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Yuri Ingster, Béatrice Laurent, Clément Marteau. Signal detection for inverse problems in a
multidimensional framework. 2014. <hal-00949479>

HAL Id: hal-00949479

https://hal.archives-ouvertes.fr/hal-00949479

Submitted on 19 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Signal detection for inverse problems in a

multidimensional framework∗

Y. Ingster , B. Laurent, C. Marteau

February 19, 2014

Abstract

This paper is devoted to multi-dimensional inverse problems. In this setting,

we address a goodness-of-fit testing problem. We investigate the separation rates

associated to different kinds of smoothness assumptions and different degrees of

ill-posedness.

1 Introduction

This paper is concerned with an inverse problem model. More formally, given H,K two
Hilbert spaces, our aim is to provide some inference on a function f ∈ H of interest from
an observation Y satisfying

Y = Kf + ǫξ, (1.1)

where K : H → K denotes a compact operator, ǫ a positive noise level and ξ a Gaussian
white noise. The model (1.1) means in fact that we can observe

〈Y, g〉 = 〈Kf, g〉+ ǫ〈ξ, g〉, ∀g ∈ K, (1.2)

where for all g, g1, g2 ∈ K, 〈ξ, g〉 ∼ N (0, ‖g‖2) and E [〈ξ, g1〉〈ξ, g2〉] = 〈g1, g2〉. Such a
model has been widely studied in the literature. In particular, the estimation issue has
retained a large amount of attention. We mention for instance [6] for an extended review
of existing methods and problematics in a numerical setting (i.e. when ξ is deterministic
and ‖ξ‖ ≤ 1). In a statistical setting, we mention [15], [3] or [5] for a recent survey on
this topic.

∗This work was realized during the invitation of Yuri Ingster at the INSA of Toulouse in June and

July 2012. He disappeared a few weeks later. We are very honored to have had the opportunity to work

with him.
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In this paper, our aim is not to provide an estimator of f and to study the related
performances, but rather to assess the goodness-of-fit of f with respect to a benchmark
signal f0. More formally, our aim is to test

H0 : f = f0, against H1 : f ∈ F , (1.3)

where F ⊂ H is such that f0 6∈ F . The description of the subset F is of first interest
since it characterizes the detectable functions. This set is not allowed to be too rich since
in this case it will be impossible to separate both hypotheses with prescribed errors. In
the same time, it should not contain signals that are too close of f0. Hence, most of the
alternatives in the literature are of the form

F := Θ[r] = {f ∈ Θ, s.t. ‖f − f0‖ ≥ r} ,

where Θ denotes a functional space while r describes the amount of signal available in
the observations. Typically, Θ will be a set of functions satisfying some smoothness con-
straint. Given Θ and a prescribed level α for the first kind error, the main challenge
in this setting is to describe possible values of r for which the second kind error can be
(asymptotically) controlled. Without loss of generality, we assume in the following that
f0 = 0.

In the direct setting (i.e. when K denotes the identity operator), we mention the
seminal series of paper [7], [8], [9] where various situations are considered. We also refer to
[2] for a non-asymptotic study and [1] where adaptation with respect to the smoothness of
the alternative is discussed. In the inverse problem framework, few papers were interested
by the testing issue. We mention [4] in a slightly different framework (error in variable
model), or more recently [12], [13], [11] and [14] in our context.

All these studies were concerned with uni-dimensional problem, where typically H =
L2(R). Up to our knowledge, the only study in the multi-dimensional case for inverse
problem is provided in [10]. Nevertheless, the framework is restricted to the Radon
transform operator in dimension 2. In this paper, our aim is to investigate the behavior
of separation rates in a d-dimensional setting, under general assumptions on the operator.

Our paper is organized as follows. In Section 2, we provide a precise description of the
considered inverse problem model. We establish our main theorem, which will allow to
determine the rates in the different considered cases. Section 3 is devoted to a presentation
of the minimax separation rates corresponding to various situations (mildly and severely
ill-posed problems), regular and super-smooth alternatives. All the proofs are gathered
in Section 4.
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2 A general methodology for testing in an inverse

problem framework

In this section, we will describe more precisely our model and the different related as-
sumptions. Then we establish our main result which is at the core of our analysis.

2.1 Multi-dimensional inverse problems

The inverse model (1.1) has been widely investigated in the literature, in particular for
an estimation purpose. Such a model arises in various practical situations and precise
analysis are of first interest. Below, we describe two particular examples of operator and
related applications.

The Radon transform. The Radon transform is one of most popular operator. It is
often involved in medical imaging. Given H the unit disk on R

2, the aim is to provide
inference on the spatially varying density f of a cross section D ⊂ H of an human body.
This inference is provided via observation obtained by non-destructive imagery, namely
X-ray tomography. In such a case, given a function f ∈ L2(H), one measure Rf(u, ϕ)
which corresponds to the decay of the intensity of the X-ray in the direction ϕ when the
receiver is at a distance u. Typically, we have

Rf(u, ϕ) =
π

2
√
1− u2

∫

√
1−u2

−
√
1−u2

f(u cos(ϕ)− t sin(ϕ), u sin(ϕ) + t cos(ϕ))dt,

for all (u, ϕ) ∈ [0, 1] × [0, 2π). For more details on such an operator, we mention for
instance [6]. Testing issues are discussed in [11].

Convolution operators. The convolution operator K is defined as follows

K : L2(Rd) → L2(Rd)

f 7→ Kf =

∫

Rd

g(y)f(.− y)dy,

where g ∈ L1(Rd) denotes a convolution kernel. The behavior of this kernel (in particular
the spectral behavior) characterizes the difficulty of the related deconvolution problem.
Up to some conditions on this kernel g, the related convolution operator appears to a be
a compact operator. For more details on the associated problem, we mention [6], [5] or
[4] for the testing issue in a slightly different setting.

The aim of this paper is not to concentrate on particular operators, but rather to
describe a general scheme leading to satisfying testing procedures and related separation
rates. Hence, in the following, we will only assume that we deal with the model (1.1)
where K denotes a compact operator.
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In order to determine whether f = 0 or not (see 1.3), the main underlying idea is
to construct an estimator of ‖f‖2 (or equivalently ‖Kf‖2, see discussion below) from Y
and then to take a decision based on this estimator. Indeed, if the corresponding norm
is large enough with respect to some prescribed threshold, it seems reasonable to reject H0.

In order to provide an estimator of this norm, we will express our problem in terms
of the singular value decomposition (S.V.D.) of the operator K. This decomposition is
expressed through a sequence (b2l , φl, ϕl)l∈Nd

∗

where the b2l correspond to the eigenvalues of
K∗K while the φl correspond to the eigenfunctions (which are assumed to denote a basis
of H). In particular, for all l ∈ N

d
∗, we get
{

Kφl = blϕl,
K∗ϕl = blφl,

where K∗ denotes the adjoint operator of K. Using the previous relationships and (1.2),
we obtain observations as a sequence (yl)l∈Nd

∗

with

yl = blθl + ǫξl, l ∈ N
d
∗, (2.4)

where for all l ∈ N
d
∗, θl = 〈f, φl〉 and the ξl are i.i.d. standard Gaussian random variables.

The model (2.4) is usually called the sequence space model. The main advantage of such
a representation is that it provides a simple way to investigate the different interactions
between properties of the function of interest and the related behavior of the operator.
Following [11] or [12], we will only deal in the following with the model (2.4).

Please note that it is also possible to adopt another point of view where one may use
general regularization approaches instead of projecting observations onto particular bases
(here the S.V.D. basis). In the testing issue, this methodology has been investigated in
a uni-dimensional inverse problem framework in [14]. Nevertheless, such an approach
appears to be more complicated in the multidimensional case and hence will not be
considered in this paper.

2.2 Minimax separation rates

Let
Θ(rǫ) = {f ∈ Θ, s.t. ‖f‖ ≥ rǫ} ,

where rǫ denotes some radius, which is allowed to depend on ǫ. The set Θ is a given
functional space (which will be made precise later on). Our aim in this paper is to test

H0 : f = 0, against H1,rǫ : f ∈ Θ(rǫ). (2.5)

For this purpose, we have to propose a test function ψ which is a measurable function of
the data with values in {0, 1}. By convention, we reject H0 if ψ = 1, and do not reject
otherwise. Given a prescribed level α ∈]0, 1[ for the first kind error, we will deal all along
the paper with level-α tests, namely test functions ψα satisfying

PH0(ψα = 1) ≤ α+ o(1), as ǫ→ 0.
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Then, we associate to each level-α test function ψα its maximal type II error probability
over the set Θ(rǫ) defined as

βǫ(Θ(rǫ), ψα) = sup
f∈Θ(rǫ)

Pf (ψα = 0).

