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Abstract 
 
Vibration data acquired during system monitoring periods are rich in harmonics 
characterizing the presence of several mechanical parts in the system. Periodic 
variations of the torque or of the load create modulation sidebands around those 
harmonics. Even if the energy impact of the sidebands is small compared to the total 
energy of the signal, they are strong indicators of failures in mechanical systems. 
Unfortunately, these effects are of little concern in most condition monitoring systems. 
When considering the problem from a signal processing point of view, the 
demodulation of those sidebands allows for a time visualization of the modulating 
functions which are a precise image of the torque or the load variations. This 
demodulation can be done on the analytical signal directly derived from the original 
data. But to do that, data and specifically its spectrum should respect some constraints. 
The purpose of this paper is to underline those often neglected constraints. In particular, 
the respect of the non-overlapping condition in the Bedrosian theorem is discussed for 
signals and modulation rates that can be encountered on rotating machines. The respect 
of the constraints depends on the monitored phenomenon (e.g., gear mesh, rotating 
shaft), the modulation phenomenon (e.g., belt frequency, rotor current) and the type of 
medium (e.g., vibrations, electrical current). In the case where the constraints are not 
satisfied, we explain the consequences in terms of signal processing. These results are 
illustrated by an industrial case study.  
 
1.  Introduction 
 
The Hilbert transform theory has been known for a long time and was developed by 
experts from different fields, including electronics, radio, physics, and mathematics. 
The Bedrosian condition, derived by Bédrosian in (1), is an important issue for 
applying analytic signal theory. The research on conditions which ensure validity of 
the Bedrosian identity for the Hilbert transform of a product function ·f g  is given 
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in (2). The authors presented sufficient conditions, which are consistent with the 
classical Bedrosian theorem and provide new insight into the topic. 
 
Traditionally, demodulation is done by an electrical circuit in radio receivers. The 
analytic signal theory is frequently used in industry and by researchers for demodulation 
purposes, which is a key point in maintenance applications. Conditions of demodulation 
application are not always explicit or tend to be badly interpreted. Even in a 
comprehensive article (3), where the author describes the usage of Hilbert transform 
applied to mechanical vibration analysis, the limitations of this method during 
demodulation are not underlined. The author just mentions Bedrosian conditions and the 
development of the analytic signal theory for system identification, and he does not 
present any consequences of the usage of overlapping spectra when calculating products 
of Hilbert transforms for diagnosis purposes. 
 
In condition monitoring, many published papers deal with amplitude and frequency 
modulation phenomena for component failures (4-6). The authors did not mention 
Bedrosian theorem. Obviously, there exist also papers, for example (7,8), where authors 
are aware of the existing restrictions and mentioned the Bedrosian condition but without 
giving any information concerning the consequences of breaking this rule. 
 
The present paper illustrates the effects arising from non-respecting Bedrosian theorem 
and is constructed in the following way. Section 2 describes the basis of demodulation 
using Hilbert transform and gives details about Bedrosian theorem with respect to 
digital demodulation. Section 3 and Section 4 describe a phase-modulated sinusoidal 
carrier and a harmonic carrier is conferred on the basis of several examples. Section 5 
presents an industrial case study and is followed by conclusions. 
 
2.  Demodulation 
 
The demodulation process consists in recovering information contained around a carrier 
frequency. Contrary to radio communication where the demodulation is historically 
made by an electronic circuit, the demodulation is generally digital in signal processing 
applications. Digital demodulation is based on the analytic representation of a signal (3). 
After a short reminder about analytic signal and Hilbert transform, the Bedrosian 
theorem will be presented.  
 
2.1  Definitions of an analytic signal and the Hilbert transform  
 
The analytic signal ( )as t  is a complex signal constructed from the real signal ( )s t  and 

its Hilbert transform ( )ŝ t . It facilitates several mathematical manipulation of the signal, 
including the demodulation.  
 
