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Résumé

Afin de représenter les préférences d’un groupe
d’individus, nous introduisons les CP-nets probabilistes
(PCP-net). Les PCP-nets fournissent un langage com-
pact pour représenter des distributions de probabilités
sur des ordres de préférences. Nous pensons qu’ils sont
utiles pour modéliser des agrégations de préférences ou
encore des préférences bruitées. Puis, nous proposons
des algorithmes efficaces pour les principaux problèmes
de raisonnement ; par exemple pour calculer la probabi-
lité qu’un objet donné est préféré à un autre, ou encore
la probabilité qu’un objet donné est optimal. En tant
que résulat dérivé, on obtient un algorithme, en temps
linéaire inattendu, de contrôle de la dominance pour une
structure arborescente .

Abstract

In order to represent the preferences of a group of
individuals, we introduce Probabilistic CP-nets (PCP-
nets). PCP-nets provide a compact language for re-
presenting probability distributions over preference or-
derings. We argue that they are useful for aggregating
preferences or modelling noisy preferences. Then we give
efficient algorithms for the main reasoning problems, na-
mely for computing the probability that a given outcome
is preferred to another one, and the probability that a
given outcome is optimal. As a by-product, we obtain
an unexpected linear-time algorithm for checking domi-
nance in a standard, tree-structured CP-net.

1 Introduction

Modelling preferences with compact representation
formalisms has been an active research topic in Artifi-
cial Intelligence for more than fifteen years. In recent
years, several formalisms have been proposed that are
sufficiently rich to describe complex preferences of a
user in a compact way, e.g. [12, 9, 2, 3]. Ordinal pre-
ferences, where alternatives, or outcomes, are ranked

without the use of numerical functions, are usually ea-
sier to obtain, and are the topic of this paper.
In existing ordinal models of preferences, contradic-

ting preferences in general lead to some form of incon-
sistency. However, there are practical settings where
contradicting preferences should be allowed. One such
setting is that of a group decision support system :
although it is likely that m persons in a group will
have contradicting preferences, it is useful to be able
to aggregate them in a model that gives some sort
of summary of the group’s preferences. Another set-
ting is that of systems with lots of users, but where
interaction with each user is limited, like some anony-
mous recommendation systems : it is then not possible
to completely elicitate the preferences of a particular
user, but several users with similar preferences can be
grouped into a single model – that can then be fi-
nely tuned to fit one particular user. In still another
setting, a single person may express preferences with
some noise, or use qualifiers like “Most often I pre-
fer...”.
In this paper, we propose to use a probability dis-

tribution over preference models to represent the pre-
ferences of a group of users, or noisy preferences of a
single user. Specifically, we propose to extend conditio-
nal preference networks (CP-nets, one of the most po-
pular ordinal preference representation formalisms [3])
by attaching probabilities to the local preference rules.
Probabilistic CP-nets are evoked in [1] for preference

elicitation. However, the authors do not give a precise
semantics to their CP-nets, nor do they study their
computational properties. A more general form of Pro-
babilistic CP-net is also described in [5], who prove
that the problem of finding the most probable opti-
mal outcome is similar to an optimisation problem in
a Bayesian network.
The paper is structured as follows. The next sec-

tion is a brief presentation of CP-nets. In Section 3,



we present Probabilistic CP-nets (PCP-nets), their se-
mantics and explain how they can be used in several
practical settings. In Section 4, we give efficient algo-
rithms and complexity results for dominance testing :
given two outcomes o and o′, what is the probability
that o is preferred to o′ ? In Section 5, we turn to the
optimisation task : with what probability is a given
outcome optimal, and what is the most probable op-
timal outcome ? We prove that optimisation can be
performed in linear time when some restriction is put
on the structure of the PCP-net. We finish with some
concluding remarks and ideas for further research in
Section 6.

2 Background

We consider combinatorial objects defined over a set
of n variables V. Variables are denoted by uppercase
letters A,B,X, Y, . . .. We write X for the domain of
a variable X. More generally, if U⊆V is a set of va-
riables, then U denotes the Cartesian product of their
domains. Elements of V are called objects or outcomes,
denoted by o, o′, . . .. Elements of U for some subset of
the variables U⊆V are denoted by u, u′, . . .. Given two
sets of variables U⊆V ⊆V and v∈V , we write v[U ] for
the restriction of v to the variables in U .
In this paper we essentially consider variables with

a Boolean domain. We consistently write x and x̄ for
the two values in the domain of X.

Preference Relations We assume that individual
preferences can be represented by an order (reflexive,
antisymmetric and transitive) over the set of all out-
comes V. A convenient way to specify such orders over
outcomes in a multi-attribute domain is by means of
local preference rules : each rule enables one to com-
pare outcomes that have some specific values for some
attributes. Conditional preference networks [3] enable
direct comparisons between outcomes that differ in
the value of one variable only (called swap pairs of
outcomes). Such a rule has the form (X,u :>), with
X∈V, u∈U for some U⊆V − {X}, and > a total
order of the values in X. According to (X,u :>), for
every pair of outcomes o, o′ such that o[U ]=o′[U ]=u
and o[V − (U ∪ {X})]=o′[V − (U ∪ {X})], o is pre-
ferred to o′ if and only if o[X]>o[X ′]. Intuitively, the
rule (X,u :>) can be read : “Whenever u is the case,
outcomes are ordered as their values for X are ordered
by >, everything else being equal”.