The minimax type II error probability over the set Θ(rǫ) is defined as

βǫ(Θ(rǫ), α) = inf
ψα

βǫ(Θ(rǫ), ψα),

where the infimum is taken over all possible level-α test functions.

Given a test function ψα and a radius rǫ, βǫ(Θ(rǫ), ψα) hence provides a measure of
the performances of the test. Typically, if this term tends to 1− α as ǫ → 0, the test ψα
does not separate both hypotheses. On the other hand, given any β ∈]0, 1[, if one can
find a test function ψα such that βǫ(Θ(rǫ), ψα) ≤ β + o(1) as ǫ → 0, then the hypotheses
H0 and H1,rǫ can be separated with prescribed levels.

For a given radius rǫ, the term βǫ(Θ(rǫ), α) represents the lowest achievable level for
the type II error probability. Clearly, this quantity is non-increasing with respect to rǫ.
We are therefore interested in the minimal rǫ for which βǫ(Θ(rǫ), α) → 0 as ǫ → 0. In
particular, a sequence r⋆ǫ is called a minimax separation rate over the set Θ if

βǫ(Θ(rǫ), α) → 1− α if rǫ/r
⋆
ǫ → 0 (2.6)

βǫ(Θ(rǫ), α) → 0 if rǫ/r
⋆
ǫ → ∞ (2.7)

Hence, from an asymptotic point of view, the term r⋆ǫ denotes the order of the delim-
iting separation radius under which testing is impossible (i.e. for which the type II error
probability will be close to 1− α).

One of the main issue in the testing theory is then to describe as precisely as possible
the (asymptotic) value for the separation rate r⋆ǫ following the smoothness constraints
expressed on the signal. In an inverse problem framework, one want also to take into
account the behavior of the operator when describing r⋆ǫ . In the following, we introduce
our different constraints on both the signal and the operator. Then, we will establish a
general result that will allow us to investigate the asymptotic of r⋆ǫ in different settings.

Following classical results in an inverse problem framework (see for instance [6] or [5]),
the difficulty of the problem will be characterized by the behavior of the sequence (bl)l∈Nd

∗

.
Indeed, starting from the model (2.4), it appears that it will be difficult to retrieve in-
formations on θl if the corresponding coefficient bl is close to 0. Basically, two different
regimes are considered in the literature.

Mildly ill-posed problems There exists 0 < c0 ≤ c1 such that the sequence (bl)l∈Nd
∗

satisfies

c0

d
∏

j=1

|lj|−tj ≤ |bl| ≤ c1

d
∏

j=1

|lj |−tj , ∀l = (l1, . . . , ld) ∈ N
d
∗,
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for some sequence t = (t1, . . . , td) ∈ R
d
+.

Mildly ill-posed inverse problems correspond to the most favorable cases in the sense
that the sequence (bl)l∈Nd

∗

does not decrease too fast. On the other hand, severely ill-posed
problems are more difficult to handle.

Severely ill-posed problems There exists 0 < c0 ≤ c1 such that the sequence (bl)l∈Nd
∗

satisfies

c0

d
∏

j=1

e−tj lj ≤ |bl| ≤ c1

d
∏

j=1

e−tj lj , ∀l = (l1, . . . , ld) ∈ N
d
∗,

for some sequence (t1, . . . , td) ∈ R
d
+.

The previous conditions characterize most of the inverse problems encountered in
the literature. Now, we have to introduce smoothness assumptions on our target f . In
the following, given a sequence a = (al)l∈Nd

∗

and a positive radius R, we will use the
corresponding ellipsoids Θ defined as

Θ := Θa,R =







ν ∈ l2(Nd
∗),

∑

l∈Nd
∗

a2l ν
2
l ≤ R2







.

In particular, two different kinds of behavior for the sequence a = (al)l will be considered.
Given positive numbers (s1, . . . , sd), we will alternatively deal with sequences a satisfying

a2l =

d
∑

j=1

l
2sj
j , or a2l =

d
∑

j=1

e2sj lj ∀l ∈ N
d
∗, (2.8)

and sequences a satisfying

a2l =
d
∏

j=1

l
2sj
j , or a2l =

d
∏

j=1

e2sj lj ∀l ∈ N
d
∗. (2.9)

In the first case (2.8), the ellipsoid Θa,R corresponds to a Sobolev space, while in the
second case (2.9), we deal with a so-called tensor product space.

2.3 Main result

In this section, we provide a general result that will allow to determine minimax sepa-
ration rates in various situations. As formalized in (2.5), our aim is to decide whether
there is signal in our observations or not. A natural way to investigate this problem is to
construct a criterion that will measure the amount of signal available in the observations.
In this paper, our test will be based on a estimation of the norm of Kf . Indeed, asser-
tions ”‖f‖ = 0”, ”f = 0” and ”Kf = 0” are equivalent since our operator is injective (we
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mention [12] for an extended discussion).

First, we can estimate ‖Kf‖2 using the statistics

T =
∑

k∈Nd
∗

ωk(y
2
k − ǫ2), (2.10)

where ω = (ωk)k∈Nd
∗

denotes a filter, i.e. a real sequence with values in [0, 1]. Several kinds
of filters are available in the literature for a testing purpose. We can mention for instance
[2], [12] or [13] where projection filters designed as ωk = 1{k1≤N1,..,kd≤Nd} are proposed or
[14] where properties of Tikhonov filters (and more general regularization schemes) are
investigated. From now on, following seminal investigations proposed in [7]-[9], and more
recent results in an inverse problem setting, we will consider filters designed as

ωk =
b2kθ̃

2
k

√

2
∑

k∈Nd
∗

b4kθ̃
4
k

∀k ∈ N
d
∗, (2.11)

where for a given rǫ the sequence (θ̃k)k is the solution of the extremal problem

u2ǫ(rǫ) =
1

2ǫ4

∑

k∈Nd
∗

b4kθ̃
4
k =

1

2ǫ4
inf

θ∈Θa,R(rǫ)

∑

k∈Nd
∗

b4kθ
4
k. (2.12)

In general, a decision rule is based on the following principle. If the norm of the estimator
of Kf is larger than a given threshold, this means that there is probably signal in the
observations and we will reject H0. On the other hand, if the norm of this estimator is
not large enough, we are observing only noise with a high probability and we do not reject
H0. Using this principle and (2.10)-(2.11), we obtain the testing procedure Ψǫ,t defined
as

Ψǫ,t = 1{T>t}, where T =
∑

k∈Nd
∗

ωk(y
2
k − ǫ2), (2.13)

for some threshold t. In the following, for a given α ∈]0, 1[, we set t = H(α), where H(α)

denotes the 1− α quantile of the standard Gaussian distribution. We will prove that the
corresponding test is asymptotically of level α, which means that

PH0(Ψǫ,H(α) = 1) ≤ α+ o(1) as ǫ→ 0.

The following theorem emphasizes the performances of the test Ψǫ,t. We also provide
lower bounds that asses the optimality of this testing procedure.

Theorem 1 Consider the testing problem introduced in (2.5) and the testing procedure
Ψǫ,t defined in (2.13). Then, given α ∈]0, 1[,

1. (a) If uǫ(rǫ) → 0, then βǫ(Θa,R(rǫ), α) → 1 − α as ǫ → 0. In this case, minimax
testing is impossible.
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(b) If uǫ(rǫ) = O(1) and ω0 = o(1) as ǫ → 0, then the test Ψǫ,H(α) is a level-α test
and is asymptotically minimax, i.e.

βǫ(Θa,R(rǫ),Ψǫ,H(α)) = βǫ(Θa,R(rǫ), α) + o(1), as ǫ→ 0.

Moreover, we obtain the sharp asymptotics

β(Θa,R(rǫ), α) = Φ(H(α) − uǫ(rǫ)) + o(1), as ǫ→ 0.

2. If uǫ(rǫ) → +∞, then the family of tests (2.13) with t = cuǫ(rǫ) for some c ∈]0, 1[
are asymptotically consistent, i.e. β(Θa,R(rǫ),Ψǫ,t) → 0 as ǫ→ 0.

For the sake of brevity, we will not provide a complete proof since it follows the same
lines than previous one established in the direct case (see [7]-[9]) or in a uni-dimensional
inverse setting by [11]. Nevertheless, we will provide the main underlying ideas in Section
4.1 below.

The main consequence of Theorem 1 is that the investigation of the minimax separation
rate associated to the testing problem (2.5) reduces to the study of the extremal problem
(2.12). In particular, the behavior of the term uǫ will provide meaningful informations on
the difficulty of the testing problem.

