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databases
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and Pascale Tubert-Bitter1,2

Abstract

Background: Analyzing time-to-onset of adverse drug reactions from treatment exposure contributes to meeting
pharmacovigilance objectives, i.e. identification and prevention. Post-marketing data are available from reporting
systems. Times-to-onset from such databases are right-truncated because some patients who were exposed to the
drug and who will eventually develop the adverse drug reaction may do it after the time of analysis and thus are not
included in the data. Acknowledgment of the developments adapted to right-truncated data is not widespread and
these methods have never been used in pharmacovigilance. We assess the use of appropriate methods as well as the
consequences of not taking right truncation into account (naive approach) on parametric maximum likelihood
estimation of time-to-onset distribution.

Methods: Both approaches, naive or taking right truncation into account, were compared with a simulation study.
We used twelve scenarios for the exponential distribution and twenty-four for the Weibull and log-logistic
distributions. These scenarios are defined by a set of parameters: the parameters of the time-to-onset distribution, the
probability of this distribution falling within an observable values interval and the sample size. An application to
reported lymphoma after anti TNF-α treatment from the French pharmacovigilance is presented.

Results: The simulation study shows that the bias and the mean squared error might in some instances be
unacceptably large when right truncation is not considered while the truncation-based estimator shows always better
and often satisfactory performances and the gap may be large. For the real dataset, the estimated expected
time-to-onset leads to a minimum difference of 58 weeks between both approaches, which is not negligible. This
difference is obtained for the Weibull model, under which the estimated probability of this distribution falling within
an observable values interval is not far from 1.

Conclusions: It is necessary to take right truncation into account for estimating time-to-onset of adverse drug
reactions from spontaneous reporting databases.

Keywords: Pharmacovigilance, Reporting databases, Right truncation, Parametric estimation, Maximum likelihood
estimation, Bias, Simulation study

*Correspondence: fanny.leroy@inserm.fr
1Inserm, CESP Centre for research in Epidemiology and Population Health,
U1018, Biostatistics Team, F-94807 Villejuif, France
2Univ Paris-Sud, UMRS1018, F-94807 Villejuif, France
Full list of author information is available at the end of the article

© 2014 Leroy et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:fanny.leroy@inserm.fr
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Leroy et al. BMCMedical ResearchMethodology 2014, 14:17 Page 2 of 11

http://www.biomedcentral.com/1471-2288/14/17

Background
Identifying and preventing adverse drug reactions are

major objectives of pharmacovigilance. Owing to design

constraints, pre-marketing clinical trials fail to iden-

tify rare events, which lead in the last decades to an

increased focus placed on the development of post-

marketing surveillance methods [1-11]. Post-marketing

spontaneous reporting of suspected adverse drug reac-

tions has proved a valuable resource for signal detection

[12-17]. It has recently been suggested that the modeling

of the time-to-onset of adverse drug reactions could be

a useful adjunct to signal detection methods, either from

spontaneous reports [18,19] or longitudinal observational

data [20]. Timely acquiring knowledge with respect to the

time-to-onset distribution of adverse drug reactions con-

tributes to meeting pharmacovigilance objectives. Early

estimation procedures tailored to available pharmacovig-

ilance data, i.e. spontaneous reporting data, should be

sought.

The data consisting of the time-to-onset among patients

who were reported to have potentially developed an

adverse drug reaction are right-truncated. Truncation

arises because some patients who were exposed to the

drug and who will eventually develop the adverse drug

reaction may do it after the time of analysis (Figure 1).

Among patients exposed to the drug, only those who

Figure 1 Right truncation and data on time-to-onset of adverse

drug reactions from spontaneous reporting databases. Some
patients who were exposed to the drug and who will eventually
develop the adverse drug reaction may do it after the time of analysis.
Here, in these hypothetical examples, the patient on the top line is
included in the database because he experienced the adverse drug
reaction before the time of analysis, i.e. x1 � t1 . The patient on the
bottom line is not included in the database because he has not yet
experienced the adverse drug reaction, i.e. x2 � t2 , when data are
analyzed.

experienced adverse reactions before time of analysis are

included in the database. No information is available for

the other patients. If all the patients begin their treatment

at the same time, the data are right-truncated with a single

truncation time. If they do not all begin their treatment

at the same time, the data are right-truncated with differ-

ent truncation times. In spontaneous reporting, data are

right-truncated with different truncation times and they

require appropriate statistical methods.