Example 1. Assuming a set of binary variables V=
{x1, . . . , x4}, the rule (X3, x̄2 :x3>x̄3) entails that o=
x1x̄2x3x4 is preferred to o′=x1x̄2x̄3x4. On the other
hand, it tells nothing about the preference between o

and o′′= x̄1x̄2x̄3x4 (everything else is not equal), nor
between x1x2x3x4 and x1x2x̄3x4 (it does not apply).

Considering the transitive closure of the relation
over swap pairs, the set of all outcomes can be (par-
tially) ordered by a set R of such rules using the no-
tion of flip. An R-worsening flip is an ordered swap
pair (o, o′) for which there is a rule r=(X,u :>)∈R
satisfying : o[U ]=o′[U ]=u, o[V \ (U ∪ {X})]=o′[V \
(U ∪ {X})], and o[X]>o′[X]. A sequence of outcomes
o1, . . . , ok is anR-worsening sequence if for 1≤ i≤k−1,
(oi, oi+1) is an R-worsening flip. We write o≻R o′ whe-
never there is an R-worsening sequence from o to o′.
By construction, the relation ≻R precisely captures
the transitive closure of the relation induced by R on
swap pairs. We say that the set of rules R is consistent
if ≻R is irreflexive, and inconsistent otherwise.

Conditional Preference Networks With a conditio-
nal preference network (CP-net), one can specify pre-
ferential dependencies between variables by means of
a directed graph G=(V, E) : an edge (X,Y ) indicates
that the preference over the domain of Y may depend
on the values of X. Given such a graph and a vertex
X∈V, we write pa(X) for the set of parents of X in
(V, E) : pa(X)={Y ∈V |(Y,X)∈E}.

Definition 1 (CP-net). A (deterministic) CP-net N
over a set of variables V is defined by a directed graph
(V, E), and by a conditional preference table for each
vertex / variable X∈V, written CPT(X). The table
CPT(X) gives a local preference rule (X,u :>) for each
combination of values u∈pa(X) for the parents of X.
The graph G is called the structure of N .

When X is clear from the context, we write u :> ins-
tead of (X,u :>) for a conditional rule. For instance,
given a CP-net and a binary variable B with a single
parent A, we write a :b>b̄ for the rule (B, a :b>b̄). We
also write >u

N,X for the total order over X specified
by a CP-net N for some variable X and some assi-
gnment u∈pa(X). Finally, if no ambiguity can arise,
we use the same notation for a CP-net and its set of
local preference rules. In particular, we write o≻N o′

to indicate that there is a worsening sequence from o
to o′ using the rules of N . When this is the case, we
also say that N entails o≻o′.
For complexity analysis, we write |N | for the size

of N , defined to be the number of symbols needed to
write all rules, where writing a rule (X,u :>) is consi-
dered to require |U |+ |X| symbols. We also use speci-
fic classes of CP-nets, defined by restrictions on their
structure G. For instance, the class of acyclic (resp.
tree-structured) CP-nets is the class of CP-nets whose
structure is an acyclic graph (resp. a forest).
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CP-Table A

a≻ ā

CP-Table B

ac :b≻ b̄
ac̄ : b̄≻b
āc : b̄≻b
āc̄ : b̄≻b

CP-Table C

a : c̄≻c
ā :c≻ c̄

Figure 1 – A deterministic CP-net

A CP-net N is said to be inconsistent if the set of
rules of N is inconsistent, and consistent otherwise.
It is known [3] that all acyclic CP-nets are consistent,
but the converse is not true in general.

Example 2. Figure 1 shows a CP-net over three va-
riables A,B,C. This CP-net is consistent (it is acy-
clic), and it entails abc≻ āb̄c, as can be seen from the
worsening sequence abc≻ab̄c≻ āb̄c, which uses the first
rule in CPT(B), then the rule on A.

Taking a (consistent) CP-net N as a representation
of an agent’s preferences, the two main reasoning pro-
blems are dominance and optimisation. Dominance is
the problem of deciding whether N entails o≻o′ for
two given outcomes o, o′, and optimisation consists of
computing the “best” outcomes according to N ; that
is, the outcomes o which are undominated under ≻N .
For acyclic CP-nets, optimisation is feasible in linear
time, and there is always a unique optimal outcome.
Contrastingly, testing dominance is PSPACE-complete
for unrestricted CP-nets, NP-hard for acyclic ones, and
quadratic for tree-structured ones [8].

3 Probabilistic CP-Nets

In a context where we have multiple, unknown
agents, whose individual preferences may not be fully
known, we would like to be able to answer questions
like “What is the probability that o is preferred to o′

by some unknown agent ?”. A typical application is re-
commendation, where from the preferences gathered
for previous customers, we want to estimate how li-
kely it is that a new customer makes a given choice.
Probabilistic CP-nets enable to compactly represent a
probability distribution over CP-nets and answer such
queries.

Definition 2 (PCP-net). A probabilistic conditional
preference network N , or PCP-net, over a set of va-
riables V, is defined by a directed graph G=(V, E) and,
for each vertex / variable X∈V, a probabilistic condi-
tional preference table, written PCPT(X). The PCP-
table on X gives, for each assignment u∈pa(X), a pro-
bability distribution over the set of the total orders on
X. We write puN ,X for this distribution. We also call
G the structure of N .