In Section 3 below, we investigate the behavior of this extremal problem and related
separation rates for different kinds of smoothness assumptions and different degrees of
ill-posedness.

3 Separations rates

Following Theorem 1, it appears that the extremal problem (2.12) is of first importance
for a precise understanding of minimax separation rates in this setting. In particular, we
have to make explicit the terms rǫ for which uǫ = O(1) as ǫ→ 0.

To this end, we can remark in a first time that the solution θ⋆ of (2.12) is of the form

(θ⋆k)
2 = z20b

−4
k (1− Aa2k)+, ∀k ∈ N

d,

where the terms z0 = z0,ǫ and A = Aǫ are determined by the equations
{

r2ǫ = z20J1,
1 = z20A

−1J2,

with

J1 =
∑

k∈Nd
∗

b−4
k (1−Aa2k)+,

and J2 = A
∑

k∈Nd
∗

a2kb
−4
k (1− Aa2k)+.
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Mildly ill-posed Severely ill-posed

|bl| =
∏d

j=1 |lj|−tj |bl| =
∏d

j=1 e
−tj lj

a2l =
∏d

j=1 |lj|2sj ǫ
4

4+c1 (i)
(

1
4t1

ln
(

1
ǫ4

)

)−2s

(iii)

a2l =
∏d

j=1 e
2sj lj ǫ2 (ln(ǫ−1))

∑d
j=1(2tj+1/2)

(ii) ǫ
2

1+t1/s1 (iv)

Table 1: Minimax separation rates for Tensor product spaces. In the case (i), c1 =
maxj=1...d(1+4tj)/sj; in the case (ii), sj = s for all j ∈ {1, . . . , d}; in the case (iii), sj = s
and t1 > tj and (t1, s1) for all j ∈ {1, . . . , d}; in the case (iv), t1/s1 > tj/sj for all j > 1.

Mildly ill-posed Severely ill-posed

|bl| =
∏d

j=1 |lj |−tj |bl| =
∏d

j=1 e
−tj lj

a2l =
∑d

j=1 |lj |2sj ǫ
4/

(

4+
∑d

j=1

(1+4tj)

sj

)

(

log
(

1
ǫ

))−s

Table 2: Minimax separation rates for Sobolev spaces. In the severely ill-posed case, we
assume that s1 = · · · = sd = s.

In particular,

u2ǫ(rǫ) = ǫ−4z40J0/2, where J0 = J1 − J2 =
∑

k∈Nd
∗

b−4
k (1−Aa2k)

2
+.

Using this methodology, we get separation rates over both Tensor product and Sobolev
spaces, when considering alternatively mildly and severely ill-posed problems. These rates
are summarized in Tables 1 and 2. The formal results, and related proofs are made explicit
in the sections below.

In the following, we use the notation vǫ ∼ wǫ as ǫ → 0 if there exist two constants c0
and c1 such that ∀ǫ > 0, c0wǫ ≤ vǫ ≤ c1wǫ.

3.1 Tensor product spaces

3.1.1 Mildly ill-posed problems with ordinary smooth functions

In this section, we assume that

b2l =
d
∏

j=1

|lj |−2tj and a2l =
d
∏

j=1

|l1|2sj , ∀l ∈ N
d
∗. (3.14)
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In the following, we will deal with the sequence (cj)j=1...d defined as

cj =
1 + tj
sj

, ∀j ∈ {1, . . . , d}.

The following proposition describes the minimax separation rate in this setting.

Proposition 1 Assume that both sequences a and b satisfy equation (3.14) and that
c1, . . . , cd are strictly ordered : c1 > · · · > cd. Then, we get that

• The minimax separation rate r⋆ǫ satisfies

r⋆ǫ ∼ ǫ
4

4+c1 as ǫ→ 0.

• If rǫ = Cǫ
4

4+c1 for some positive constant C, then uǫ(rǫ) = O(1) as ǫ → 0 and the
sharp asymptotics described in Theorem 1 hold true.

The proof of this result is postponed to Section 4.2.

Remark that in the particular case where d = 1, we get the minimax rate

r⋆ǫ = ǫ
4s

4s+4t+1 ,

which has been established for instance in [11] or [12]. Hence, Proposition 1 appears
to be an extension of this classical 1-dimensional case. Nevertheless, remark that the
obtained rate appears to be quite unusual in such a setting: it is governed by the couple
of parameters (tj , sj) for which the associated term cj is maximal.

In some sense, the rate corresponds to the worst 1-dimensional rate in each direction.
In particular, a large value for cj is more or less associated to high degree of ill-posedness
with a small smoothness index.

3.1.2 Mildly ill-posed problems with supersmooth functions

In this section, we assume that

b2l =

d
∏

j=1

l
−2tj
j and a2l =

d
∏

j=1

e2slj ∀l ∈ N
d
∗. (3.15)

In such a setting, we get the following result, whose proof is postponed to Section 4.3.

Proposition 2 Assume that both sequences a and b satisfy equation (3.15). Then, we
get that

• The minimax separation rate r⋆ǫ satisfies

r⋆ǫ ∼ ǫ
(

ln(ǫ−1)
)

∑d
j=1(tj+1/4)

as ǫ→ 0.
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• If rǫ = Cǫ (ln(ǫ−1))
∑d

j=1(tj+1/4)
for some positive constant C, then uǫ(rǫ) = O(1) as

ǫ→ 0 and the sharp asymptotics described in Theorem 1 hold true.

In this setting, the minimax separation rate is close to the parametric separation rate,
up to a logarithmic term. The power of this log term explicitly depends on the dimension,
and of the degrees of ill-posedness in each direction. Once again, we recover the results
obtained in [11] or [12] in the particular case where d = 1.

3.1.3 Severely ill-posed problems with super-smooth functions

In this section, we deal with severely ill-posed problems and super-smooth functions. In
particular

bl =

d
∏

j=1

e−tj lj and al =

d
∏

j=1

esj lj ∀l ∈ N
d
∗. (3.16)

The proof of the following proposition is provided in Section 4.4.

Proposition 3 Assume that both sequences a and b satisfy equation (3.16) where

t1
s1
>
tj
sj

∀j ∈ {2, . . . , d}. (3.17)

Then, the minimax separation rate r⋆ǫ satisfies

r⋆ǫ ∼ ǫ
s1

s1+t1 as ǫ→ 0.

The assumption (3.17) appears to be necessary since it allows a sharp control of the
terms J0, J1 and J2 introduced above. It could be certainly removed, up to very technical
algebra. In particular, we mention that the detection of super-smooth functions with
severly ill-posed problems is already a very difficult problem in 1-dimensional case. We
also mention that in this particular setting, we do not obtain sharp asymptotics.

3.1.4 Severely ill-posed problems with ordinary smooth functions

In this section, we deal with severely ill-posed problems with ordinary isotropic smooth
functions. In particular

bl =

d
∏

j=1

e−tj lj and a2l =

d
∏

j=1

l2sj ∀l ∈ N
d
∗. (3.18)

The terms (t1, . . . , td) and s denote positive known parameters, that characterize the
problem. The proof of the following proposition is provided in Section 4.5.
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Proposition 4 Assume that both sequences a and b satisfy equation (3.18) where

t1 > tj ∀j ∈ {2, . . . , d}. (3.19)

Then, the minimax separation rate r⋆ǫ satisfies

r⋆ǫ ∼
(

1

4t1
ln

(

1

ǫ4

))−2s

as ǫ→ 0.

We work in an isotropic context, in the sense that the regularity is the same in all
directions. Provided that property (3.19) holds, we obtain the same rate that in an
uni-dimensional framework. Then, the minimax separation rates is characterized by the
direction for which the problem is the more difficult, i.e. the direction associated to the
largest indice tj . Once again, we do not get sharp rates in this setting.

3.2 Sobolev Spaces

In this part, we will consider Sobolev smoothness constraints. We will provide some
illustrations of Theorem 1 in this context. In both considered cases, we precise the
behavior of the sequence a.

3.2.1 Mildly ill-posed problems

We start our study in this framework with mildly ill-posed inverse problems. In particular,
we assume that

b2l =

d
∏

j=1

l
−2tj
1 and a2l =

d
∑

j=1

l
2sj
j , ∀l ∈ N

d
∗. (3.20)

Proposition 5 Assume that both sequences a and b satisfy (3.20). Then, we have that

• The minimax separation rate satisfies

r∗ǫ ∼ ǫ
4/

(

4+
∑d

j=1

(1+4tj )

sj

)

as ǫ→ 0.