This paper investigates parametric maximum likelihood

estimation of the time-to-onset distribution of adverse

drug reactions from spontaneous reporting data for dif-

ferent types of hazard functions likely to be encountered

in pharmacovigilance. Acknowledgment of the develop-

ments adapted to right-truncated data is not widespread

and these methods have never been used in phar-

macovigilance. No simulation studies are available on

the accuracy of their estimates. Furthermore, a naive

approach that does not take into account right trun-

cation features of spontaneous reports and uses classi-

cal parametric methods instead of appropriate methods

may lead to misleading estimates. We consider the two

approaches, i.e. taking or not taking right truncation

into account, and the corresponding parametric maxi-

mum likelihood estimators. Both approaches are com-

pared with a simulation study conducted to evaluate

the consequences, notably in terms of bias, of not con-

sidering right truncation on the maximum likelihood

estimates, as well as assessing the performances of the

right truncation-based estimation. We also apply these

methods to a set of 64 cases of lymphoma occurring

after anti TNF-α treatment from the French pharma-

covigilance.

Methods
Proper estimation of the time-to-onset distribution

We consider a given time of analysis and the popula-

tion of exposed patients who will eventually experience

the adverse drug reaction before they die. Let X be the

time-to-onset of the adverse drug reaction of interest in

that population and F its cumulative distribution func-

tion one is willing to estimate. Observations arising from

n reported cases are (x1, t1), (x2, t2), . . . , (xn, tn), where xi
is the time-to-onset calculated as the lag between the time

of the occurrence of the reaction and the time of initiation

of treatment, and ti is the truncation time calculated as

the lag between the time of analysis and the time of initia-

tion of treatment. Let t∗ be the maximum of the observed

truncation times. All observed data meet the condition

xi � ti.

We consider a parametric model for the time-to-onset

X, with cumulative distribution function F(x; θ) and den-

sity f (x; θ), and derive the following maximum likelihood

estimations of θ .
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When right truncation, i.e. the condition xi � ti, is

ignored, the likelihood of the sample is written as:

L1(x1, x2, . . . , xn; θ) =

n∏

i=1

f (xi; θ) ;

maximizing this likelihood yields the naive estimator of θ .

When right truncation is considered, the likelihood is

modified. Observed times-to-onset consist of n indepen-

dent realizations of random variables with respective dis-

tribution the conditional distribution of Xi given {Xi � ti},

that is with cumulative distribution function F(xi;θ)
F(ti;θ)

and

density
f (xi;θ)

F(ti;θ)
. The likelihood is now written as:

L2(x1, x2, . . . , xn, t1, t2, . . . , tn; θ) =

n∏

i=1

f (xi; θ)

F(ti; θ)
;

the maximum likelihood estimator from this likelihood,

θ̂TBE, is the proper estimation of θ and is called the

truncation-based estimator (TBE).

The non-parametric maximum likelihood estimation

for right-truncated data was developed and used to esti-

mate the incubation period distribution for AIDS [21,22].

However, in a non-parametric setting, one can only esti-

mate the distribution function conditional on the time to

event as being less than t∗:

F̂(x)

F(t∗)
=

∏

vj>x

(
1 −

nj

Nj

)
,

where the vj’s are the m distinct values of the xi’s, i =

1, . . . , n, taken by nj =
∑n

i=1 I(Xi = vj) patients and

Nj =
∑n

i=1 I(Xi � vj � ti) for 1 � j � m, I denoting the

indicator function. The unconditional distribution func-

tion is not identifiable, as F(t∗) is not known and cannot

be estimated from the data.

In a parametric framework, the unconditional dis-

tribution is completely specified by a parameter θ of

finite dimension. Maximum likelihood estimation of the

parameter of interest can be conducted with the condi-

tional distributions that describe the observations and the

unconditional distribution can be estimated secondarily

by F(x; θ̂TBE). Hence parametric maximum likelihood esti-

mation is potentially more useful than non-parametric

estimation since the unconditional distribution is of inter-

est for pharmacovigilance purposes [18,20].

