantiles [7, 2, 6], however they always focus to find con-
fidence interval on the regression parameters and not on the prediction variable.
One might think to use the confidence interval on the regression parameters in
quantile regression to derive intervals on the conditional quantile. However, The
major difference of these derived confidence intervals with tolerance intervals
in least square regression is that they are not two-sided, but just a one-sided
confidence interval on the prediction variable. Another fundamental difference
with simultaneous tolerance interval in least square regression is that they are
confidence intervals of regression quantiles given X = x and not simultaneous
on the entire domain of independent variables.

Simultaneous tolerance intervals have already been treated by several authors
[11, 19, 12] for linear regression. These works are based on three assumptions.
First, the error follows a normal distribution. Second, the mean is linear with
respect to the input variable. Finally, the standard deviation around the mean
is constant and independent with respect to the input variables (homoscedastic-



ity assumption). This paper tries to overcome the last two limitations by using
tolerance interval and a non parametric regression method, however we still as-
sume that the error distribution is normal. Thus, we define simultaneous interval
regression for K-nearest neighbor. In simultaneous interval regression for KNN,
the local tolerance interval is used in order to find the value of the parameter K
that has the better trade-off between the precision and the uncertainty. Given
a dataset and a desired proportion of response value β, the goal is to find the
optimal combination of hyper-parameters (MINK ,MAXK and γ), for which
the simultaneous condition on the obtained intervals of the underlying data set
is satisfied. The interval construction approach is proposed for KNN in general.
This method exploits the local density of the neighborhood to find the most
appropriate intervals to contain the desired proportion of response values, so the
proposed interval construction method may be more effective with heterogeneous
data set with heteroscedastic error.

This paper is organized as follows: section 2 is a brief introduction of tolerance
interval and simultaneous tolerance interval for least square regression. Section 3
is devoted to the description of our approach with KNN and in the last section,
we apply our method on six benchmark regression databases.

2 Tolerance interval and least square regression

2.1 Tolerance interval

Let X1, · · · , Xn denote a random sample from a continuous probability distri-
bution and let X = (X1, · · · , Xn) . A tolerance interval is an interval which
guarantees with a specified confidence level γ, to contain a specified proportion
β of the population. The ITγ,β sign, is used to refer to a β-content γ-coverage
tolerance interval [1]. Then, we have:

∀β ∈ (0, 1), PX(P (X ∈ ITγ,β |X) ≥ β) = γ (1)

By making the assumption that our sample set comes from a univariate normal
distribution, then the lower and the upper bound of the tolerance interval ITγ,β =
[Xl, Xu] for a sample of size n is obtained as follows :

Xl = θ̂ − kσ̂, Xu = θ̂ + kσ̂ (2)

k =

√

√

√

√

(n− 1)(1 + 1
n
)Z2

1− 1−β
2

χ2
1−γ,n−1

(3)

where θ̂ is the sample mean of the distribution, σ̂ its sample standard deviation,
χ2
1−γ,n−1 represents the 1− γ quantile of the chi-square distribution with n− 1

degree of freedom and Z2
1− 1−β

2

is the squared of (1− 1−β
2 ) quantile value of the

standard normal distribution [5]. For more details on tolerance intervals see [1] .



Regression is the process of creating an approximating function that looks
for capturing relevant patterns in the data. In a classical fixed design regression
problem (parametric or nonparametric), there are m pairs (xi, y(xi)) of observa-
tion where xi is a vector of input variables and y(xi) is the observed value of the
response variable. It is usually supposed that the mean of the random variable
Y (xi) follows an unknown function f∗ with a random error term εi defined as:

Y (xi) = f∗(xi) + εi, where E(εi) = 0. (4)

Thus, the goal of regression is to learn from data a function f that is as close
as possible to the unknown function f∗. In least square regression, it results to
find the function that minimize the mean square of the error (MSE), i.e. find f

that minimize :

MSE(f) =
1

m

m
∑

1

(y(xi)− f(xi))
2 (5)