• If rǫ = Cǫ
4/

(

4+
∑d

j=1

(1+4tj )

sj

)

for some positive constant C, then uǫ(rǫ) = O(1) as
ǫ→ 0 and the sharp asymptotics described in Theorem 1 hold true.

The proof of Proposition 5 is postponed to the Section 4.6.

In this context, some cases are or first interest. In a first time, we can remark that in
dimension 1, we recover the classical rate

r∗ǫ = ǫ
4s

4s+4t+1 .

12



We refer for more details to [11] or [13] (and to the previous section for a related discus-
sion). The other interesting case corresponds to the homoscedastic framework in dimen-
sion d where sj = s and tj = t for all j ∈ {1, . . . , d}. In such a case, we get that

r∗ǫ = ǫ
4s

4s+4dt+d .

In this situation, we are faced to the well-known curse of the dimension: minimax detection
rates deteriorate as d increases, even for direct problems (where t = 0).

3.2.2 Severly ill-posed problems

We now turn to the investigation of severly ill-posed inverse problems. We will consider
the case where

bl =

d
∏

j=1

e−tj lj , and al =

(

d
∑

j=1

lj

)s

, ∀l ∈ N
d
∗. (3.21)

In particular, we only deal with homoscedastic problems: the regularity is supposed to be
the same in all considered directions. In this context, we get the following result, whose
proof can be found in Section 4.7.

Proposition 6 Assume that both sequences a and b satisfy (3.21), where t1 > tj for all
j ∈ {2, . . . , d}. Then, we obtain the following results :

• If rǫ = (C log(1/ǫ))−s with C > 1/t1, then u
2
ǫ(rǫ) → +∞ as ǫ→ 0 and the detection

is possible (see Theorem 1 for more details).

• If rǫ = (C log(1/ǫ))−s with C ≤ 1/t1, then u
2
ǫ(rǫ) → 0 as ǫ→ 0 and the detection is

impossible.

Due to the difficulty of the problem, the minimax separation rate decreases very slowly
and we do not obtain sharp asymptotics in this case. In order to get this result, we have
assumed that the problem is in some sense dominated by one direction: t1 > tj for all
j ≥ 2. This assumption can be removed, up to a more technical algebra.

4 Proofs

4.1 Proof of Theorem 1

The proof is decomposed in two different parts. In a first time, we establish a lower bound
for the term βǫ(Θ(rǫ), α) and we discuss the possible values of this quantity following the
behavior of the extremal problem (2.12). Then, we prove that the test Ψǫ,H(α) achieves
this lower bound when uǫ(rǫ) = O(1) as ǫ→ 0.

13



We first focus on the lower bound on βǫ(Θ(rǫ), α). Let π the prior on the set Θ(rǫ)
defined as

π =
∏

k∈Nd
∗

πk, where πk =
1

2
(δ−bkθk + δbkθk) ∀k ∈ N

d
∗, (4.22)

for some sequence θ ∈ Θ(rǫ) which will be made precise later on. Denote by P0 (resp.
Pπ) the measure associated to the observation vector Y when the sequence θ is equal to
0 (resp. follows the measure π). Then, following [2], we get that

βǫ(Θ(rǫ), α) ≥ 1− α− 1

2

(

E0[L
2
π(Y )]− 1

)1/2
,

where Lπ(Y ) denotes the likelihood ratio between the two measures P0 and Pπ. Thanks
to (4.22), we get that

E0[L
2
π(Y )] =

∏

k∈Nd
∗

cosh(b2kθ
2
k/ǫ

2) ≤ exp





1

2ǫ4

∑

k∈Nd
∗

b4kθ
4
k



 := exp(u2ǫ(rǫ)),

provided θ is defined as the solution of the extremal problem (2.12). In this context, we
get clearly that

u2ǫ(rǫ) → 0 ⇒ βǫ(Θ(rǫ), α) → 1− α as ǫ→ 0,

which prove item 1.(a) of the Theorem.

Now, we turn to the case where uǫ(rǫ) = O(1) as ǫ → 0. In that case, our aim is to
prove that

βǫ(Θ(rǫ), α) = Φ(H(α) − uǫ) + o(1) as ǫ→ 0.

To this end, assume that

ln(Lπ(Y )) = −u
2
ǫ(rǫ)

2
+ uǫ(rǫ)Zǫ + δǫ, (4.23)

where Zǫ → Z ∼ N (0, 1) and δǫ → 0 in P0-probability as ǫ→ 0. It is well known that

βǫ(Θ(rǫ), α) ≥ Eπ(1− ψ⋆ǫ ) = E0e
ln(Lπ(Y ))(1− ψ⋆ǫ ),

where ψ⋆ǫ is the likelihood ratio test. In particular, ψ⋆ǫ = 1 if ln(Lπ(Y )) > tα where tα is
the 1− α quantile of ln(Lπ(Y )) under H0. Thanks to (4.23), we get

tα = −u
2
ǫ(rǫ)

2
+ uǫ(rǫ)H

(α) + o(1) as ǫ→ 0,

which leads to the desired result, up to some simple algebra. Concerning the proof of
(4.23), we refer to [11] for more details.
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Concerning the last part of the proof, we first have to compute the expectation and
variance of the test statistics. Using a Markov inequality, it is then possible to prove that

βǫ(Θ(rǫ),Φǫ,H(α)) → 0,

as soon as uǫ(rǫ) → +∞ as ǫ → 0. In the case where uǫ(rǫ) = O(1) as ǫ → 0, the
Central Limit Theorem (with Lyapunov’s condition) indicates that the test statistics T is
asymptotically Gaussian. A precise study of its associated variance and expectation leads
to the desired result (see [11] for a similar study in the 1-dimensional case).

4.2 Proof of Proposition 1

Let

b2l =

d
∏

j=1

l
−2tj
j and a2l =

d
∏

j=1

|lj|2sj , ∀l ∈ N
d
∗,

Recall that
J1 = 2d

∑

l∈Nd
∗

l4t11 . . . l4tdd (1− Al2s11 . . . l2sdd )+.

We set A = R−2s̄ where s̄ = s1 + . . . + sd. We define for u = (u1, . . . , ud) ∈ (R+∗)
d and

s = (s1, . . . , sd) ∈ (R+∗)
d,

S(u, s, R) =
∑

l∈Nd
∗
,( l1

R )
s1
...
(

ld
R

)sd≤1

lu11 . . . ludd .

Lemma 1 Let for j = 1, . . . d, cj = (1 + uj)/sj.
Assume that c1 > c2 > . . . > cd. Then we have

S(u, s, R) ∼R→∞
Rs̄c1

1 + u1

d
∏

j=2

ζ (c1sj − uj) ,

where ζ(s) =
∑

l≥1 l
−s for all s > 1.

Proof of Lemma 1. We will use the following inequalities

∀u ≥ 0, 0 ≤
R
∑

l=1

lu −
∫ R

0

xudx ≤ 2uRu. (4.24)

∀ − 1 < u < 0, 0 ≤
R
∑

l=1

lu ≤
∫ R

0

xudx. (4.25)

Indeed, for u ≥ 0,
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∫ R

0

xudx ≤
R
∑

l=1

lu ≤
∫ R+1

1

xudx,

and,

0 ≤
R
∑

l=1

lu −
∫ R

0

xudx ≤
∫ R+1

R

xudx

≤ 1

u+ 1

[

(R + 1)u+1 − Ru+1
]

≤ 2uRu.

To simplify the notations, we omit in the sums that l1, . . . , ld ∈ N
∗
∗. Now,

S(u, s, R) =
∑

l
s2
2 ...l

sd
d ≤Rs̄

lu22 . . . ludd

R
s̄
s1 l

−

s2
s1

2 ...l
−

sd
s1

d
∑

l1=1

lu11 .

From Equation (4.24), we have

0 ≤ S(u, s, R)−
∑

l
s2
2 ...l

sd
d ≤Rs̄

lu22 . . . ludd

(

1

u1 + 1

)(

R
s̄
s1 l

− s2
s1

2 . . . l
− sd

s1
d

)u1+1

≤ 2u1
∑

l
s2
2 ...l

sd
d ≤Rs̄

lu22 . . . ludd

(

R
s̄
s1 l

− s2
s1

2 . . . l
− sd

s1
d

)u1

.

This leads to

0 ≤ S(u, s, R)− Rc1s̄

u1 + 1

∑

l
s2
2 ...l

sd
d ≤Rs̄

lu2−s2c12 . . . lud−sdc1d

≤ 2u1R
s̄
s1
u1

∑

l
s2
2 ...l

sd
d ≤Rs̄

l
u2− s2

s1
u1

2 . . . l
ud−

sd
s1
u1

d .