Simulation study

Some adverse reactions have a very short time-to-onset,

from several minutes to several hours after the beginning

of treatment. Others occur only after several days, weeks,

months or even years of exposure. This variation depends

on numerous factors such as the pharmacokinetics of the

drug and its metabolites, or the pathophysiological mech-

anism of the effect. The multiplicity of the underlying

mechanisms results in a range of possible hazard func-

tions that can be observed in pharmacovigilance [23]. The

simplest model is given by a constant hazard function

of time; the corresponding distribution is the exponen-

tial distribution with a rate parameter λ. Effects may also

have an early or a late onset, the latter being the case

for instance, when the rate of occurrence of the adverse

reaction depends on the duration of exposure. Two distri-

bution families among others make it possible to handle

a wide range of hazard functions: the Weibull distribu-

tions and the log-logistic distributions (Table 1). Both

are defined with two scalar parameters (λ,β); λ is the

scale parameter and β is the shape parameter. The haz-

ard function for the Weibull model is increasing if β > 1,

decreasing if β < 1 and constant if β = 1 where it

reduces to the exponential distribution. The hazard func-

tion for the log-logistic model is decreasing if β < 1 and

has a single maximum if β > 1. We therefore consider

the families of the exponential, Weibull and log-logistic

distributions.

The times-to-onset were generated from these three

distributions. Two values of λ were considered for the

exponential distribution: 0.05 and 1. The same values

were used for the scale parameter λ of the Weibull and

log-logistic distributions. For the shape parameter β , the

values 0.5 and 2 were chosen. The truncation times were

uniformly distributed in [0, τ ]. Survival and truncation

times were independently generated. For a chosen value

of p, with p representing the probability of X falling within

the observable values interval [ 0, τ ], the parameter τ was

determined as P(X < τ) = p. The probability 1 − p is

also a lower bound of the actual proportion of truncated

data P(X > T), the truncation time T being randomly

generated. The probability p was chosen in {0.25, 0.50,

Table 1 Exponential, Weibull and log-logistic distributions

Distribution Exponential Weibull Log-logistic

Density f (x) = λe−λx f (x) = λβ(λx)β−1e(−(λx)β ) f (x) =
λβ(λx)β−1

(1+(λx)β )2

Support x > 0 x > 0 x > 0

Parameter(s) λ > 0 λ > 0 λ > 0

β > 0 β > 0
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0.80}. The sample size nwas chosen in {100, 500}. For each

drawn pair (X,T), if the time-to-onset was shorter than

the truncation time, then the pair was included in the data.

If not, another pair (X,T) was generated. Pairs were gen-

erated until the sample size of observations included was

equal to n.

Parametric likelihood maximization with and without

considering right truncation were performed for each

generated sample. An iterative algorithm is necessary

to solve this optimization problem except for the naive

exponential estimation. Calculations were made with the

R [24] function maxLik from the package maxLik. For

each set of simulation parameters, 1000 replications were

run.

Application study

We analyzed 64 French cases of lymphoma that occurred

after anti TNF-α treatment using the national phar-

macovigilance database at the date of February 1,

2010 [25]. The population included patients suffering

from rheumatoid arthritis, Crohn’s disease, ankylosing

spondylitis, psoriatic arthritis, psoriasis, Sjögren’s syn-

drome, dermatomyositis, polymyositis or polyarthropathy

and exposed to one or (successively) more of the three

anti TNF-α available at the study date: etanercept, adal-

imumab and infliximab. The occurrence of a malignant

lymphoma was confirmed by histopathological analysis.

Marketing authorization was obtained in August 1999

for infliximab, in September 2002 for etanercept and in

September 2003 for adalimumab. These 64 adverse effects

occurred between July 2001 and October 2009. None

of the survival or truncation times was missing in the

database. The observed maximum truncation time was

529 weeks.

All anti TNF-agents taken together, we derived the para-

metric maximum likelihood estimates and secondarily

corresponding estimated mean times, with and without

considering right truncation, for the exponential, Weibull

and log-logistic distributions. For completeness, we also

derived the non-parametric maximum likelihood estima-

tion.

The French pharmacovigilance database is developed by

the French drug agency (Agence Nationale de Sécurité du

Médicament et des produits de santé, ANSM) and is not

publicly available. It is build up and used on an ongoing

basis by the network of regional pharmacovigilance cen-

tres, which have a direct access to the data. This set of data

has already been extracted for another study [25] with the

authorization of the ANSM and the network of regional

centres, according to the internal rule.