In the following, we will always assume that the error follows a normal dis-
tribution. A conventional approach employed by some practitioners is to as-
sume that f is a non-biased estimator of f∗ with V ar(εi) = σ2 being constant
which means that it does not depends of the input vector (homoscedasticity
assumption), and to use the MSE of the found f as an estimation of σ2 (i.e.
MSE(f) = σ̂2). Thus the conventional approach assumes that the error distri-
bution normal and homoscedastic. In this approach inter-quantiles of the esti-
mated normal distribution are used, as an approximate solution to find intervals
that contain a chosen proportion of the underlying distribution for a given value
of dependent variables or intervals that contain a chosen amount of underlying
distribution for all the possible values of dependent variables, (respectively sim-
ilar to tolerance intervals and simultaneous tolerance intervals). For instance,
the 0.95 inter-quantile [f(x) − 1.96σ̂, f(x) + 1.96σ̂] is often used as an interval
that will contain 95% of the distribution of Y (x) (i. e. as a regression tolerance
interval). As shown by Wallis [17], this statement is not true since σ̂ and f(x)
are only estimations of the true standard deviation σ and the true mean function
f∗. These estimations are usually made on a finite sample and are then pervaded
with uncertainty. Thus, tolerance intervals for least square regression have been
introduced in order to take into account this uncertainty. These intervals are de-
scribed formally by (6). We name such intervals, β-content γ-coverage regression
tolerance intervals and they are represented by I(x)Tγ,β .

∀x, P

(
∫ Uβ,γ(x)

Lβ,γ(x)

px(t)dt ≥ β

)

≥ γ where Y (x) = f∗(x) + εi (6)

Where px(t) represents the the probability density function of Y (x) for an
specified value of predictor variable x. It is important to observe that tolerance
intervals in regression are defined separately for each input vector x. Therefore,
for two different input vectors x1 and x2, I(x1)

T
γ,β and I(x2)

T
γ,β are different and

the event of Y (x1) ∈ I(x1)
T
γ,β is independent of Y (x2) ∈ I(x2)

T
γ,β .



2.2 Difference between tolerance and prediction intervals

One might think to use prediction intervals instead of tolerance intervals. Note
that in terms of prediction, tolerance intervals are not the same as prediction
intervals. For a given x, tolerance intervals contain at least 100β% of the popu-
lation of Y (x), however a β prediction interval contains in mean 100β% of the
distribution of Y (x). In other words, the expected percentage of the popula-
tion of Y (x) contained in its β prediction interval I(x)Pred

β is β. This is stated
formally as follows:

∀x,E(P (Y (x) ∈ I(x)Pred
β )) = β where Y (x) = f∗(x) + εi (7)

For a detailed discussion about the differences between prediction and tolerance
intervals, the reader can find more in [4].

2.3 Simultaneous tolerance intervals for least square regression

As seen above, tolerance intervals for least square regression are point-wise in-
tervals which are obtained separately for each vector of x. Lieberman and Miller
[11] extended the Wallis [17] idea to the simultaneous case. Simultaneous tol-
erance intervals are constructed so that with confidence level γ, simultaneously
for all possible values of input vector x, at least β proportion of the whole pop-
ulation of the response variable Y is contained in the obtained intervals. In fact
simultaneous tolerance interval for least square regression [LSβ,γ(x), USβ,γ(x)]
create an envelope around the entire mean regression function f(·) such that
for all x ∈ X , the probability that Y (x) is contained in [LSβ,γ(x), USβ,γ(x)]
is simultaneously β, and this coverage is guaranteed with a confidence level γ.
We name such intervals, β-content γ-coverage simultaneous regression tolerance
intervals, we represent them by I(x)TS

γ,β and they are described formally by Equa-
tion (8), where px(t) represents the the probability density function of Y (x) for
an specified value of predictor variable x.

P

(

min
x∈X

(
∫ USβ,γ(x)

LSβ,γ(x)

px(t)dt

)

≥ β

)

≥ γ where Y (x) = f∗(x) + εi (8)

These intervals have been studied for the linear regression by several authors [11,
19, 12]. For an introduction to the subject, the reader can see Lieberman and
Miller [11]. They explained the problem in details and presented four different
methods to construct such intervals for linear regression. For more information
about simultaneous inference, see [1, 13].