X

Y

Z T

U

V

x>x̄ (.1)
x y>ȳ (.2)
x̄ y>ȳ (.3)
y z>z̄ (.5)
ȳ z>z̄ (.5)
y t>t̄ (.2)
ȳ t> t̄ (.7)
t u>ū (.1)
t̄ u>ū (.8)
u v>v̄ (.7)
ū v>v̄ (.6)

Figure 2 – A probabilistic CP-net

In particular, when all variables are binary, a PCP-
table on X gives for each assignment u∈pa(X) a pro-
bability distribution on the set of two orders {x>
x̄, x̄>x}. For brevity, we write u :x>x̄ (p) for the dis-
tribution which assigns probability p to u :x>x̄ and
1− p to u : x̄>x, as on Figure 2.
Taken as a whole, a PCP-net N is not intended to

represent a preference relation. Rather, it represents
a probability distribution over a set of (deterministic)
CP-nets, namely, those which are compatible with N .

Definition 3 (compatibility, probability). A (deter-
ministic) CP-net N is said to be compatible with a
PCP-net N , or to be N -compatible, if it has the same
structure as N . In this case we write N∝N . If N is
N -compatible, we define the probability of N accor-
ding to N by pN (N)=

∏
X∈V,u∈pa(X) p

u
N ,X(>u

N,X).

It easily comes that pN is a probability distribution
over the set of deterministic N -compatible CP-nets.

Example 3. Figure 2 shows a PCP-net N over va-
riables X,Y, Z, T, U, V . The first rule on Y , for ins-
tance, says that there is a .2 probability that a determi-
nistic CP-net drawn at random contains the rule x :y>
ȳ ; otherwise (i.e. with probability 1 − 0.2) it contains
the opposite rule x : ȳ>y. Independently, there is a .3
probability that it contains x̄ :y>ȳ. In particular, there
is a .2 × .3= .06 probability that it contains both and
hence, that y is unconditionally preferred to ȳ.

The deterministic, N -compatible CP-net with the
negative value of each variable always preferred has
probability p=(1−.1)×(1−.2)×· · ·×(1−.7)×(1−.6).

Observe that in case the structure of N contains
cycles, pN may be nonzero for some inconsistent CP-
nets, which seems undesirable. However, from a com-
putational point of view, CP-nets are most interesting
in general when they are acyclic. Moreover, even deci-
ding whether a given (cyclic) CP-net is consistent is a



PSPACE-hard problem [8]. Therefore, in the remainder
of this paper we only consider acyclic structures.

Motivation Our motivation for studying PCP-nets
stems from three different applicative settings. In the
first one, a system has at its disposal the preferences
of each of m individuals (e.g., customers), and for
each one the preferences are given by a (determinis-
tic) CP-net Ni over some common structure G. Then
the probabilistic CP-net N over the graph G defi-
ned by puN ,X(>)=#{i |(X,u :>)∈Ni}/m (proportion
of Ni’s which contains this rule, independently from
other rules) provides a compact summary of the set of
all individual preferences.

Such aggregation obviously induces a certain ap-
proximation of the distribution of preferences in the
population. Namely, the probability of a given CP-net
N as computed from the PCP-net N (Definition 3) is
in general different from the proportion of individuals
which indeed have the preferences encoded by N . Pre-
cisely, the construction amounts to approximate the
distribution of preference relations as an independent
one, considering each rule as a random variable. This
may look like a crude approximation ; still, as shown
below, it is sound and complete for some restricted
queries. Moreover, we discuss in Section 6 how PCP-
nets can be extended to richer representations of dis-
tributions.

Another setting in which PCP-nets may prove use-
ful is the one where a system interacts with a lot of
individuals, but each one gives only one or a few prefe-
rences. For instance, in a recommender system, assume
that each customer implicitly gives a preference of the
form u :x>x̄, by choosing one of two objects in a swap
pair. This is the case when, say, a customer chooses the
colour for a car in a context of interactive configura-
tion [7] : she implicitly expresses a preference of the
form u :x>x̄, where U is the set of variables that have
already been assigned u is the corresponding set of va-
lues for the car at hand, and x is the chosen colour. In
such a context, individual (deterministic) rules are ob-
tained from different customers and, in the absence of
other information, it clearly makes sense to aggregate
these rules independently from each other.

A third applicative context is one in which only one
person or agent expresses her preferences, but some
noise must be taken into account, due to the elici-
tation process, or possibly from the person’s prefe-
rences themselves (e.g., “for dinner, with pasta bo-
lognese I most often prefer having parmiggiano”).
Assuming independent noise on each rule, PCP-
nets are well suited for representing such preferences
(through a rule like : dinner∧bolognese :parmiggiano>
¬parmiggiano(.9) for the above example).

In all these settings, a PCP-net comes with a struc-
ture, which constrains the dependencies among va-
riables. In case several CP-nets are aggregated into
a PCP-net, it is natural to build the latter with the
union of all individual graphs as its own structure. In-
deed, an individual CP-net with structure (V,E) can
always be seen as one over (V,E′), for any superset E′

of E. In the remainder of this paper we will mainly fo-
cus on tree-structured (P)CP-nets. While this is a clear
restriction on expressivity, as we will see even such net-
works raise nontrivial computational problems.

Reasoning Tasks Since a PCP-net represents a pro-
bability distribution on a set of deterministic CP-nets,
the most natural queries are the following.

Definition 4 (probability of dominance). Given a
PCP-net N and two outcomes o, o′, the probability of
o≻o′, written pN (o≻o′), is defined to be the probabi-
lity mass of N -compatible CP-nets which entail o≻o′ :

pN (o≻o′)=
∑

N∝N ,o≻No′

pN (N)

Clearly enough, the probability of o≻o′ given N
is precisely the probability, when drawing a CP-net
at random according to pN , of obtaining one which
entails o≻o′. In the remainder of the paper, we will
essentially study how to compute such probability.
The second query is the probabilistic counterpart of

optimisation in deterministic CP-nets.