Results
Simulation study

For each set of simulations parameters, for both

approaches and for both parameters, the bias and the

mean squared error of the parametric maximum likeli-

hood estimator, based on the 1000 replications, were cal-

culated as well as the proportion of replications where the

estimate is larger than the true value. As the iterative algo-

rithm may fail to find a maximum, those three quantities

were actually calculated on the replications where there

was no problem ofmaximization. Themean squared error

is a measure of the dispersion of the estimator around the

true value of the parameter - the smaller the better - and

Table 2 Simulation results: estimations of bias andmean squared error for the exponential model

Naive estimator TBE

λ p n BIAS(̂λ) MSE(̂λ) BIAS(̂λ) MSE(̂λ) NPM

0.05 0.25 100 0.498 0.250 0.030 0.005 224

500 0.498 0.248 0.007 0.001 79

0.05 0.50 100 0.195 0.038 0.008 0.001 85

500 0.193 0.037 <0.001 <0.001 1

0.05 0.80 100 0.073 0.005 <0.001 <0.001 2

500 0.072 0.005 <0.001 <0.001 0

1 0.25 100 10.06 102 0.462 2.17 72

500 9.95 99 0.046 0.48 10

1 0.50 100 3.91 15.4 0.126 0.49 29

500 3.86 14.9 -0.022 0.12 0

1 0.80 100 1.45 2.16 0.004 0.11 0

500 1.45 2.11 0.004 0.02 0

The mean squared error formula is MSE(̂λ) = Var(̂λ) + (BIAS(̂λ))2 . Calculations were made on the replications where there was no problem of maximization. In the

last column appear the number of problems of maximization for the truncation-based approach. There was no problem of maximization for the naive approach.

Abbreviations: TBE truncation-based estimator,MSEmean squared error, NPM number of maximization problems.
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is used for global comparative purposes between two esti-

mation procedures, as it incorporates both the variance

of the estimator and its bias. The proportion of repli-

cations where the estimate is larger than the true value

makes it possible to know if the estimators tend to over-

estimate or underestimate systematically the true value of

the parameter.

Bias andmean squared error

For both approaches, for all distributions and for both

parameters, the smaller is p, the larger are the bias and the

mean squared error (Tables 2, 3 and 4). This increase with

p is smaller for the parameter β than for the parameter

λ. These estimators tend to be positively biased. However,

the bias might be almost naught for the TBE. The bias and

the mean squared error of the naive estimator are always

larger than the bias and the mean squared error of the

TBE, but to a lesser extent for the parameter β . When the

sample size n increases, the bias and the mean squared

error are almost constant for the naive estimator, while

for the TBE, they decrease clearly (Tables 2, 3 and 4). The

naive estimator might be unacceptably large whatever the

value of p, whereas the TBE shows good performances

when p is equal to 0.8, and often even less according to the

distribution.

Proportion of replications where the estimator is larger than

the true value

For both approaches, for all distributions and for both

parameters, Tables 5, 6 and 7 show that the naive esti-

mator of λ appears to be almost always larger than the

theoretical value λ, and that this is not far from being true

for the naive estimator of β . This suggests that the naive

estimator of λ might be almost surely larger than the true

Table 3 Simulation results: estimations of bias andmean squared error for theWeibull model