3 Simultaneous interval regression for K-Nearest
Neighbor (KNN)

3.1 K-Nearest Neighbor (KNN)

Non-parametric regression is a type of regression analysis in which the response
value is not a predefined function of the predictor variables and vector of param-



eter θ which must be estimated form data. In contrary to parametric regression,
which is based on the construction on a model based on a training set, the
prediction for a vector x is made by a local estimation inside the training set.
The motivation of non-parametric methods is their utility when dealing with too
complex models or when having non-linear or linear with heteroscedastic data.
Therefore, in such situations, exploiting the neighborhood of the input data to
estimate the local distribution of response value may be justified. KNN uses the
distribution of response values in the neighborhood of the input vector x to find
its unknown response value. In this work, we assume that the local distributions
are normal, and we will use tolerance intervals of normal distribution to obtain
the required intervals. This section, makes also the general assumptions of fixed
regression design described in the previous section. With KNN, which are linear
smoothers, the estimated function for the input vector x, f(x) will be defined
as:

f(x) =

n
∑

i=1

liy(xi). (9)

where li, is the weight associated to the observation y(xi). The computation
of these weights, requires an unknown hyper-parameter named as the bandwidth.
The bandwidth is the size of the neighborhood (K) around the considered input
vector which is used to compute these weights. Then, KNN which is a kernel
smoother is defined as follows :

f(x) =

∑n
i=1 Kerb(d(x, xi))y(xi)
∑n

i=1 Kerb(d(x, xi))
(10)

where

Kerb(u) =
1

b
Ker(

u

b
),

Ker(·) is an a kernel function, d(·) is a distance function and b is the distance
between the input vector x and its furthest K-nearest neighbor. In fact KNN is a
specialized form of Nadaraya-Watson (NW) [14, 18] kernel estimator in which the
bandwidth b is not constant and depends on the distance between input vector
x and its furthest K-nearest neighbor. Usually, The size of the neighborhood,
K, has to be fixed before the learning phase and it will be constant for all the
input vectors. In the following, the neighborhood of x is denoted as :

Ksetx = {(xi, y(xi)), d(x, xi) ≤ b}.

Some of the common kernel functions are defined as belows [10] where I(·) is the
indicator function:
Tricube: K(u) = 70

81 (1− |u|
3
)3 I(|u| ≤ 1),

Gaussian : K(u) = 1√
2π

e−
1
2u

2

, I(|u| ≤ 1),

Epanechnikov: K(u) = 3
4 (1− u2) I(|u| ≤ 1),

Uniform: K(u) = 1
2 I(|u| ≤ 1).



3.2 KNN simultaneous interval regression

Our goal is to find intervals which contain simultaneously a proportion of the
response values for all input instances x ∈ X . We name the problem stated just
above as simultaneous interval regression. This is similar to consider simulta-
neous tolerance interval for regression with a high confidence level γ ≈ 1. The
goal of this paper is to consider the simultaneous interval regression problem
for KNN. The interval construction approach is proposed for KNN in general.
This method exploits the local density of the neighborhood to find the most
appropriate intervals to contain the desired proportion of response values, so
the proposed interval construction method may be more effective with heteroge-
neous data set with heteroscedastic error. Note that, tolerance and simultaneous
tolerance intervals have not yet been treated for non-parametric methods. Thus,
given an input vector x, K, β, and γ, the tolerance interval for the response
variable is computed by using Equation (2) with

θ̂ = f(x), n = K

and

σ = (K − 1)−1
∑

y(xi)∈Ksetx

(y(xi)− ȳ)2, where ȳ = K−1
∑

y(xi)∈Ksetx

y(xi).

Note that, in contrary to the sample mean, the sample standard deviation does
not take into account the distance between the considered input vector and its
neighbors. Indeed, if the weights li was embedded in the computation of σ, K
would overestimate the amount of information used for the estimation of the
standard derivation.

As pointed out previously, it is common to fix K and use a general KNN esti-
mator. These settings are denoted as “KNN regression with fixed K”. The fixed
K idea in KNN regression comes from the assumption which suppose that the
data are homogeneously distributed in the feature space. In this section tolerance
intervals are used to find the “best” K for each input vector x. Let the sample
set containing the response values of the K-nearest neighbors of x be Ksetx.
For a fixed value of β, and for each input vector x, the computation begins by
an initial value of K, then the β-content γ-coverage normal tolerance interval
of Ksetx is calculated. This process is repeated for the same input vector x but
different values of K,MINK ≤ K ≤ MAXK . Finally, for a given x, the interval
having the smallest size between other tolerance intervals resulted by different
Ksetx for MINK ≤ K ≤ MAXK is chosen as the desired interval.