Definition 5 (probability of being optimal). Given an
acyclic PCP-net N and an outcome o, the probability
for o to be optimal, written pN (o), is defined to be the
probability mass of N -compatible CP-nets which have
o as their (unique) optimal outcome.

Interestingly, despite the important approximation
induced when summarising a population of CP-nets
into a single PCP-net, some reasoning tasks can be
performed exactly with the approximation (PCP-net)
only. So let N be an acyclic PCP-net built from the
rulewise aggregation of individual CP-nets.

Proposition 1. Let let N be an acyclic PCP-net nad
{o, o′} a swap pair of outcomes, differing only on the
value of X. The probability pN (o≻o′) is precisely the
proportion of individual CP-nets which entail o≻o′.

Proof. This follows directly from the fact that for acy-
clic G, a deterministic CP-net N entails o≻o′ if and
only if it contains the rule o[pa(X)] :o[X]>ō[X] [10,
Lemma 1, for instance]. �

Another interesting property is the preservation of
local Condorcet winners [14, 11], also called ”hypercu-
bewise Condorcet winners” in [4] : they are the out-
comes o which are preferred by at least one half of the



individual CP-nets to all o′ that differ from o in the va-
lue of one variable only. Proposition 1 proves that the
hypercubewise Condorcet winners are the outcomes
that dominate each of their neighbors in the aggrega-
ted PCP-net with a probability of at least 0.5.
Moreover, let us insist that PCP-nets may serve

other purposes than aggregation of individual prefe-
rences, as, for instance, modelling noisy preferences,
and that in such settings no approximation occurs.
In this paper, we do not consider indifference nor

incompleteness in the local preference rules, although
both may arise naturally in practical settings. It would
not be difficult to adapt the definition of PCP-nets to
accommodate such settings. One problem with indif-
ference is that it can lead to inconsistency even with
acyclic CP-nets [3]. A more detailed study of PCP-
nets allowing for indifference and incomplete tables is
left for further research.

4 Complexity of Dominance Testing

We now study the complexity of the dominance pro-
blem, namely, of computing the probability of o≻o′

given a PCP-net N . We restrict our attention to tree-
structured CP-nets, that is, to the case when G is acy-
clic and assigns at most one parent to each variable.
This arguably cannot capture all interesting depen-
dency structures among variables, but as we will see
this is already a nontrivial setting. For simplicity, we
also assume binary variables.
We first give a generic construction, and use it for

deriving a fixed-parameter tractability result, with the
number of variables over which o, o′ differ as the para-
meter. Then as a by-product, we derive an interesting
result for inference in deterministic CP-nets, namely,
an unexpected O(n) algorithm for dominance testing.
Finally, we show that with slightly more general struc-
tures, computing the probability of dominance is #P-
hard.

4.1 Construction

The cornerstone of our tractability results is a cha-
racterisation of all deterministic CP-nets for which
there exists a worsening sequence from o to o′, given a
fixed tree structure G=(V,E). The characterisation is
given as a propositional formula for each leaf X, writ-
ten worseno,o

′

(X), over variables of the form y :x>x̄,
ȳ :x>x̄, etc., with Y the parent of X in G. An assi-
gnment of, say, y :x>x̄ to ⊤, means that the corres-
ponding CP-net contains the rule, so that a complete
assignment to all variables defines a deterministic CP-
net with structure G.
Precisely, fix a forest G=(V,E) and two outcomes

o, o′. For each variable X with no parent in G, we in-
troduce the propositional variable x>x̄, and we write
x̄>x for its negation (because > is total, x>x̄ is true
iff x̄>x is false) . Similarly, for each variable X with
pa(X)={Y }, and yǫ∈{y, ȳ}, we introduce the propo-
sitional variable yǫ :x>x̄, and we write yǫ : x̄>x for its
negation.
Next we define the formula worseno,o

′

(X) by induc-
tion on the structure of the forest G as follows.
It is known that a worsening sequence from o to o′

may include up to Θ(n) changes of the value of some
variables, even with binary, tree-structured CP-nets [3,
Appendix A]. We take this into account by reasoning
on the number of changes of each variable. Precisely,

the formula changeo,o
′

k (X) means that there is a wor-
sening sequence in which X alternates value at least
k times, starting from its value in o and ending with
its value in o′. For instance, changex...,x̄...3 (X) means
that there is a worsening sequence in which X succes-
sively takes values x, x̄, x, x̄ (at least 4 values and 3
alternations).

The formula changeo,o
′

k (X) is defined inductively
in Table 1, where Y denotes the parent of X. We
give the formulas for the case where o[X]=x, o[Y ]=y,
the other cases can be obtained by symetry. Then
worseno,o

′

(X) is defined as follows :

– worseno,o
′

(X)=changeo,o
′

0 (X) if o[X]=o′[X]
holds ;

– worseno,o
′

(X)=changeo,o
′

1 (X) otherwise.

Example 4. Consider again the PCP-net depicted on
Figure 2, and let o=xyztuv, o′= x̄yz̄tūv. The corres-
ponding formulas are given on Table 2.

For the following propositions, we write o[≥X] for o
restricted to the variables which are ascendants of X
in G (X included).

Proposition 2. There is a worsening sequence from
o[≥X] to o′[≥X] in which X changes value at least k

times if and only if N is a model of changeo,o
′

k (X).