Note that for all j ≥ 2, we have uj − sjc1 < −1 since cj < c1. Hence the series

∑

l
s2
2 ...l

sd
d ≤Rs̄

lu2−s2c12 . . . lud−sdc1d

converge. This leads to,

Rc1s̄

u1 + 1

∑

l
s2
2 ...l

sd
d ≤Rs̄

lu2−s2c12 . . . lud−sdc1d ∼R→∞
Rs̄c1

1 + u1

d
∏

j=2

ζ (c1sj − uj) .

16



It remains to prove that

R
s̄
s1
u1

∑

l
s2
2 ...l

sd
d ≤Rs̄

l
u2− s2

s1
u1

2 . . . l
ud−

sd
s1
u1

d = o (Rs̄c1) , as R → +∞,

which is equivalent to

∑

l
s2
2 ...l

sd
d ≤Rs̄

l
u2− s2

s1
u1

2 . . . l
ud−

sd
s1
u1

d = o

(

R
s̄
(

c1−u1
s1

)

)

, as R → +∞. (4.26)

Since this quantity is positive, we will only give an upper bound. More generally, let us
consider the Property that we denote by Pj :

Σj =
∑

l
sj
j ...l

sd
d ≤Rs̄

l
uj−

sj
sj−1

uj−1

j . . . l
ud−

sd
sj−1

uj−1

d = o

(

R
s̄

(

c1−
uj−1
sj−1

)
)

.

Note that since c1 > cj , we have that c1 − uj−1

sj−1
> 0 .

We want to prove (4.26), namely that P2 holds. Let us first prove that Pd holds, namely
that

∑

l
sd
d ≤Rs̄

l
ud−

sd
sd−1

ud−1

d = o

(

R
s̄

(

c1−
ud−1
sd−1

)
)

.

This result clearly holds if vd = ud − sd
sd−1

ud−1 ≤ −1. If vd > −1, we get from (4.24) and

(4.25) that

0 ≤
∑

l
sd
d ≤Rs̄

lvdd ≤
∫ Rs̄/sd

0

xvddx+ 2vdR
s̄
sd
vd

≤ R
s̄
sd

(1+vd) (C + o(1))

≤ R
s̄(cd−

ud−1
sd−1

)
(C + o(1))

= o

(

R
s̄

(

c1−
ud−1
sd−1

)
)

.

We now assume that Pj+1 holds and we want to prove that Pj holds. We have

Σj =
∑

l
sj
j ...l

sd
d ≤Rs̄

l
uj−

sj
sj−1

uj−1

j . . . l
ud−

sd
sj−1

uj−1

d ,

=
∑

l
sj+1
j+1 ...l

sd
d ≤Rs̄

l
uj+1−

sj+1
sj−1

uj−1

j+1 . . . l
ud−

sd
sj−1

uj−1

d

R
s̄
sj l

−

sj+1
sj

j+1 ...l
−

sd
sj

d
∑

lj=1

l
uj−

sj
sj−1

uj−1

j .
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The property Pj clearly holds if uj− sj
sj−1

uj−1 ≤ −1 (in this case, for all l ≥ j, ul − sl
sj−1

uj−1 ≤
−1). If uj − sj

sj−1
uj−1 > −1, we use (4.24) to obtain

Σj ≤
∑

l
sj+1
j+1 ...l

sd
d ≤Rs̄

l
uj+1−

sj+1
sj−1

uj−1

j+1 . . . l
ud−

sd
sj−1

uj−1

d

∫ R
s̄
sj l

−

sj+1
sj

j+1 ...l
−

sd
sj

d

0

x
uj−

sj
sj−1

uj−1
dx

+C
∑

l
sj+1
j+1 ...l

sd
d ≤Rs̄

l
uj+1−

sj+1
sj−1

uj−1

j+1 . . . l
ud−

sd
sj−1

uj−1

d

(

R
s̄
sj l

− sj+1
sj

j+1 . . . l
− sd

sj

d

)uj−
sj

sj−1
uj−1

,

≤ 1

1 + uj − sj
sj−1

uj−1

R
s̄(cj−

uj−1
sj−1

) ∑

l
sj+1
j+1 ...l

sd
d ≤Rs̄

l
uj+1−cjsj+1

j+1 . . . l
ud−cjsd
d

+CR
s̄
sj

(uj−
sj

sj−1
uj−1)

∑

l
sj+1
j+1 ...l

sd
d ≤Rs̄

l
uj+1−uj

sj+1
sj

j+1 . . . l
ud−uj

sd
sj

d .

Since uj+1 − cjsj+1 < −1, the first series converges as R → +∞ and the first term is

O(R
s̄(cj−

uj−1
sj−1

)
) which is o(R

s̄(c1−
uj−1
sj−1

)
) since cj < c1. The second sum is Σj+1 which is

o(R
s̄(c1−

uj
sj

)
) as R → +∞ since we have assumed that Pj+1 holds. We then obtain that

the second term is o(R
s̄(c1−

uj−1
sj−1

)
) as R → +∞, which leads to the property Pj .

�

Lemma 2 Let

J1(R) = 2d
∑

l1,...,ld∈N∗

∗

l4t11 . . . l4tdd (1−R−2s̄l2s11 . . . l2sdd )+.

where s̄ = s1 + . . .+ sd. Let for j = 1, . . . d, cj = (1 + 4tj)/sj.
Assume that c1 > c2 > . . . > cd. Then we have

J1(R) ∼R→∞ 2dRs̄c1

(

2s1
(1 + 4t1)(1 + 4t1 + 2s1)

) d
∏

j=2

ζ (c1sj − 4tj) .

Proof of Lemma 2. The proof follows directly from Lemma 1 and easy computations
by noticing that

J1(R) = 2d
(

S(4t, s, R)− R−2s̄S(4t+ 2s, s, R)
)

.

�
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Lemma 3 Let

J2(R) = 2dR−2s̄
∑

l1,...,ld∈N∗

∗

l4t1+2s1
1 . . . l4td+2sd

d (1−R−2s̄l2s11 . . . l2sdd )+.

where s̄ = s1 + . . .+ sd. Let for j = 1, . . . d, cj = (1 + 4tj)/sj.
Assume that c1 > c2 > . . . > cd. Then we have

J2(R) ∼R→∞ 2dRs̄c1

(

2s1
(1 + 4t1 + 2s1)(1 + 4t1 + 4s1)

) d
∏

j=2

ζ (c1sj − 4tj) .

Proof of Lemma 3. The proof follows directly from Lemma 1 and easy computations
by noticing that

J2(R) = 2dR−2s̄
(

S(4t+ 2s, s, R)− R−2s̄S(4t+ 4s, s, R)
)

.

�

Lemma 4 Let

J0(R) = 2d
∑

l1,...,ld∈N∗

∗

l4t11 . . . l4tdd (1−R−2s̄l2s11 . . . l2sdd )2+ = J1(R)− J2(R).

where s̄ = s1 + . . .+ sd. Let for j = 1, . . . d, cj = (1 + 4tj)/sj.
Assume that c1 > c2 > . . . > cd. Then we have

J0(R) ∼R→∞ 2dRs̄c1

(

8s21
(1 + 4t1)(1 + 4t1 + 2s1)(1 + 4t1 + 4s1)

) d
∏

j=2

ζ (c1sj − 4tj) .

From the above lemmas, we can derive a separation rate for signal detection in this
framework. Indeed,

r2ǫ = R−2s̄J1(R)

J2(R)
= R−2s̄D1

D2
,

where Ji(R) ∼R→∞ DiR
s̄c1 for i = 0, 1, 2. Then

u2ǫ(rǫ) =

(

r4ǫ
ǫ4

)

J0(R)

2J2
1 (R)

= C
r4+c1ǫ

ǫ4

where C = D0

2D2
1

(

D2

D1

)c1/2

. In particular u2ǫ(rǫ) = O(1) for rǫ = r∗ǫ ∼ ǫ
4

4+c1 as ǫ→ 0.
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4.3 Proof of Proposition 2

We consider the case where

bl =

d
∏

j=1

l
−tj
j and al =

d
∏

j=1

eslj , ∀l ∈ N
d
∗.

Remark that we are in an isotropic framework, i.e. sj = s for all j ∈ {1, . . . , d}. As in
the other cases, we start with the computation of J1. Using our assumption and setting
A = e−2su we obtain

J1 =
∑

l∈Nd
∗

b−4
l (1− Aa2l ),

=
∑

l∈Nd
∗

d
∏

j=1

l
4tj
j

(

1− e2
∑d

j=1 slj−2su
)

+
,

=
∑

∑d
j=1 lj≤u

d
∏

j=1

l
4tj
j

(

1− e2
∑d

j=1 slj−2su
)

+
,

= J ′
1 − J1”.