This leads us to choose the interval that has the best trade-off between the
precision and the uncertainty to contain the response value. Indeed, when K

decreases the neighborhood considered is more faithful but it increases the un-
certainty of the estimation. On the contrary, whenK increases, the neighborhood
becomes less faithful but the size of the tolerance intervals decreases. In fact the
mentioned intervals take into account the number of instances in the neighbor-
hood, and their size reflects also the neighborhood’s density . Thus, choosing the



K that minimizes a fixed β-content γ-coverage normal tolerance ensures to have
the best trade off between the faithfulness of the neighborhood and the uncer-
tainty of the prediction due to the sample size. This is summarized in Algorithm
1. For the case of the computational complexity, the computation process of
KNN simultaneous interval regression is (MAXK −MINK) times higher than
the complexity of KNN regression with fixed K. Because from the beginning to
the Ksetx finding step, everything remains the same for both of the regression
methods, then in the interval calculation phase, KNN regression with fixed K

computes just one interval and instead our method computes MAXK ones. For
more detail on the complexity of KNN see [15].

Algorithm 1 Simultaneous interval regression with KNN

1: for all x ∈ testSet do

2: IntervalSizemin ← Inf

3: for all i ∈MINK , . . . ,MAXK do

4: Ksetx ← response value of the K nearest instances to x

5: Interval ← β-content γ-coverage normal tolerance interval of Ksetx
6: if size(Interval) ≤ IntervalSizemin then

7: K ← i

8: foundInterval← Interval

9: IntervalSizemin ← size(Interval)
10: end if

11: end for

12: Intervalx ← foundInterval

13: end for

3.3 Tunning MINK , MAXK and γ

MINK and MAXK are global limits that stop the search if the best K value is
not before . This may occur when in some part of the data set, the local density
of the response variable is relatively high. In practice, it is known that this kind
of local density is not always a sign of similarity, therefore these two bounds serve
to restrict the search process in a region where it is most likely to contain the
best neighborhood of x. MINK ,MAXK and γ are algorithms hyper-parameter
and they can be found by evaluating the effectiveness of the algorithm on the
training set.

Our goal is to find an envelop that gives β proportion of all the predictions.
In this scope β is chosen with respect to the user expectation. Given a KNN
function f and a validation set that contains m pairs (xi, y(xi)) the proportion
of data inside the tolerance envelope is computed by the MIP function (Mean
Inclusion Percentage) :

MIP =

∑

I(y(xi) ∈ IT
f(x))

m
(11)

where I is the indicator function and IT
f(x) is the interval found by the algorithm

above. The process of finding the optimal value of γ is more tricky. Indeed,



The choice of a good value γ is crucial in order to have simultaneous tolerance
intervals that guarantee the expected value of MIP (i.e. MIP ≥ β). High values
of γ will guarantee that MIP ≥ β but the computed intervals can become
very large. Thus,we experimentally search for the smallest value of γ that makes
MIP ≥ β. Note that, with this approach, the value of γ can be much lower that
β and this may happen when the local density of the response values is quite
dense.

4 Experiments

4.1 The experiment’s approach

We compare the effectiveness of our methods based on tolerance intervals with
the conventional interval construction approach described in section 2.1 (repre-
sented by “Conv.”) for a given β proportion of the response values . Thus, the
conventional approach is the computation of inter-quantile of population based
on the classical KNN algorithm with a fixed K. The goal is to find simultaneous
β-content regression intervals where β = 0.9, 0.95 and 0.99. The motivation of
this choice of β is that these inter-quantiles are the most used ones in machine-
learning and statistical hypothesis-testing. Another reason justifying our choice
is that they are harder to approximate.