Proof. The proof goes by induction on the definition
of the formula. For lack of space, we omit the proof for
the base cases.

For the inductive step, we give a proof only for
Rule 1 (Case o[X]=o′[X]=x, o[Y ]=o′[Y ]=y). The
other rules are proved in exactly the same manner.
So assume first that N satisfies the formula in Rule 1.
Then by IH there is a worsening sequence

ω1y, ω2ȳ, . . . , ωkȳ, ωk+1y

in which all ωi’s are assignments to the proper as-
cendants of Y and ω1y (resp. ωk+1y) is o[≥Y ] (resp.
o′[≥Y ]). If moreover N satisfies the first disjunct



Base cases (Pa(X)=∅ or k≤1)

Pa(X) o,o′ k changeo,o
′

k
(X)

∅ o[X]=o′[X] 0 ⊤
∅ o[X]=o′[X] >0 ⊥

∅ o[X]=x, o′[X]= x̄ 0 changeo,o
′

1 (X)
∅ o[X]=x, o′[X]= x̄ 1 x≻ x̄
∅ o[X]=x, o′[X]= x̄ >1 ⊥

{Y } o[X]=o′[X] 0 changeo,o
′

0 (Y )

{Y } o[X] 6=o′[X] 0 changeo,o
′

1 (X)

{Y } o[X]=o′[X] 1 changeo,o
′

2 (X)

{Y } o[X]=x, o′[X]= x̄, o[Y ]=o′[Y ]=y 1 (y :x≻ x̄∧changeo,o
′

0 (Y )) ∨ (ȳ :x≻ x̄∧changeo,o
′

2 (Y ))

{Y } o[X]=x, o′[X]= x̄, o[Y ]=y, o′[Y ]= ȳ 1 (y :x≻ x̄∨ȳ :x≻ x̄) ∧ changeo,o
′

1 (Y )

Inductive step (Pa(X) 6=∅ and k>1)

Rule k o[X],o′[X],o[Y],o′[Y] changeo,o
′

k
(X)

0 odd x, x, indifferent, indiff. changeo,o
′

k+1(X)

1 even x, x, y, y ((y :x≻ x̄∧ȳ : x̄≻x)∨(y : x̄≻x∧ȳ :x≻ x̄)) ∧ changeo,o
′

k (Y )

2 even x, x, y, ȳ (y :x≻ x̄∧ȳ : x̄≻x∧changeo,o
′

k−1(Y )) ∨ (y : x̄≻x∧ȳ :x≻ x̄∧changeo,o
′

k+1(Y )

3 even x, x̄, indifferent, indiff. changeo,o
′

k+1(X)

4 odd x, x̄, y, y (y :x≻ x̄∧ȳ : x̄≻x∧changeo,o
′

k−1(Y )) ∨ (y : x̄≻x∧ȳ :x≻ x̄∧changeo,o
′

k+1(Y )

5 odd x, x̄, y, ȳ ((y :x≻ x̄∧ȳ : x̄≻x)∨(y : x̄≻x∧ȳ :x≻ x̄)) ∧ changeo,o
′

k (Y )

Table 1 – Inductive definition of the formula changeo,o
′

k (X)

worseno,o
′

(V ) = worseno,o
′

(U)

worseno,o
′

(U) = (t :u>ū ∧ changeo,o
′

0 (T )) ∨ (t̄ :u>ū ∧ changeo,o
′

2 (T ))

changeo,o
′

0 (T ) = worseno,o
′

(Y )

changeo,o
′

2 (T ) = ((y : t>t̄ ∧ ȳ : t̄>t) ∨ (y : t̄>t ∧ ȳ : t>t̄)) ∧ changeo,o
′

2 (Y )

worseno,o
′

(Z) = (y :z>z̄ ∧ changeo,o
′

0 (Y )) ∨ (ȳ :z>z̄ ∧ changeo,o
′

2 (Y ))

worseno,o
′

(Y ) = changeo,o
′

0 (Y )

changeo,o
′

0 (Y ) = worseno,o
′

(X)

changeo,o
′

2 (Y ) = (x :y>ȳ ∧ x̄ : ȳ>y ∧ changeo,o
′

1 (X)) ∨ (x : ȳ>y ∧ x̄ :y>ȳ ∧ changeo,o
′

3 (X)

changeo,o
′

1 (X) = x>x̄

changeo,o
′

3 (X) = ⊥

Table 2 – Formulas for the example of Figure 2 with o=xyztuv, o′= x̄yz̄tūv

(y :x≻ x̄ ∧ ȳ : x̄≻x), since the value of X has no in-
fluence on the preference over the values of Y we can
build the sequence

ω1yx, ω1yx̄, ω2ȳx̄, ω2ȳx, . . . , ωkȳx̄, ωkȳx, ωk+1yx

which is a worsening sequence from o[≥X] to o′[≥X]

in whichX changes value k times, as desired. Similarly,
if N satisfies the second disjunct, we can build the
sequence

ω1yx, ω2ȳx, ω2ȳx̄, . . . , ωkȳx, ωkȳx̄, ωk+1yx̄, ωk+1yx

in which X also changes value k times.