Simple algebra leads to

J ′
1 :=

∑

∑d
j=1 lj≤u

d
∏

j=1

l
4tj
j ,

= u
∑d

j=1(4tj+1)
∑

∑d
j=1(lj/u)≤1

d
∏

j=1

(

lj
u

)4tj d
∏

j=1

1

u
,

= C1u
∑d

j=1(4tj+1)

∫

Rd

d
∏

j=1

x
4tj
j 1{∑d

j=1 xj≤1}dx(1 + o(1)) as u→ +∞.
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Now, we prove that J1” = J1 × o(1) as u → +∞. Let δ ∈ (0, 1) a term whose value will
be made precise later on. We can write that

J1” :=
∑

∑d
j=1 lj≤u

d
∏

j=1

l
4tj
j e2

∑d
j=1 slj−2su,

=
∑

∑d
j=1 lj≤δu

d
∏

j=1

l
4tj
j e2

∑d
j=1 slj−2su +

∑

δu≤
∑d

j=1 lj≤u

d
∏

j=1

l
4tj
j e2

∑d
j=1 slj−2su,

≤ es(2δu−2u)
∑

∑d
j=1 lj≤δu

d
∏

j=1

l
4tj
j +

∑

δu≤
∑d

j=1 lj≤u

d
∏

j=1

l
4tj
j ,

∼ e−2su(1−δ)
∑

∑d
j=1 lj≤δu

d
∏

j=1

l
4tj
j +

d
∏

j=1

u4tj+1

∫

Rd

d
∏

j=1

x
4tj
j 1{δ≤

∑d
j=1 xj≤1}dx,

= J ′
1 × o(1) as u → +∞,

setting for instance δ = δu = 1− u−1/2.

The computation of J2 follows essentially the same lines. First remark that

J2 =
∑

l∈Nd
∗

b−4
l Aa2l (1−Aa2l )+,

=
∑

l∈Nd
∗

b−4
l Aa2l −

∑

l∈Nd
∗

b−4
l A2a4l ,

:= J ′
2 + J2”.

In a first time, we study J ′
2:

J ′
2 :=

∑

∑d
j=1 lj≤u

d
∏

j=1

l
4tj
j e2s(

∑d
j=1 lj−u),

=
u
∑

m=0

∑

∑d
j=2 lj≤m

(

m−
d
∑

j=2

lj

)4t1 d
∏

j=2

l
4tj
j e2s(m−u),

=
u
∑

m=0

e−2s(u−m)m
∑d

j=1(4tj+1)−1
∑

∑d
j=2 lj/m≤1

(

1−
d
∑

j=2

lj
m

)4t1 d
∏

j=2

(

lj
m

)4tj 1

md−1
,

=
u
∑

m=0

e−2s(u−m)m
∑d

j=1(4tj+1)−1c0(m),
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where

c0(m) =
∑

∑d
j=2 lj/m≤1

(

1−
d
∑

j=2

lj
m

)4t1 d
∏

j=2

(

lj
m

)4tj 1

md−1
,

∼
∫

R+
d

d
∏

j=2

(xj)
4tj

(

1−
2
∑

j=1

xj

)4t1

1{
∑d

j=2 xj≤1}dx, as m→ +∞.

Then, setting l = u−m, we obtain

J ′
2 =

u
∑

l=0

e−2sl(u− l)
∑d

j=1(4tj+1)−1c0(u− l),

= u
∑d

j=1(4tj+1)−1
u
∑

l=0

e−2sl

(

1− l

u

)

∑d
j=1(4tj+1)−1

c0(u− l).

It is possible to prove that the sum in the above formula converges as u → +∞. Using
the same kind of algebra, we can also prove that J2” = J ′

2 × o(1) as u→ +∞. Therefore,
we obtain the following asymptotic

J2 = C2u
∑d

j=1(4tj+1)−1(1 + o(1)) as u→ +∞.

By the way, since J0 = J1 − J2,

J0 = C0u
∑d

j=1(4tj+1)(1 + o(1)) as u→ +∞.

Now, we have got all the required material in order to compute the separation rate
associated to this problem. First remark that there exists a constant C such that as
ǫ → 0,

r2ǫ = A
J1
J2

⇔ r2ǫ =
C1

C2
e−2su u

∑d
j=1(4tj+1)

u
∑d

j=1(4tj+1)−1
(1 + o(1)),

⇔ r2ǫ =
C1

C2

e−2suu(1 + o(1)),

⇔ ln(rǫ) =
1

2
ln(u

C1

C2

(1 + o(1)))− su,

The solution of the above equation satisfies u = ln(r
−1/s
ǫ )(1 + o(1)). Then, as ǫ tends to

0,

u2ǫ(rǫ) =
(rǫ
ǫ

)4 J0
2J2

1

= O(1) ⇔
(rǫ
ǫ

)4

u−
∑d

j=1(4tj+1) = O(1),

⇔
(rǫ
ǫ

)4
(

ln(r−1
ǫ )
)−

∑d
j=1(4tj+1)

= O(1), ,

⇔ rǫ ∼ ǫ
(

ln(ǫ−1)
)

∑d
j=1(tj+1/4)

.
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4.4 Proof of Proposition 3

In this case, we will assume that

bl =

d
∏

j=1

e−tj lj and al =

d
∏

j=1

esj lj ∀l ∈ N
d
∗.

Moreover, we suppose that
t1
s1
>
tj
sj
, ∀j ∈ {2, . . . , d}.

We start with the computation of the term J1 defined as

J1 =
∑

l∈Nd
∗

b−4
l (1−Aa2l )+,

=
∑

l∈Nd
∗

e4
∑d

j=1 tj lj
(

1− Ae2
∑d

j=1 sj lj
)

+
,

=
∑

∑d
j=1 sj lj≤u

e4
∑d

j=1 tj lj
(

1− Ae2
∑d

j=1 sj lj
)

,

setting A = e−2u. Then

J1 =
∑

∑d
j=1 sj lj≤u

e4
∑d

j=1 tj lj − A
∑

∑d
j=1 sj lj≤u

e
∑d

j=1 lj(4tj+2sj) := J ′
1 + J1”.

In a first time, we study J ′
1. Remark that

d
∑

j=1

sjlj ≤ u ⇔ l1 ≤
1

s1

(

u−
d
∑

j=2

sjlj

)

.

Hence

J ′
1 :=

∑

∑d
j=1 sj lj≤u

e4
∑d

j=1 tj lj ,

=
∑

∑d
j=2 sj lj≤u

e4
∑d

j=2 tj lj

s−1
1 (u−∑d

j=2 sj lj)
∑

l1=0

e4t1l1 ,

=
∑

∑d
j=2 sj lj≤u

e4
∑d

j=2 tj lje
4
t1
s1

(u−
∑d

j=2 sj lj)

s−1
1 (u−

∑d
j=2 sj lj)

∑

l1=0

e4t1(l1−s
−1
1 (u−

∑d
j=2 sj lj)),

=
∑

∑d
j=2 sj lj≤u

e4
∑d

j=2 tj lje
4
t1
s1

(u−
∑d

j=2 sj lj)H
(

(u−
d
∑

j=2

sjlj), s1, t1

)

,
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where

H (x, s1, t1) :=

s−1
1 x
∑

l1=0

e4t1(l1−s
−1
1 x) = O(1) as x→ +∞.