When considering the simultaneous interval regression, it is expected for the
fraction of prediction values inside the envelope, for each of the 10 models in
cross validation, to be greater or equal to β. For example, for β = 0.95 in a
10-fold cross validation, it is expected for each of the 10 built model to have
a Mean Inclusion Percentage (MIP) greater or equal to 0.95 (MIP ≥ β). In
our experiments part, we are interested to compare the obtained intervals by
the mentioned methods regardless to any variable selection or outliers detection
preprocessing. The mentioned results are the mean inclusion percentages and
the Mean of Interval Size (MIS) in each of the 10-fold in the cross validation
scheme. The MIP (see Equation (11)) and MIS over all the 10-fold cross valida-
tion is also contained in the results.

In a first attempt, data set is divided into two parts of 2
3n and 1

3n, where
n represents the data set size. The part containing 2

3 of instances are used to
tune the hyper-parameters. The hyper-parameters are MINK ,MAXK and γ for
our proposed interval regression method and just K value for the Fixed KNN
(denoted as Conv.). For the classical KNN, the fixed K maximizing the Root
Mean Squared Error (RMSE) of response variable is chosen. For our proposed
method, the hyper-parameters having the smallest MIS and also satisfying the
simultaneous β-inclusion constraint (see Section 3.3) are selected. Finally, all of
the instances will serve to validate the results using a 10-cross validation scheme.



4.2 Results

For this purpose the following six well known regression data sets are used :
“Auto MPG” (Auto) [3] , “Concrete Compressive Strength” (Concrete) [3],“Con-
crete Slump Test” [3] (Slump),“Housing” [3],“Wine Quality” [3] (Wine) (the
red wine) and “Parkinsons Telemonitoring” [16]. “Parkinsons Telemonitoring”
data set contains two regression variable named as “motor UPDRS” and “to-
tal UPDRS”, so we consider it as two distinct datasets named respectively as
“Parkinson1” (containing “total UPDRS” values without “motor UPDRS”) and
“Parkinson2” (containing “motor UPDRS” values without “total UPDRS”).
Table 1 summarizes the application of the algorithm 1 (“Var. K”) and the con-
ventional interval construction approach combined with KNN (“Conv.”) to the
seven datasets seen above. For each 10-fold cross validation scheme, the following
quality measures are computed:

• MFIP: Mean Fold Inclusion Percentage (value of the MIP for one fold). It
must be greater or equal to the desired β for each of the 10 models build in
the cross validation phase.

• Min(MFIP): minimum value of MFIP between all the 10 models. If we have
min(MFIP ) < β, that represents the failures of the approach to cover the

required β proportion of the response values .

The column MIS is the Mean of Interval Size for all the 10 models and σis is
the standard deviation of the interval size over the whole dataset. Note that σis

is not defined for the conventional method because its interval size is constant
over the entire data set. The star * sign appears when Min(MFIP) satisfies
the requirement (i.e. Min(MFIP ) ≥ β). When only one of the two compared
methods satisfies this requirement, the result is put in bold.

For β = 0.9 β = 0.95 and for the data sets Parkinson1 and Parkinson2
in table 1, we can see that our method gives smaller intervals than the Conv.
approach. However in contrary to the Conv. approach, the mentioned intervals
contain the required β proportion of the response values. It is usually, a difficult
task to satisfy the requirement for β = 0.99 and it becomes even harder for
small data sets. Because each fold contains n

10 of total instances, so one percent
is equals to n

1000 . It means that the constructed intervals must miss at max n
1000

of total instances and this is a quite hard task for small and even medium data
sets. But we can see that our method satisfies this condition for half of datasets
and the mean of inferred intervals has not a big size compared to the required
constraint. It is also interesting to note that our proposed method performs
better in general for bigger datasets. This is because, our method is based on
the local density of the data.

5 Conclusion

In this work, we have defined the idea of simultaneous interval regression for
K-Nearest Neighbor (KNN). In simultaneous interval regression, the goal is to



Dataset Algo.

90% 95% 99%

Min(MFIP) MIS (σis) Min(MFIP) MIS (σis) Min(MFIP) MIS (σis)

Parkinson1
(n=5875,
p=25)

Conv. 94.54 * 6.62 94.55 7.88 95.4 10.36

Var. K 90.98 * 5.01 (6.92) 95.23 * 6.38 (8.75) 99.14 * 11.19 (14.47)

Hyper.
params.