Conversely, we show that if there is a sequence as in
the claim, then N satisfies the formula in Rule 1. Let

ω1x, ω2x̄, . . . , ωkx̄, ωk+1x

be a sequence from o[≥X] to o′[≥X] in which x
changes value at least k≥2 times. There must be two
opposite rules on X, for otherwise X cannot change
value back and forth. Hence the disjunction in the de-

finition of changeo,o
′

k (X) is satisfied. Moreover, these
rules must fire alternatively at least k times overall,
hence Y must take at least k different values in the se-
quence ω1, ω2, . . . , ωk+1, that is, change value at least
k−1 times. But since it starts and ends with the same
value y and k−1 is odd, in fact it must change at least

k times. Hence by IH, N must satisfy changeo,o
′

k (Y ).
�

Proposition 3. There is a worsening sequence from
o to o′ if and only if N satisfies the formula∧

X worseno,o
′

(X), where X ranges over all leaves in
the tree structure of N .

Proof. Proposition 2 shows the claim if G is redu-
ced to a chain. For the more general setting, consider
two branches with a common part above X (included),
and write X ,Y,Z for the set of variables above X (in-
cluded), in the left subtree below X, and in the right
subtree below X, respectively.
Clearly, if there is a worsening sequence from o to

o′, then N must satisfy the formula for both branches
(by Proposition 2). For the converse, ifN satisfies both
formulas, by Proposition 2 again there is a worsening
sequence from the outcome o[≥Y ]=o[X ]o[Y] to o′[≥
Y ]=o′[X ]o′[Y], and one from o[X ]o[Z] to o′[X ]o′[Z].
By construction of the formula worseno,o

′

(·), there is
one of these sequences in which the values of the va-
riables above X change most, say, the one for Y. Then
since Y and Z are independent of each other, all flips
over Z can also be performed in this sequence and in-
terleaved with those over Y. In this manner we get a
worsening sequence from o to o′, as desired.
The proof for a generic forest is obtained by applying

this reasoning inductively on the set of branches. �

Example 5. Consider Example 4 again. An N -
compatible CP-net containing the rules x>x̄, y :z>z̄,
and t :u>ū allows for the worsening sequences xyz≻
xyz̄≻ x̄yz̄ and xytuv≻xytūv≻ x̄ytūv. Hence it also al-
lows for a worsening sequence from xyztuv to x̄yz̄tūv,
e.g., xyztuv≻xyz̄tuv≻xyz̄tūv≻ x̄yz̄tūv.

4.2 Efficient Dominance Testing

From Propositions 2–3 we first derive an FPT al-
gorithm for dominance in tree-structured PCP-nets.

Recall that a fixed-parameter tractable (FPT) algo-
rithm is one with running time O(f(k) . nc), where
n is the size of the input, c is a constant, f is a com-
putable function, and k is some measure of the input
size, called the parameter and typically assumed to
be small [6]. Hence such an algorithm is essentially
a polynomial-time algorithm, modulo a factor which
may be exponential (or more) in the value of the pa-
rameter.
As a parameter for the dominance problem in PCP-

nets, we take the number of variables which have a dif-
ferent value in o and o′. This makes sense in practice
since typically, in applications, one does not have to
compare objects which are completely different from
each other. For instance, in recommender systems a
recommendation is likely to take place once the cus-
tomer has fixed a number of features of the product
which she wants to buy (e.g., “I want a recent Blues
album, cheaper than such price, etc.”).

Definition 6. The parameterized dominance
problem for tree-structured PCP-nets, written p-

Tree-PDominance, is defined by :

Input : a tree-structured PCP-net N , o, o′

Parameter : k= |{X∈V |o[X] 6=o′[X]}|
Output : the probability of o≻o′ according to N

Theorem 1. The problem p-Tree-Dominance is
fixed-parameter tractable. Precisely, it admits an al-
gorithm with running time in O(22k

2

n).

Proof. For each leaf variable X in the tree of N , the
algorithm first unrolls the formula worseno,o

′

(X). Each
time if finds two different recursive calls (e.g., on k−1
and k+1 in the second rule), it splits the formula into
two parts. In the end, by construction the algorithm
ends up with a set of formulas,

ΦX ={ϕX
1 , ϕX

2 , . . . , ϕX
nX

}

. These formulas are mutually inconsistent, because
the recursive calls in each rule are conditioned on mu-
tually inconsistent formulas about the current node.
Moreover, by Proposition 2, a CP-net N∝N satisfies
o[≥X]≻o′[≥X] if and only if it satisfies one of these
formulas.
Now define Φ to be the set of formulas

Φ={ϕX1 ∧ ϕX2 ∧ · · · ∧ ϕXk |Xi a leaf, ϕXi ∈ΦXi}

that is, the “cartesian products” of the ΦX ’s (over all
leaves). By construction, the conjunctions in Φ are
mutually inconsistent, and a CP-net N∝N satisfies
o≻o′ if and only if if satisfies one of them (Proposi-
tion 3). It follows that the probability sought for can
be computed in time O(|Φ| . n) : the weight of each



conjunction of Φ can be obtained by multiplying the
probabilities of the corresponding rules in N , in time
O(n), and by mutual inconsistency the result is obtai-
ned by summing up over the elements of Φ. Observe
that some elements of Φ may be inconsistent formulas,
but this can be detected efficiently since by construc-
tion they are conjunctions of variables and negations
of variables.