We obtain

J ′
1 = e

4
t1
s1
u

∑

∑d
j=2 sj lj≤u

e4
∑d

j=2 tj lje
−4

t1
s1

∑d
j=2 sj lj)H

(

(u−
d
∑

j=2

sjlj), s1, t1

)

,

= e
4
t1
s1
u

∑

∑d
j=2 sj lj≤u

e
−4

∑d
j=2 sj lj

(

t1
s1

− tj
sj

)

H
(

(u−
d
∑

j=2

sjlj), s1, t1

)

,

= e
4
t1
s1
u
c1(u),

where c1(u) = O(1) as u → +∞. We are now interested in the computation of the term
J1” defined as

J1” = A
∑

∑d
j=1 sj lj≤u

e
∑d

j=1 lj(4tj+2sj),

= A
∑

∑d
j=2 sj lj≤u

e
∑d

j=2 lj(4tj+2sj)

s−1
1 (u−

∑d
j=2 sj lj)

∑

l1=0

e(4t1+2s1)l1 ,

= A
∑

∑d
j=2 sj lj≤u

e
∑d

j=2 lj(4tj+2sj)e(4t1+2s1)s
−1
1 (u−

∑d
j=2 sj lj)

×
s−1
1 (u−

∑d
j=2 sj lj)

∑

l1=0

e(4t1+2s1)(l1−s−1
1 (u−

∑d
j=2 sj lj)),

= Ae
4
t1
s1
u
e2u

∑

∑d
j=2 sj lj≤u

e
∑d

j=2 lj(4tj+2sj)e−(4t1+2s1)s
−1
1

∑d
j=2 sj lj

×H1

(

(u−
d
∑

j=2

sjlj), s1, t1

)

,

where

H1(x, s1, t1) =

x
∑

l1=0

e(4t1+2s1)(l1−x) = O(1), as x→ +∞.
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Therefore, since A = e−2u

J1” = e
4
t1
s1
u

∑

∑d
j=2 sj lj≤u

e
∑d

j=2 lj{(4tj+2sj)−(4t1+2s1)s
−1
1 sj}H1

(

(u−
d
∑

j=2

sjlj), s1, t1

)

,

= e
4
t1
s1
u

∑

∑d
j=2 sj lj≤u

e
−4

∑d
j=2 sj lj

(

t1
s1

− tj
sj

)

H1

(

(u−
d
∑

j=2

sjlj), s1, t1

)

,

= e
4
t1
s1
u
c1(u),

where c1(u) = O(u) as u→ +∞. We finally obtain the asymptotic

J1 ∼ e
4
t1
s1
u
, as u → +∞.

Using the same algebra, we obtain

J2 ∼ J0 ∼ e
4
t1
s1
u
, as u → +∞.

We can now study the separation rate associated to this framework. Since J1 and J2 are
of the same order, we get that A = r2ǫ . Then, as ǫ→ 0,

u2ǫ(rǫ) = O(1) ⇔
(rǫ
ǫ

)4

e
−2

t1
s1
u
= O(1),

⇔
(rǫ
ǫ

)4

A
2
t1
s1
u
= O(1),

⇔ r
4(1+

t1
s1

)

ǫ ∼ ǫ4,

⇔ rǫ ∼ ǫ
s1

s1+t1 .

4.5 Proof of Proposition 4

In order to establish the separation rates related to this setting, we first need the following
lemma.

Lemma 5 Let d ∈ N be fixed and assume that

t1 > tj ∀j ∈ {2, . . . , d}.

Then, there exists a constant Cd such that

∑

∏d
j=1 lj≤S

e4
∑d

j=1 tj lj = Cde4t1S(1 + o(1)) as S → +∞. (4.27)
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Proof. Clearly, (4.27) holds when d is equal to 1. Now, assume that equation (4.27)
holds for d − 1. In such case, we prove that the same property holds for d, which will
complete the proof of the lemma. In a first time, remark that

∑

∏d
j=1 lj≤S

e4
∑d

j=1 tj lj =
∑

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj ×
S
∏d−1

j=1 l
−1
j

∑

ld=1

e4tdld,

=
∑

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j ×

S
∏d−1

j=1 l
−1
j

∑

ld=1

e4td(ld−S
∏d−1

j=1 l
−1
j ),

=
∑

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S

d−1
∏

j=1

l−1
j

)

,

where

c1(U) :=

U
∑

ld=1

e4td(ld−U) = O(1) as U → +∞.

Then, given a constant γ ∈]0, 1[, the sum of interest can be decomposed as follows

∑

∏d
j=1 lj≤S

e4
∑d

j=1 tj lj =
∑

1≤∏d−1
j=1 lj≤(1−γ)S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S

d−1
∏

j=1

l−1
j

)

+
∑

(1−γ)S≤
∏d−1

j=1 lj≤S−
√
S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S

d−1
∏

j=1

l−1
j

)

+
∑

S−
√
S≤

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S
d−1
∏

j=1

l−1
j

)

,

:= T1 + T2 + T3.

We start we the control of the term T1. Using simple algebra, we get that

T1 :=
∑

1≤
∏d−1

j=1 lj≤(1−γ)S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S

d−1
∏

j=1

l−1
j

)

,

≤ Ce4tdS
∑

1≤
∏d−1

j=1 lj≤(1−γ)S

e4
∑d−1

j=1 tj lj ≤ Ce4tdS+4(1−γ)t1S,

where for the last inequality, we have used the hypothesis that equation (4.27) holds for
d− 1. Then, we can remark that

T1 = O(e4tdS+4(1−γ)t1S) = o(e4t1S) as S → +∞,
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as soon as

4t1(1− γ)S + 4tdS < 4t1S ⇔ 1 > γ >
td
t1
.

Now, we turn our attention to the term T2. Assuming that equation (4.27) holds for d−1,
we get that

T2 :=
∑

(1−γ)S≤
∏d−1

j=1 lj≤S−
√
S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S
d−1
∏

j=1

l−1
j

)

,

≤ C
∑

1≤
∏d−1

j=1 lj≤S−
√
S

e4
∑d−1

j=1 tj lj+4td(1−γ)−1

,

= O(e4t1(S−
√
S)) = o(e4t1S), as S → +∞.

Once again, if one assume that equation (4.27) holds for d − 1, we obtain that the term
T3 defined as

T3 :=
∑

S−
√
S≤

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj+4tdS
∏d−1

j=1 l
−1
j × c1

(

S

d−1
∏

j=1

l−1
j

)

can be surrunded as follows

e4td
∑

S−
√
S≤

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj × c1

(

S

d−1
∏

j=1

l−1
j

)

≤ T3 ≤ e4tdS/(S−
√
S)

∑

S−
√
S≤

∏d−1
j=1 lj≤S

e4
∑d−1

j=1 tj lj × c1

(

S
d−1
∏

j=1

l−1
j

)

,

⇔ T3 = Cde4t1S(1 + o(1)) as S → +∞.

The proofs is a direct consequence on successive asymptotics of T1, T2 and T3.

�
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Now, we can start the proof of Proposition 4 with the control of the term J1. In a
first time, set S = A−1/2s and remark that

J1 =
∑

l∈Nd

e4
∑d

j=1 tj lj

(

1−A

d
∏

j=1

l2sj

)

+

,

=
∑

∏d
j=2 lj≤S

S
∏d

j=2 l
−1
j

∑

l1=1

e4
∑d

j=1 tj lj

(

1− A

d
∏

j=1

l2sj

)

+

,

=
∑

∏d
j=2 lj≤S

e4
∑d

j=2 tj lj

S
∏d

j=2 l
−1
j

∑

l1=1

e4t1l1

(

1− A

d
∏

j=1

l2sj

)

+

,

=
∑

∏d
j=2 lj≤S

e4
∑d

j=2 tj lj+4t1S
∏d

j=2 l
−1
j × c0

(

S
d
∏

j=2

l−1
j , t1

)

,

where

c0 (R, t1) =
R
∑

l=1

e4t1(l−R)

(

1−
(

l

R

)2s
)

.

In particular, we have

c0 (R, t1) =
R
∑

m=1

e−4t1m

(

1−
(

1− m

R

)2s
)

,

=

√
R
∑

m=1

e−4t1m

(

1−
(

1− m

R

)2s
)

+

R
∑

m=
√
R

e−4tdm

(

1−
(

1− m

R

)2s
)

,

=

√
R
∑

m=1

e−4t1m

(

2
m

R
+O

(

m2

R2

))

+O
(

e−4t1
√
R
)

, as R→ +∞,

= O
(

R−1
)

, as R → +∞.

Now, we can concentrate our attention on the control of the term J1. The sum in J1 will
be decomposed in two terms, namely

J1 =







∑

1≤
∏d

j=2 lj≤
√
S

+
∑

√
S≤

∏d
j=2 lj≤S






e4

∑d
j=2 tj lj+4t1S

∏d
j=2 l

−1
j × c0

(

S

d
∏

j=2

l−1
j , t1

)

,

:= J1,1 + J1,2.
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Then, using Lemma 5, and the fact that the function c0 is upper bounded,

J1,2 :=
∑

√
S≤

∏d
j=2 lj≤S

e4
∑d

j=2 tj lj+4t1S
∏d

j=1 l
−1
j × c0

(

S
d
∏

j=2

l−1
j , t1

)

,

≤ Ce4t1
√
S

∑

1≤∏d
j=2 lj≤S

e4
∑d

j=2 tj lj ,

= Ce4t1
√
S × o(e4t1S) = o(e4t1S) as S → +∞,

Then,

J1,1 :=
∑

∏d
j=2 lj≤

√
S

e4
∑d

j=2 tj lj+4t1S
∏d

j=2 l
−1
j × c0

(

S

d
∏

j=2

l−1
j , t1

)

,

= e4
∑d

j=2 tj+4t1S × c0

(

S
d
∏

j=2

l−1
j , t1

)

,

+
∑

2≤
∏d

j=2 lj≤
√
S

e4
∑d

j=2 tj lj+4t1S
∏d

j=2 l
−1
j × c0

(

S
d
∏

j=2

l−1
j , t1

)

,

= J ′
1,1 + J1,1”.