(MINK,MAXK, γ) =
(5, 40, 0.25)

(MINK,MAXK, γ) =
(5, 40, 0.35)

(MINK,MAXK, γ) = (5, 40, 0.8)

Parkinson2
(n=5875,
p=25)

Conv. 94.04 * 4.73 94.55 5.64 95.57 7.41

Var. K 92.34 * 3.97 (5.37) 95.23 * 5.06 (6.77) 99.14 * 9.37 (11.85)

Hyper.
params.

(MINK,MAXK, γ) =
(5, 25, 0.3)

(MINK,MAXK, γ) =
(5, 25, 0.4)

(MINK,MAXK, γ) = (5, 25, 0.87)

Wine
(n=4898,
p=12)

Conv. 78.93 1.84 90.59 2.19 93.46 2.88

Var. K 90.2 * 2.5 (0.55) 95.71 * 3.51 (1.48) 98.77 5.04 (1.05)

Hyper.
params.

(MINK,MAXK, γ) =
(20, 50, 0.9)

(MINK,MAXK, γ) =
(5, 25, 0.99)

(MINK,MAXK, γ) = (20, 50, 0.999)

Concrete
(n=1030,
p=9)

Conv. 80.58 25.58 86.4 30.48 94.17 40.05

Var. K 91.26 * 33.29 (11.86) 95.14 * 41.91 (14.8) 99.02 * 80.72 (26.47)

Hyper.
params.

(MINK,MAXK, γ) =
(10, 25, 0.6)

(MINK,MAXK, γ) =
(10, 25, 0.7)

(MINK,MAXK, γ) = (10, 25, 0.99)

Auto
(n=398,
p=8)

Conv. 87.17 9.96 90 11.87 94.87 15.6

Var. K 94.87 * 12.57 (6.48) 95 * 14.98 (7.72) 97.43 23.54 (11.98)

Hyper.
params.

(MINK,MAXK, γ) =
(7, 20, 0.95)

(MINK,MAXK, γ) =
(7, 20, 0.95)

(MINK,MAXK, γ) = (7, 20, 0.99)

Housing
(n=506,
p=14)

Conv. 84.31 14.23 90.19 16.96 94 22.29

Var. K 92.15 * 22.9 (13.09) 96 * 27.28 (15.6) 98 43.45 (24.44)

Hyper.
params.

(MINK,MAXK, γ) =
(10, 20, 0.99)

(MINK,MAXK, γ) =
(10, 20, 0.99)

(MINK,MAXK, γ) = (10, 20, 0.999)

Slump

(n=103,
p=10)

Conv. 80 12.73 80 15.16 80 19.93

Var. K 90 * 29.58 (9.83) 90 35.25 (11.71) 100 * 46.32 (15.4)

Hyper.
params.

(MINK,MAXK, γ) =
(5, 15, 0.99)

(MINK,MAXK, γ) =
(5, 15, 0.99)

(MINK,MAXK, γ) = (5, 15, 0.99)

Table 1. Comparing the interval construction approachs proposed to perform simul-
taneous interval regression for KNN.

find intervals which simultaneously contain a required proportion of the response
values for all input instances. We have introduced one approach to build such
intervals which can be applied to KNN. Since tolerance intervals take into ac-
count the neighborhood size, it allows us to automatically find the best value
of K for each example rather than using a fixed K for all the test set. This
can be useful in presence of heterogeneous data. In the experiments part, the
introduced methods and its conventional versions are applied on six different
regression data sets. The results show that our approach performs very well on
dense datasets. In the case of dataset with small sample sizes compared to their
number of variables, our method is less reliable, but it is still better than the
conventional interval construction method in KNN.

Predicting simultaneous confidence intervals may be useful when we are in-
terested in the combination of predictions. For instance, in the wine database,



the computation of simultaneous interval ensures that for a set of ”m” bottles,
”m ∗ β” of the bottles will have simultaneously their score in their predicted in-
terval. This can become more important in safety and security applications. As
another example, let us take the aircraft trajectory prediction using a regression
model. A warning occurs when the prediction intervals of two or more aircraft
overlap. In this case, intervals found using simultaneous interval regression guar-
antee the safety measure of the collision detection approach.
As future work, we will focus on different non-parametric estimators such as
Locally Weighed Scatter-plot Smoothing as well as regression cases where the
error’s distribution are not normal.
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