Naive estimator TBE

λ̂ β̂ λ̂ β̂

λ β p n BIAS MSE BIAS MSE BIAS MSE BIAS MSE NPM

0.05 0.5 0.25 100 4.04 16.7 0.200 0.044 0.465 0.51 0.046 0.007 312

500 3.95 15.6 0.195 0.039 0.106 0.04 0.013 0.001 201

0.05 0.5 0.50 100 0.762 0.60 0.167 0.031 0.068 0.018 0.024 0.005 172

500 0.747 0.56 0.164 0.028 0.015 0.003 0.003 0.001 22

0.05 0.5 0.80 100 0.160 0.027 0.119 0.017 0.008 0.002 0.009 0.004 9

500 0.156 0.025 0.113 0.013 0.001 <0.001 0.001 <0.001 0

1 0.5 0.25 100 80.4 6612 0.201 0.044 8.68 183 0.046 0.007 300

500 78.9 6249 0.194 0.038 2.07 17 0.012 0.001 186

1 0.5 0.50 100 15.0 233 0.174 0.034 1.53 7.99 0.031 0.006 163

500 15.0 225 0.164 0.028 0.32 1.17 0.003 0.001 24

1 0.5 0.80 100 3.20 10.8 0.117 0.017 0.16 0.67 0.007 0.004 13

500 3.15 10.0 0.112 0.013 0.041 0.15 <0.001 <0.001 0

0.05 2 0.25 100 0.121 0.015 0.354 0.16 <0.001 0.002 0.097 0.075 8

500 0.120 0.014 0.333 0.12 -0.004 0.001 0.020 0.016 2

0.05 2 0.50 100 0.065 0.004 0.278 0.11 -0.004 <0.001 0.047 0.074 6

500 0.064 0.004 0.264 0.08 -0.002 <0.001 0.004 0.016 0

0.05 2 0.80 100 0.032 0.001 0.182 0.063 <0.001 <0.001 0.046 0.063 1

500 0.032 0.001 0.157 0.031 <0.001 <0.001 0.008 0.014 0

1 2 0.25 100 2.41 5.84 0.364 0.17 0.090 0.79 0.10 0.075 1

500 2.41 5.79 0.336 0.12 -0.082 0.38 0.02 0.015 0

1 2 0.50 100 1.29 1.68 0.283 0.12 -0.073 0.33 0.052 0.069 3

500 1.29 1.65 0.261 0.07 -0.065 0.12 -0.002 0.017 0

1 2 0.80 100 0.638 0.41 0.186 0.065 -0.024 0.086 0.045 0.064 0

500 0.636 0.40 0.154 0.030 -0.007 0.014 0.004 0.013 0

The mean squared error formula is MSE(̂λ) = Var(̂λ) + (BIAS(̂λ))2 . Calculations were made on the replications where there was no problem of maximization. In the

last column appear the number of problems of maximization for the truncation-based approach. There was no problem of maximization for the naive approach.

Abbreviations: TBE truncation-based estimator,MSEmean squared error, NPM number of maximization problems.
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Table 4 Simulation results: estimations of bias andmean squared error for the log-logistic model

Naive estimator TBE

λ̂ β̂ λ̂ β̂

λ β p n BIAS MSE BIAS MSE BIAS MSE BIAS MSE NPM

0.05 0.5 0.25 100 6.45 44 0.384 0.16 0.258 0.25 0.041 0.008 217

500 6.33 40 0.372 0.14 0.043 0.01 0.005 0.001 52

0.05 0.5 0.50 100 1.05 1.2 0.319 0.108 0.045 0.012 0.020 0.006 22

500 1.02 1.1 0.308 0.096 0.009 0.001 0.003 0.001 0

0.05 0.5 0.80 100 0.165 0.031 0.195 0.041 0.008 0.001 0.008 0.004 0

500 0.158 0.026 0.189 0.036 0.001 <0.001 0.001 <0.001 0

1 0.5 0.25 100 129 17533 0.383 0.15 5.06 87 0.042 0.008 207

500 127 16217 0.374 0.14 1.01 6 0.008 0.001 41

1 0.5 0.50 100 21.0 467 0.317 0.106 0.93 5.0 0.019 0.006 43

500 20.5 426 0.308 0.096 0.20 0.6 0.004 0.001 0

1 0.5 0.80 100 3.31 12 0.201 0.044 0.209 0.55 0.016 0.005 0

500 3.17 10 0.190 0.037 0.037 0.09 0.002 <0.001 0

0.05 2 0.25 100 0.150 0.022 1.06 1.2 <0.001 0.001 0.08 0.085 4

500 0.149 0.022 1.04 1.1 -0.001 <0.001 0.01 0.018 0

0.05 2 0.50 100 0.079 0.006 0.932 0.94 <0.001 <0.001 0.06 0.094 5

500 0.078 0.006 0.903 0.83 <0.001 <0.001 0.01 0.017 0

0.05 2 0.80 100 0.035 0.001 0.665 0.50 <0.001 <0.001 0.03 0.078 0

500 0.035 0.001 0.649 0.43 <0.001 <0.001 0.01 0.013 0

1 2 0.25 100 2.99 9.0 1.07 1.2 0.024 0.57 0.08 0.089 0

500 2.98 8.9 1.04 1.1 -0.028 0.20 0.01 0.020 0

1 2 0.50 100 1.57 2.49 0.943 0.96 0.007 0.19 0.063 0.095 1

500 1.56 2.45 0.896 0.82 -0.013 0.04 0.004 0.018 0

1 2 0.80 100 0.702 0.50 0.668 0.50 0.004 0.042 0.045 0.072 0

500 0.693 0.48 0.648 0.43 0.004 0.007 0.015 0.013 0

The mean squared error formula is MSE(̂λ) = Var(̂λ) + (BIAS(̂λ))2 . Calculations were made on the replications where there was no problem of maximization. In the

last column appear the number of problems of maximization for the truncation-based approach. There was no problem of maximization for the naive approach.