To complete the proof we only need to estimate the
size of Φ. First consider ΦX for some variable X :
by construction, |ΦX | is 2ℓ, where ℓ is the number of
rules used which result in two different recursive calls.
As can be seen from Table 1, this is the case only for
the second and third rules, that is, when exactly one
of X,Y has a different value in o and o′. Clearly, it
follows ℓ≤2k, hence |ΦX |≤22k for all X and finally,

|Φ|≤(22k)k=22k
2

, as claimed. �

4.3 The Deterministic Case

As an interesting by-product of our construction, we
now derive a linear-time algorithm for dominance in
tree-structured deterministic CP-nets. This improves
on the quadratic running time of the TreeDT algo-
rithm [3], and is quite an unexpected result since
the smallest worsening sequence may be of quadra-
tic size [3, Appendix A]. Hence our result says that it
is possible to decide whether this quadratic sequence
exists, without explicitly constructing it.

Theorem 2. The dominance problem for tree-
structured (deterministic) CP-nets on n variables can
be solved in linear time O(n).

Proof. The algorithm simply consists of deciding whe-
ther N satisfies the formula

∧
X worseno,o

′

(X), where
X ranges over all leaves in the structure of N . This can
be done efficiently because for all four general rules, N
necessarily satisfies at most one of the two disjuncts
and hence, only one recursive call is involved at each
step. The only point to be checked is that the algo-
rithm can avoid considering the same variable several
times along different branches.

To do so, the algorithm unrolls the formulas
worseno,o

′

(X) in parallel. Each time two branches meet
at a node X, this must be through recursive calls fired
by the children of X. By construction, these calls are

all of the form changeo,o
′

ki
(X), and by construction and

Proposition 3, all of them must be satisfied.

Recall that changeo,o
′

ki
(X) reads “X changes value

at least ki times”. Then the algorithm simply need
to replace all recursive calls by a unique one, namely,

changeo,o
′

maxi(ki)
(X). In the end each variable is visited

once, and the algorithm is indeed linear-time. �

Interestingly, a top-down algorithm is also possible :
starting from the root nodes in the structure of N , in-
ductively computes for each node X the greatest value

k such that N satisfies the formula changeo,o
′

k (X). This
algorithm allows us to derive the following result about
incomplete deterministic CP-nets.

Say that a deterministic CP-net N is incomplete
with a given structure if it comes with a graph G but
for some variables X and assignments u to their pa-
rents, N contains neither the rule u :x>x̄ nor the op-
posite rule u : x̄>x. Incomplete CP-nets arise naturally
in the process of elicitation [10], and more generally
when a decision-maker is indifferent to some objects
(for instance : “I have no preferred colour for motor-
bikes, since I don’t like motorbikes at all”). Then a
completion of N is a (complete, deterministic) CP-net
with structure G and containing the rules of N .

Theorem 3. The problem of deciding whether there is
at least one completion of a given, incomplete CP-net
N with a given tree structure, which entails o>o′ for
given o, o′, can be solved in linear time O(n).

Proof. As evoked above, proceed top-down in the tree,
by computing for each node X the greatest k for which

there is a completion of N satisfying changeo,o
′

k (X). To
do so, complete all missing rules in a greedy manner.
For instance, if the current node Y and its child X are
in the setting of Inductive Step 2 of Table 1, and N
contains no rule over X, choose the rules in the first
disjunct to add in the completion ofN . In this manner,
from the value k for Y we get k + 1 for X.

Obviously (because changeo,o
′

k (X) reads “at least k
times”), the greater the value k at each node, the more
chances there are that the current completion indeed
entails o≻o′, hence the algorithm is correct. �

4.4 Hardness Result

We conclude this section by giving a hardness result,
which sheds light on the difficulty of testing dominance
in PCP-nets with a more general structure than a tree.

Theorem 4. The problem of computing pN (o≻o′),
given a PCP-net N and two outcomes o and o′, is
#P-hard. This holds even if the structure is acyclic,
the longest path has length 3, each node has at most
one outgoing edge and at most 4 parents.

Proof. We give a reduction from #Monotone (2-4µ)
Bipartite CNF, which is #P-complete [13].

Let X and Y be two disjoint sets of variables. A
monotone (2-4µ)-bipartite CNF is a conjunction of
clauses of the form X ∨ Y , with X∈X and Y ∈Y,
such that no variable appears more than 4 times in



X

Y1 Yp

ZY1
ZYpp(zY1

≻z̄Y1
)=1 p(zYp

≻z̄Yp
)=1

zy1
:p(y1≻ȳ1)=0.5

z̄y1
:p(y1≻ȳ1)=0

zyp
:p(yp≻ȳp)=0.5

z̄yp
:p(yp≻ȳp)=0

y1 ...yp :p(x≻x̄)=0.5
ȳ1 ...ȳp :p(x≻x̄)=1
otherwise:p(x≻x̄)=0

Figure 3 – Reduction scheme

the formula. Given such a formula φ, we build a PCP-
net N over V=X ∪Y ∪Z, where Z contains one fresh
variable, written ZY , for each Y ∈Y. The variables of
Z have no parent, each Y ∈Y has a single parent ZY ,
and each X∈X has for parents the Y ’s such that the
clause X ∨ Y appears in φ (there are at most 4 of
them). This structure and the probability of each rule
are given on Figure 3, where we show the portion of
the PCP-net that corresponds to clauses X ∨ Y1, . . . ,
X ∨ Yp.
Now consider the two outcomes o, o′ defined by

o[X]=x, o′[X]= x̄ for every X∈X , o[Y ]=o′[Y ]=y for
every Y ∈Y, and o[Z]=z, o′[Z]= z̄ for every Z∈Z. We
show that pN (o≻o′) is exactly the proportion of inter-
pretations of V in which φ is true.