 ( ) ( ) ( )ˆ·as t s t j s t= + . (1) 
 
where j  is the imaginary unit. The Hilbert transform (HT) is computed by the 
convolution of the signal ( )s t  with the function 1/  tπ  
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 ( ) ( ) ( )ˆ 1*s t HT s t s t
tπ

 = =    (2) 

 
where * represents the convolution. Useful Hilbert transforms for demodulation 
purpose are [ ]cos sinHT t t=  and [ ]sin  cosHT t t=− .  
 
2.2  Digital demodulation and Bedrosian theorem 
 
Let ( )s t  be a signal representing a sinusoidal component of frequency pf  modulated 

both in amplitude and phase by functions ( )m t  and ( )tϕ  respectively.  
 
 ( ) ( ) ( ) cos 2 ps t A m t f t tπ ϕ = +   (3) 
 
The demodulation process consists in extracting the functions ( )m t  and ( )tϕ  from the 
signal s . A strategy commonly used to digitally demodulate a signal is to take the 
module and the phase of the filtered analytic signal. The used filter is a notch filter 
which suppresses the carrier frequency to be demodulated.   
 
By definition, the analytic signal ( )as t  is equal to 
 
 ( ) ( ) ( ) ( ) ( ) cos 2 ·  cos 2  .a p ps t A m t f t t j HT A m t f t tπ ϕ π ϕ    = + + +      (4) 

 
The imaginary part of equation (4) is the Hilbert transform of a product. Bedrosian 
theorem (2) assures that the Hilbert transform of a product of a low-pass and a high-pass 
signal is equal to the product of the low-pass signal and the Hilbert transform of the 
high-pass signal if, and only if, the spectral support of both function are separate.  

[ ] [ ]· ·HT f g f HT g=  if, and only if, the bandwidth fB  of the low-pass signal f  and 
the bandwidth gB  of high-pass signal g  are non-overlapping. In the case of our 
modulated signal, it means that  
 
 ( ) ( ) ( ) ( )cos 2    sin 2  p pHT A m t f t t A m t f t tπ ϕ π ϕ    + = +     , (5) 

 
if, and only if, mB  and Bϕ  are non-overlapping. This condition is illustrated in Fig. 1. 
Finally, our analytic signal can be written as 
 
 ( ) ( ) ( ) ( )( ) ( ) ( )2     cos 2  ·sin 2  pj f t t

a p ps t A m t f t t j f t t A m t e π ϕπ ϕ π ϕ − +   = + + + =     (6) 

 
 ( ) ( ) ( ) 2 .pj f tj t

as t A m t e e πϕ=  (7) 
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After using a notch filter to suppress the carrier frequency pf , the modulating functions 

( )m t  and ( )tϕ  can easily be recovered by taking respectively the module and the phase 
of the analytic signal.  
 

 
Figure 1. Bedrosian condition: (A) mB  and φB  are non-overlapping, the condition 

is respected (B) mB  and φB  overlap, the condition is not respected. 
 
In telecommunication, the demodulation of sidebands is not a problem. The 
electromagnetic carrier frequency is very high compared to the bandwidth of the 
modulating signal. Therefore, the Bedrosian condition is always respected. Is it still the 
case in a mechanical context where the frequencies are much lower?   
 
3.  Single carrier frequency 
 
The bandwidth mB  is easilly determined. It is equal to the maximum frequency present 
in the modulating signal ( )m t . Determining the bandwidth Bϕ  of the phase modulating 

function ( )tϕ  is a little trickier.  
 
2.1  Phase modulation bandwidth 
 
Let ( )p t  be a signal representing a carrier frequency pf  modulated in phase by a 
sinusoid of frequency mf  and amplitude β . This signal can be developed in Fourier 
series and can be written as an infinite sum 
 

 ( ) ( ) ( ) ( )
 

cos 2 sin 2   cos 2p m k p m
k

p t A f t f t A J f kf tπ β π β π
+∞

= −∞

  = + = +   ∑  (8) 

 
where ( )kJ β  is the Bessel function of first kind of order k . Therefore, the spectrum of 

( )p t  is composed by an infinite number of components of frequency  k p mf f k f= +  

and amplitude ( ) k kA A J β= , where  k∈ . This spectrum is represented in Fig. 2. The 
bandwidth Bϕ  is then infinite. It means that the Bedrosian condition will never be 
respected in theory. Nevertheless, in practice, the first pairs of sidebands are the most 
energetic. From a certain distance to the carrier frequency, the power of sidebands 
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becomes negligible. For example, it can be seen in Fig. 3 that for a modulation index β  
of 1, the amplitude decreases with the order k .   
 