Abbreviations: TBE truncation-based estimator,MSEmean squared error, NPM number of maximization problems.

value of the parameter, which would be a - non desirable -

statistical feature of the naive estimator.

Application study

Table 8 presents the estimates of the parameters for the

three models and both approaches. There was no problem

of maximization. The naive estimates are always larger

than the truncation-based estimates. From the simulation

results, it might be thought that the naive estimator over-

estimates the true values of parameters λ and β , and that

the size of the bias is related to the unknown probability

p. Estimations of the parameters for the truncation-based

approach make it possible to estimate p by calculating

F(t∗ = 529; θ̂TBE). However, estimates of p are different

according to the model (Table 8). In particular, for the

Weibull model, the estimate is large (̂p = 0.98). The larger

is p̂, the closer are the naive and the truncation-based

estimates.

Figure 2 shows the non-parametric maximum like-

lihood estimation of the conditional survival function,
F̂(x)

F(529) , and the parametric maximum likelihood estima-

tion of the conditional, F(x;̂θTBE)

F(529;̂θTBE)
, and unconditional,

F(x; θ̂TBE), survival functions for the truncation-based

approach for these data. The estimations of the con-

ditional survival functions are always closer to the

non-parametric estimation than the estimations of the

unconditional survival functions. The conditional and

unconditional estimations of the Weibull survival func-

tions are almost similar because the estimate of p is about

1. This figure shows that the estimation of the conditional

Weibull survival function is closer to the non-parametric
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Table 5 Simulation results: proportion of replications

where themaximum likelihood estimator is larger than

the true value of the parameter for the exponential model

λ p n Naive estimator TBE

0.05 0.25 100 100% 61.6%

500 100% 55.3%

0.05 0.50 100 100% 55.3%

500 100% 50.4%

0.05 0.80 100 100% 51.1%

500 100% 51.7%

1 0.25 100 100% 54.8%

500 100% 50.7%

1 0.50 100 100% 53.2%

500 100% 48.0%

1 0.80 100 100% 50.0%

500 100% 51.0%

Calculations were made on the replications where there was no problem of

maximization. Abbreviations: TBE truncation-based estimator.

maximum likelihood estimation of the conditional sur-

vival function than the estimations of the conditional

exponential and conditional log-logistic survival func-

tions. Thus, Weibull could be a reasonable candidate

model to describe the data.

Figure 3 shows the parametric maximum likelihood

estimation of the unconditional survival function for

both approaches. The distance between both survivals,

naive and truncation-based, decreases with the estimated

probability p̂ (in the order: exponential, log-logistic and

Weibull). Furthermore, the survival functions from the

truncation-based estimates are always above the survival

functions from the naive estimates, which is consistent

with the naive estimator overestimating the true val-

ues of the parameters λ and β . Even for the Weibull

model, i.e. the model with the largest p̂, the estimated

expected time-to-onset would be 135 weeks with the

naive approach and 193 weeks with the truncation-based

estimates, which corresponds to a markedly large gap

(Table 8). For completeness, we also calculated the 95%

simple bootstrap confidence intervals of the expected

time (BCa method) [26,27] based on 5000 bootstrap sam-

ples, for the truncation-based approach. They do not

include the naive estimated mean time, whatever the fit-

ted model, and even though these confidence intervals are

extremely wide.