Let I be an interpretation of X ∪ Y, and define the
deterministic CP-net NI ∝N as follows :

(1) for every Z∈Z, NI contains z≻ z̄ ; and

(2) for every Y∈Y : (a) NI contains z̄Y : ȳ≻y, and
(b) if I(Y )=⊤ then NI contains zY :y≻ ȳ, otherwise
it contains the opposite rule

(3) for every X∈X : (a) NI contains ȳ1 . . . ȳp :x>x̄,
(b) if I(X)=⊤ then NI contains y1 . . . yp :x≻ x̄, other-
wise it contains the opposite rule, and (c) for all other
assignments u to pa(X), NI contains u : x̄≻x.

We show that NI entails o>o′ if and only
if I satisfies φ. Clearly, we can reason on sets
{X,Y1, . . . , Yp, ZY1

, . . . , ZYp
} independently. So as-

sume first that I satisfies (X ∨ Y1) ∧ · · · ∧ (X ∨ Yp).
If I satisfies X, then I entails o≻o′ using the wor-

sening flips zY1
>z̄Y1

, . . . , zYp
>z̄Yp

and y1 . . . yp :x>x̄
(which can be performed in any order). Otherwise,
I must satisfy Y1 ∧ · · · ∧ Yp, hence I entails o≻o′

using the flips zY1
:y1>ȳ1, . . . , zYp

:yp>ȳp, then the
flip ȳ1 . . . ȳp :x>x̄, then the flips zY1

>z̄Y1
, . . . , zYp

>
z̄Yp

, and finally the flips z̄Y1
: ȳ1>y1, . . . , z̄Yp

: ȳp>yp.
The converse is shown similarly, and finally we have

that NI entails o>o′ if and only if I satisfies φ. Now
by construction, each NI built in this manner has a
probability 1/2n according to N . Hence the probabi-
lity with which N entails o≻o′ is m/2n if and only if

φ has m models, which completes the reduction. �

5 Complexity of Optimisation

We now show that optimisation with tree-structured
PCP-nets is both computationally easy and simple.
The first result even holds for the much more general
class of acyclic PCP-nets.

Proposition 4. The probability for a given outcome
o to be optimal for a given acyclic PCP-net N can be
computed in linear time O(n).

Proof. In the spirit of the “forward sweeping” pro-
cedure [3], it can be easily shown that o is optimal
for a deterministic CP-net N∝N if and only if N
contains (1) the rule o[X]>ō[X] for all root nodes
X, and (2) the rule o[pa(X)] :o[X]>ō[X] for all other
nodes X. It follows that the probability sought for is
the product of the probabilities of all these rules, which
can clearly be computed in time O(n). �

Proposition 5. The outcome with the maximal pro-
bability of being optimal for a given, tree-structured
PCP-net N can be computed in linear time O(n).

Proof. The algorithm is a simple dynamic program-
ming algorithm, operating bottom-up in the tree.
First, given a leaf node X with parent Y , the algo-
rithm determines the optimal assignment to X given
Y =y, by taking the highest probability between rules
y :x>x̄ and y : x̄>x, and similarly for Y = ȳ.
Now in the general case, given a variable Y with

parent Z and children X1, . . . , Xk, the algorithm
first considers the value z for Z, and given this va-
lue searches for the most probable assignment to
Y,X1, . . . , Xk and their descendants. This can be done
efficiently by comparing (1) py × py1 × · · · × pyk,
where py is the probability of the rule z :y>ȳ and pyi
(i=1, . . . , k) is the previously computed probability of
the best assignment to Xi and its descendants given
Y =y, and (2) pȳ×pȳ1×· · ·×pȳk. Then the algorithm
computes in a similar manner the probability of the
most probable assignment given Z= z̄, and based on
this decides on the value y or ȳ for each of z, z̄. Clearly,
when all variables have been examined, the algorithm
has computed the desired outcome. �

6 Conclusion

We proposed a “probabilistic” extension of condi-
tional preference networks (CP-nets) for representing
the preferences of a group of individuals over a set of
combinatorial objects, or for representing noisy pre-
ferences. We studied the probabilistic counterparts of



the main reasoning tasks for CP-nets, namely domi-
nance testing and optimisation, from the algorithmi-
cal and complexity viewpoints. We gave efficient algo-
rithms for tree-structured probabilistic CP-nets, and
as a by-product we obtained an unexpected linear-time
algorithm for dominance testing in standard, tree-
structured CP-nets.

As studied here, the expressiveness of our formalism
is limited in two aspects. First, assuming a common,
tree-like structure is unrealistic in some applicative
settings. As future work, we plan to extend our results,
in particular using a notion inspired from treewidth.
The second limitation is due to the fact that the pro-
bability distribution on deterministic CP-nets which is
represented by a probabilistic CP-net, is by definition
an independent one (with rules as random variables).

So as to allow PCP-net to model more realistic dis-
tributions, we plan to extend the representation by
separating the probability distribution from the struc-
ture. An obvious choice is to use a Bayesian networks
over the rules induced by the structure as random
variables. Even with simple networks, this would al-
low, for instance, to represent fact such as : 3/4 of
those individuals who prefer x to x̄ given y also pre-
fer z to z̄ given t, u. While one could fear a jump in
complexity, it is worth noticing that our main result
for tree-structured CP-nets goes through, in the sense
that with such representation, computing the probabi-
lity of o≻o′ would amount to estimate the probability
of 22k

2

deterministic CP-nets, that is, to call an oracle
for inference only a small number of times. This leaves
hope that the framework can be extended to richer re-
presentations while preserving the low complexity of
certain tasks.
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