 
Figure 2. Spectrum representation of a carrier frequency pf  modulated in phase 

by a sinusoid of frequency mf .  
 

 
Figure 3. Bessel functions of first kind ( )kJ β  for { }0,1,2,3,4∈k . 

 
To finally determine the useful bandwidth Bϕ , Carson proposed an empirical rule (1). 
The main idea is to keep only the spectral components representing 98 % of the 
modulating signal power.  
 
 ( )2 1 mB fϕ β= +  (9) 
 
This relation is widely spread in the literature (10). Nevertheless, Carson established it 
for 2β ≤  only (9). We propose to use a more general relation, working for every value 
of the modulation index β  

 
 2  mB q fϕ = , (10) 

 
where q  is the number of significant pairs of sidebands. The number q  is the sum of 
two integers nβ  and mβ : nβ  is the rounded value of β  to the closest integer and mβ  is 

the minimal number such as the amplitude ratio ( ), n mA
β β

β  between sidebands of order 

nβ  and ( ) 1n mβ β+ +  is higher than 20 dB. So mβ  can be seen as the number of 
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sidebands that have to be kept after the first nβ  ones, before that the further sidebands 

are considered as negligible. Studying inequality ( ),  20 dBn mA
β β

β ≥  allows for 

computation of mβ . Fig. 4 illustrates this study and the results are presented in Table 1. 
 

 ( )
( )
( ), 10

  1

20 log  n
n m

n m

J
A

J
β

β β

β β

β
β

β+ +

=  (11) 

 

 
Figure 4. Study of the inequality ( ),  20 ≥ dB

β βn mA β  for [ ]2;8∈β  and 2=βm . The 
discontinuities are due to the integer part. The inequality is verified for  5≤β . 

 
Table 1. Number of significant sidebands according to the modulation index. 

βn  βm  q  

0 1 1 
1 1 2 

2  ≤ ≤βn  4 2 4 ≤ ≤q  6 
5  ≤ ≤βn  12 3 8 ≤ ≤q  15 

13  ≤ ≤βn  26 4 17 ≤ ≤q  30 
27  ≤ ≤βn  47 5 32 ≤ ≤q  52 

 
Considering that the maximum frequency of the amplitude modulation is equal to the 
phase modulation frequency, which is a reasonable hypothesis for a mechanical system, 
it is possible to finally write the Bedrosian condition in the following way 
 

 
  2    

2 2 1
pm

m p m p m

fB qfB f f f f
q

ϕ+ ≤ ⇔ + ≤ ⇔ ≤
+

 (12) 

 
2.2  Examples 
 
Fig. 5 and Fig. 6 illustrate the importance of respecting the Bedrosian condition when 
demodulating. They represent both the real and demodulated amplitude modulation 
function (AMF) and frequency modulation function (FMF) of the signal ( )s t  of 
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equation (3), without any noise. The carrier frequency 50 pf = Hz and the modulating 
frequency 24 mf = Hz are common to both figures. Only the value of the modulation 
index β  changes. In Fig. 5, 0.1β =  which imply that 1q =  according to Table 1. 

Therefore, the Bedrosian condition is respected ( 2524 )2≤ . On the contrary in Fig. 6, 

the Bedrosian condition is not respected: 1β =  implying that 2q = . As a consequence, 

the inequality  25 24 3≤  is not verified and it clearly appears that the demodulated 

amplitude and frequency modulations functions are not the ones expected.  
 