Discussion and conclusions
In drug safety assessment, the temporal relationship

between drug administration and time-to-onset is of

utmost relevance. A better understanding of the under-

lying mechanism of the occurrence of an adverse effect

Table 6 Simulation results: proportion of replications

where themaximum likelihood estimator is larger than

the true value of the parameter for theWeibull model

Naive estimator TBE

λ β p n λ̂ > λ β̂ > β λ̂ > λ β̂ > β

0.05 0.5 0.25 100 100% 100% 81.4% 71.9%

500 100% 100% 64.6% 64.5%

0.05 0.5 0.50 100 100% 100% 63.3% 60.1%

500 100% 100% 53.4% 51.0%

0.05 0.5 0.80 100 100% 99.6% 52.0% 53.3%

500 100% 100% 48.6% 51.6%

1 0.5 0.25 100 100% 100% 79.3% 76.0%

500 100% 100% 62.0% 61.2%

1 0.5 0.50 100 100% 100% 65.9% 64.6%

500 100% 100% 53.8% 51.8%

1 0.5 0.80 100 100% 99.5% 52.7% 52.2%

500 100% 100% 51.9% 50.6%

0.05 2 0.25 100 100% 98.1% 52.1% 61.6%

500 100% 100% 52.2% 53.7%

0.05 2 0.50 100 100% 94.2% 51.6% 53.3%

500 100% 100% 50.6% 51.0%

0.05 2 0.80 100 100% 85.4% 56.1% 55.8%

500 100% 97.9% 52.2% 49.6%

1 2 0.25 100 100% 98.2% 56.2% 62.5%

500 100% 99.9% 50.1% 54.8%

1 2 0.50 100 100% 94.3% 53.9% 54.2%

500 100% 99.9% 47.1% 48.1%

1 2 0.80 100 100% 85.3% 54.1% 54.2%

500 100% 97.9% 52.7% 52.2%

Calculations were made on the replications where there was no problem of

maximization. Abbreviations: TBE truncation-based estimator.

is crucial, as it could allow the identification of par-

ticular groups of patients at risk and of particular risk

time-windows in the course of a treatment and lead to

preventing or diagnosing earlier the occurrence of adverse

reactions. In this framework, the time-to-onset of an

adverse drug reaction constitutes an essential feature to be

analyzed. Its accurate estimation and modeling could help

in understanding the mechanism of a drug’s action.

As rare adverse effects are not generally identified by

cohort studies of exposed patients but from spontaneous

reporting systems, we investigated with a simulation study

the accuracy of estimates that can be obtained from these

data in a parametric framework. As one can only estimate

a conditional distribution function in a non-parametric

setting, the non-parametric maximum likelihood estima-

tor is of rather little interest for pharmacovigilance peo-

ple. For a finite sample size, the simulations show that,
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Table 7 Simulation results: proportion of replications

where themaximum likelihood estimator is larger than

the true value of the parameter for the log-logistic model

Naive estimator TBE

λ β p n λ̂ > λ β̂ > β λ̂ > λ β̂ > β

0.05 0.5 0.25 100 100% 100% 67.2% 67.7%

500 100% 100% 53.6% 52.0%

0.05 0.5 0.50 100 100% 100% 55.4% 57.5%

500 100% 100% 51.1% 52.0%

0.05 0.5 0.80 100 100% 100% 51.1% 53.2%

500 100% 100% 50.8% 51.5%

1 0.5 0.25 100 100% 100% 67.7% 66.1%

500 100% 100% 55.9% 56.1%

1 0.5 0.50 100 100% 100% 54.9% 57.2%

500 100% 100% 53.4% 53.4%

1 0.5 0.80 100 100% 100% 55.1% 56.5%

500 100% 100% 51.9% 52.0%

0.05 2 0.25 100 100% 100% 53.2% 55.9%

500 100% 100% 51.8% 51.8%

0.05 2 0.50 100 100% 100% 55.0% 54.2%

500 100% 100% 53.3% 52.2%

0.05 2 0.80 100 100% 100% 50.3% 51.5%

500 100% 100% 53.9% 54.4%

1 2 0.25 100 100% 100% 52.7% 56.1%

500 100% 100% 53.3% 51.0%

1 2 0.50 100 100% 100% 54.3% 56.4%

500 100% 100% 50.1% 49.5%

1 2 0.80 100 100% 100% 52.0% 53.7%

500 100% 100% 52.9% 55.0%

Calculations were made on the replications where there was no problem of

maximization. Abbreviations: TBE truncation-based estimator.

whatever the approach, naive or truncation-based, the

parametric maximum likelihood estimator may be pos-

itively biased and that this bias and the corresponding

mean squared error increase when the theoretical proba-

bility p for the time-to-onset to fall within the observable

values interval decreases. However, for a fixed value of

p, the bias and the mean squared error are always larger

when the right truncation is not considered than when

it is, and the gap may be large. In addition, bias and

mean squared error might in some instances (Weibull,

log-logistic) be unacceptably large for the naive approach,

even for a large value of p, while with a probability p of

0.8, or sometime even less, the TBE shows good perfor-

mances. Asymptotically, the naive estimator may not be

unbiased because the bias and the mean squared error

seem to be constant with the sample size and the max-

imization is based on a misleading likelihood, while the

bias and the mean squared error for the TBE decrease as

the sample size increases. Therefore, even if the sample

size is large, the gap between both estimators does not

disappear and the truncation-based approach should be

used.

The probability p plays an important role in the esti-

mation of the distribution of the time-to-onset of adverse

reaction for right-truncated data. Knowledge exists on a

range of possible pharmacological mechanisms. It is thus

possible to get a rough idea of the fraction of potentially

missed cases (the adverse reactions of treated patients that

have yet to occur) and then to decide on the relevance

of the time of analysis. Spontaneous reports result from

three processes: the occurrence case process, its diag-

nosis and the reporting process. It is well known that

under-reporting is widespread, even for serious events. In

addition, factors of under-reporting include the serious-

ness of the effect, the age of the patient and the novelty

of the effect, but also time-related variables such as the

length of marketing or the time since exposure [28-33]. In

the approach proposed here, it is assumed that the under-

reporting is uniform. Such a hypothesis might not always

be acceptable. However, with long-term effects such as

lymphoma and a homogeneous observation period within

the marketing life of the product, non-stationarity of

reporting is unlikely.

Problems of maximization may arise when right trunca-

tion is taken into account. The smaller is p, the more the

iterative algorithm is likely to fail. Some papers mentioned

the existence of a problem in the parametric likelihood

Table 8 Parameter estimation and estimatedmean time-to-onset for 64 cases of lymphoma that occurred after anti

TNF-α treatment

Naive estimator TBE

Distribution λ̂ β̂ Expectation (weeks) λ̂ β̂ p̂ Expectation (weeks)

Exponential 0.00739 - 135 0.00172 - 0.60 581 [264,7528]∗

Weibull 0.00666 1.55 135 0.00468 1.49 0.98 193 [150,432]∗

Log-logistic 0.00890 2.06 171 0.00408 1.53 0.76 567 [207,1.8×1012]∗

∗95% confidence intervals calculated using BCa simple bootstrap method based on 5000 replicates.

p̂ = F(t∗ = 529; (̂λTBE , β̂TBE)).

Abbreviations: TBE truncation-based estimator.
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Figure 2 Right truncation-based estimations of time-to-onset of lymphoma that occurred after anti TNF-α treatment. Data include 64
cases. Three models are fitted: exponential, Weibull and log-logistic. Estimations of the conditional survival function (C), estimations of the
unconditional survival function (U) and the non-parametric maximum likelihood estimation of the survival function (NPMLE) are displayed.

Figure 3 Naive and right truncation-based estimations of time-to-onset of lymphoma that occurred after anti TNF-α treatment. Data
include 64 cases. Three models are fitted: exponential, Weibull and log-logistic. Estimations of the unconditional survival function for the naive
approach (Naive) and for the truncation-based approach (TBE) are displayed.
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maximization and explained that, because of right trunca-

tion, the likelihood may be flat and the maximum may be

difficult to find [21,34-36].

For the 64 cases of lymphoma after anti TNF-α treat-

ment, there was no problem of convergence of the iterative

algorithm. Both estimates, naive and truncation-based,

were available for each fitted model. From the truncation-

based estimates, it is possible to estimate p. Here it

ranges from 0.98 (Weibull) to 0.60 (exponential). Since

this probability is unknown, the non-parametric maxi-

mum likelihood estimation estimates only the distribu-

tion function conditional on the time-to-event being less

than the maximum observed truncation time. However,

although conditional, the non-parametric estimate is a

reference that provides an idea of how the data fit a given

model. We followed the graphical procedure for check-

ing goodness-of-fit for right-truncated data suggested

by Lawless (2003) that is based on the non-parametric

maximum likelihood estimator and consists in plotting

the conditional fitted parametric survivals together with

the non-parametric estimation [36]. Here, the condi-

tional Weibull survival function seems the closest to the

non-parametric estimation. This finding underlines the

interest for developing goodness-of-fit tests adapted to

right-truncated data. While only three families of distri-

butions were considered for the present simulation study,

other families could be explored such as the gamma or

the log-normal families or mixture models. For instance,

in more complex situations, the treatment might be a

combination of drugs, each of them inducing the effect

but in a different time window. In that case, the hazard

function may vary several times and a family of more

complex distributions could be of greater interest. Addi-

tionally, we chose to consider the truncation times as

deterministic, which is equivalent to working on condi-

tional distributions for the likelihood. However, another

possible approach is to consider the truncation time as

a random variable and to study the random pair (X,T)

where X is the survival time and T is the truncation time

[37-39].

Finally, improvement of time-to-onset distribution

assessment could make it possible to compare two drug

profiles or more generally to assess risk factors with

regression models.
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