 
Figure 5. Respect of the Bedrosian condition: 50=pf  Hz, 24=mf  Hz and 0.1=β  

(A) Real AMF and Demodulated AMF (B) Real FMF and Demodulated FMF 
 

 
Figure 6. Non-respect of the Bedrosian condition: 50=pf  Hz, 24=mf  Hz and 

1=β  (A) Real AMF and Demodulated AMF (B) Real FMF and Demodulated FMF 
 

4.  Harmonic carrier frequency 
 
Contrary to the mathematical theory domain, a carrier frequency is never a pure 
sinusoid in a vibration signal. It is a periodic function aproximated  by Fourier series. It 
means that the signal is composed by a sum of components which frequencies are 
multiple of the fundamental frequency pf . The modulation sidebands present around 
the fundamental are also present around these harmonics. Therefore, a real-life signal 
modulated in phase can be expressed as the sum of sinusoid modulated in phase 
 

 ( ) ( ) ( )
  1   1

 cos 2 sin 2i i p m
i i

p t p t A if t i f tπ β π
+∞ +∞

= =

 = = + ∑ ∑ . (13) 
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To demodulate properly this signal, a low-pass or pass-band filter should be applied to 
keep only the fundamental sidebands. This operation is possible only if the sidebands of 
the first harmonic (of frequency 2 pf ) are not overlapping the sidebands of the 
fundamental (of frequency pf ). This condition is illustrated in Fig. 4 and will be 
referred to as the non-harmonic overlapping condition in the following. It can be 
expressed by the following equation 
 

 
1 2  

1 22
p

p m

fB B
f f

q q
ϕ ϕ+

< ⇔ <
+

 (14) 

 
where 1q  and 2q  are the number of significant sidebands for the carrier frequency pf  
and its first harmonic 22 f  respectively.  
 

 
Figure 7. The non-harmonic overlapping condition is respected: 1

φB  around the 

fundamental frequency and 2
φB  around the first harmonic are separated. 

 
Let ( )p t  be the periodic signal with the following characteristics: 50 pf = Hz, 

24mf =  Hz, 1 0.417β =  and 2 0.834β = . The numbers of significant sidebands 
associated with the fundamental frequency and its first harmonic are 1 1q =  and 2 2q = . 
Thus, while the Bedrosian condition (12) is verified, the non-harmonic overlapping 
condition (14) is not. Fig. 8 show the consequences of demodulation when this second 
condition is not respected.  
 
It has been found experimentally that even if the non-harmonic overlapping condition is 
not respected, the demodulation is possible if the sidebands of the first harmonic are 
negligible compared to the sidebands of the fundamental. If there is at least an 
amplitude ratio of 20 dB between the most tiny amplitude of the fundamental and the 
sidebands included in the fundamental useful bandwidth it is possible to get the 
modulation functions properly, with a negligible error. The only difference between Fig. 
8 and Fig. 9 is the ratio amplitude between the sidebands of the fundamental and those 
of its first harmonic.  
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Figure 8. The non-harmonic overlapping condition is not verified. The amplitude ratio 

between the sidebands of the fundamental and those of its first harmonic is small.  
 

 
Figure 9. The non-harmonic overlapping condition is not verified. The amplitude ratio 

between the sidebands of the fundamental and those of its first harmonic is large.  
 
5.  Case study 
 
This section presents an example of the demodulation of a signal measured on a gearbox 
casing of a ball mill.. The investigated stand consists of a 5 kV, three-phase induction 
motor of the power of 1.4 MW. The drivetrain consists of two spur gears connected via 
a two-stage flexible coupling. Both stages of gearbox are spur gears. The first stage 
includes a pinion gear with 24 teeth and the gear interacting with it has 175 teeth. The 
second stage consists of a pinion with 26 teeth and a wheel with 212 teeth. Its schematic 
representation is presented in Fig. 10. Vibration signal have been verified and it fulfils 
the Bedrosian conditions, so its demodulation could be performed. 
 

 
Figure 10. Scheme of the ball mill drive train. 

 
The rotational speed of the induction motor shaft is 991.04 rpm (16.517 Hz), which 
gives 135.91 rpm (2.265 Hz) after the first stage of spur gear and 16.67 rpm (0.2778 Hz) 
at the ball mill input speed. According to the well-known dependences, the above-
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mentioned information allows to calculate the gear mesh frequency (GMF), which is 
equal to 396.42 Hz for the first stage of spur gear and 58.896 Hz for the second one. 
The obtained spectra around the GMF of the first stage of spur gear are presented in Fig. 
11. This chart shows the presence of several pairs of the modulation sidebands whose 
spacing corresponds to the 4th order of the rotational frequency of the shaft with 175 
teeth wheel fixed. 
 
It is important to note that these families of sidebands are centred around two 
components. The first one is GMF of the first stage of spur gear. The second one 
corresponds to 195th order of PV shaft and this has no direct mechanical origin, but it is 
connected to the bigger wheel. It is in fact the Ghost Component that results in 
production process of a wheel with 175 teeth. 
 

 
Figure 11. Spectrum of vibration signal with GMF of first gear stage. 

 
Couple of facts have to be noted: 

• the frequency of the 3rd left sideband (marked as K with an amplitude of 
approximately 14.1 mg) associated with the Ghost Component coincides with 
the 2nd right sideband of GMF 

• the amplitude of the 3rd right sideband of the Ghost Component (marked as T 
with an amplitude of 9.6 mg) is much lower than its 3rd left sideband  

• the amplitudes of the sidebands on the left hand of both carrier frequencies are 
significantly greater than the respective ones on the right hand of them. 

 

 
Figure 12. Frequency spectrum around investigated GMF before filtering 

represented by the blue line, and after filtering represented by the red line. Two 
cases of useful bandwidth are presented: (A) US = 200 Hz (B) US = 36 Hz. 



 11 

During further processing it is essential to eliminate the 3rd left sideband (marked M: 
426.3 Hz, 21.5 mg) connected with Ghost Component from the analysed band. Next the 
band-pass filtering has been performed. In Fig. 12 the frequency spectrum around the 
GMF is presented. The red line represents the spectrum after filtering with different 
useful bandwidth (US) values. In the first case it is equal to 200 Hz around GMF 
frequency (Fig. 12A) and in the second case the US is 36 Hz (Fig. 12B). 
 
The profile of the modulation function obtained after filtering with a 200 Hz and plotted 
on a rotation of the 175 teeth wheel has 20 lobes, what is shown in Fig. 13. In chart 
there is the presence of 20 lobes which physically corresponds to a beat phenomenon 
between components of 175 and 195 order of the frequency of rotation of the output 
shaft of the gearbox first stage. It may be interpreted as an alteration of the 20 teeth of 
gear wheel. 
 

 
Figure 13. The amplitude modulation plotted on rotation of 175 teeth wheel after 

usage filtering with 200 Hz bandwidth. 
 

The inclusion into the analysis bandwidth vibratory phenomenon physically 
independent of the meshing of the gearbox first stage wheel which originates from the 
kinematics of the machine arising from manufacturing process leads to serious 
misinterpretation. On the other hand, the meshing profile of the 175 teeth wheel 
calculated after filtering the GMF component with a bandwidth of 36 Hz has four lobes. 
This result is entirely consistent with the modulation frequency of the GMF component 
which corresponds to the 4th order of rotational frequency of output shaft of the gearbox 
first stage and with the profile of the amplitude modulation of the supply current of the 
drive motor. These results are presented in Fig. 14. The angular offset is not 
interpretable because the acquisition of the vibration signals and the current intensity is 
not synchronous. 
 
The impact of interference of the ghost component on the form of modulation functions 
and the associated rate of GMF component is significant when this component and the 
sidebands associated with it are contained in the analysed zone. This example illustrated 
that demodulation have to be used carefully, because even fulfilment of Bedrosian 
conditions is not the guarantee of good results. 
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Figure 14. (A) The amplitude modulation plotted on rotation of 175 teeth wheel 

after usage filtering with 36 Hz bandwidth (B) The corresponding chart of current. 
 
6.  Conclusions 
 
In the case of a signal modulated both in amplitude and phase, the respect of the 
Bedrosian condition guarantees that the use of the analytic signal for demodulation is 
possible without transforming the modulation functions. Nevertheless, it does not 
guarantee that other phenomena could contaminate the sidebands and prevent a correct 
demodulation. As a consequence, the demodulation has to be done carefully by 
verifying that there are no unwanted components in the frequency bands to be 
demodulated. 
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