Then, we can remark that

J ′
1,1 = C1,d

e4t1S

S
(1 + o(1)), as S → +∞,

while

J1,1” =
∑

2≤
∏d

j=2 lj≤
√
S

e4
∑d

j=2 tj lj+4t1S
∏d

j=2 l
−1
j ×c0

(

S

d
∏

j=2

l−1
j , t1

)

≤ Ce2t1S×o(e4t1
√
S) = o(e4t1S),

as S → +∞. Finally,

J1 = C1,d
e4t1S

S
(1 + o(1)) as S → +∞.

Using the same kind of algebra, we can then prove that

J2 := A
∑

k∈Nd
∗

a2kb
−4
k (1−Aa2k)+ := C1,d

e4t1S

S
(1 + o(1)) as S → +∞,

and

J0 :=
∑

k∈Nd
∗

b−4
k (1− Aa2k)

2
+ := C0,d

e4t1S

S2
(1 + o(1)) as S → +∞,
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for some explicit constant C0,d.

In order to conclude the proof, we have to determine the minimax separation rate r⋆ǫ .
Thanks to the asymptotics of J0, J1 and J2 established above, we get

r2ǫ = A
J1
J2

= A(1 + o(1)) as A→ 0.

Hence, as ǫ→ 0,

u2ǫ(rǫ) ∼ 1 ⇔ ǫ−4A
2

J2
2

J0 ∼ 1 ⇔ r4ǫe
−4t1r

−1/2s
ǫ ∼ 1.

In particular,

r⋆ǫ ∼
(

1

4t1
ln

(

1

ǫ4

))−2s

as ǫ→ 0,

but we do not get sharp separation rates.

4.6 Proof of Proposition 5

We here consider the case where

b2l =
d
∏

j=1

l
−2tj
j and a2l =

d
∑

j=1

l
2sj
j , ∀l ∈ N

d
∗.

We begin the proof with the study of J1 defined as

J1 = 2d
∑

l1,...,ld∈N∗

d
∏

j=1

l
4tj
j

(

1−A

d
∑

j=1

l
2sj
j

)

+

.

Setting A = R
−2sj
j for all j ∈ {1, . . . , d} and D =

∏d
j=1R

1+4tj
j , we get

J1 = 2dD
∑

l1,...,ld∈N∗

∗

d
∏

j=1

(

lj
Rj

)4tj
(

1−
d
∑

j=1

(

lj
Rj

)2sj
)

+

d
∏

j=1

(

1

Rj

)

.

Hence we have

J1 ∼R1,...,Rd→∞ D2d
∫

(R+)d

d
∏

j=1

x
4tj
j

(

1−
d
∑

j=1

x
2sj
j

)

+

dx1 . . . dxd.

We set C1 = 2d
∫

(R+)d

∏d
j=1 x

4tj
j (1−∑d

j=1 x
2sj
j )+dx1 . . . dxd.

C1 =
1

s1 . . . sd

∫

(R+)d

d
∏

j=1

v

4tj
2sj

j

(

1−
d
∑

j=1

vj

)

+

d
∏

j=1

v
1

2sj
−1

j dv1 . . . dvd

=
1

s1 . . . sd

∫

Td

d
∏

j=1

v

4tj+1

2sj
−1

j

(

1−
d
∑

j=1

vj

)

dv1 . . . dvd
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where Td =
{

(v1, . . . , vd), vj ≥ 0,
∑d

j=1 vj ≤ 1
}

. Let us recall Liouville’s formula :

∫

Td

φ(v1 + . . .+ vd)v
p1−1
1 . . . vpd−1

d =
Γ(p1) . . .Γ(pd)

Γ(p1 + . . .+ pd)

∫ 1

0

φ(u)up1+...+pd−1du,

where pi > 0 for i = 1, . . . , d and the integral in the right hand side is absolutely conver-
gent. Using this formula, and setting s̃ =

∑d
j=1(1 + 4tj)/sj,

C1 =

∏d
j=1 Γ

(

4tj+1

2sj

)

s1 . . . sdΓ(s̃)

∫ 1

0

(1− u)us̃−1du

=

∏d
j=1 Γ

(

4tj+1

2sj

)

s1 . . . sdΓ(s̃)

1

s̃(s̃+ 1)
.

Now, consider the term J2 defined as

J2 = 2d
∑

l1,...,ld∈N∗

∗

d
∏

j=1

l
4tj
j A

(

d
∑

j=1

l
2sj
j

)(

1− A

d
∑

j=1

l
2sj
j

)

+

.

We set A = R
−2sj
j for all j = 1, . . . , d. Setting D =

∏d
j=1R

1+4tj
j , we have

J2 = D2d
∑

l1,...,ld∈N∗

∗

d
∏

j=1

(

lj
Rj

)4tj
(

d
∑

j=1

(

lj
Rj

)2sj
)(

1−
d
∑

j=1

(

lj
Rj

)2sj
)

+

d
∏

j=1

(

1

Rj

)

.

Hence we have

J2 ∼R1,...,Rd→∞ D2d
∫

(R+)d

d
∏

j=1

x
4tj
j

(

d
∑

j=1

x
2sj
j

)(

1−
d
∑

j=1

x
2sj
j

)

+

dx1 . . . dxd.

Setting

C2 = 2d
∫

(R+)d

d
∏

j=1

x
4tj
j (

d
∑

j=1

x
2sj
j )(1−

d
∑

j=1

x
2sj
j )+dx1 . . . dxd.

we get, using similar computations as above

C2 =

∏d
j=1 Γ

(

4tj+1

2sj

)

s1 . . . sdΓ(s̃)

1

(s̃+ 1)(s̃+ 2)
.

In the same manner, we have
J2 ∼R1,...,Rd→∞ DC0

with

C0 =

∏d
j=1 Γ

(

4tj+1

2sj

)

s1 . . . sdΓ(s̃)

2

s̃(s̃+ 1)(s̃+ 2)
.
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Let us now determine a separation rate in this framework.

r2ǫ = A
J1
J2

= R−2sj
C1

C2
,

hence Rj =
(

C1

C2

)1/(2sj )

r
−1/sj
ǫ .

u2ǫ(rǫ) =

(

r4ǫ
ǫ4

)

J0
2J2

1

=

(

r4ǫ
ǫ4

)

C0

2C2
1D

.

D =

d
∏

j=1

R
1+4tj
j =

d
∏

j=1

(

C1

C2

)

1+4tj
2sj

r
− (1+4tj )

sj
ǫ .

This leads to

u2ǫ(rǫ) = Cǫ−4r
4+

∑d
j=1

(1+4tj)

sj
ǫ .

with C = C0

2C2
1

(

C2

C1

)s̃

. In particular u2ǫ(rǫ) = O(1) for rǫ = r∗ǫ = ǫ
4/

(

4+
∑d

j=1

(1+4tj)

sj

)

.

4.7 Proof of Proposition 6

In this case, we have

bl =

d
∏

j=1

e−tj lj , and al =

(

d
∑

j=1

lj

)s

, ∀l ∈ N
d
∗.

Remark that we consider an isotropic framework: the regularity is the same for all the d
directions.

We start with the computation of J1 defined as

J1 =
∑

l∈Nd
∗

b−4
l (1−Aa2l )+,

=
∑

l∈Nd
∗

e4
∑d

j=1 tj lj



1− A

(

d
∑

j=1

lj

)2s




+

,

=
∑

∑d
j=1 lj≤R

e4
∑d

j=1 tj lj



1− A

(

d
∑

j=1

lj

)2s


 ,
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where R := A−1/2s. Setting m =
∑d

j=1 lj, we get

J1 =
R
∑

m=0

∑

∑d
j=2 lj≤m

e4t1m+4
∑d

j=2 lj(tj−t1)(1−Am2s),

=
R
∑

m=0

e4t1m(1− Am2s)







∑

∑d
j=2 lj≤m

e4
∑d

j=2 lj(tj−t1)






,

=

R
∑

m=0

e4t1m(1− Am2s)c0(m),

where
c0(m) =

∑

∑d
j=2 lj≤m

e4
∑d

j=2 lj(tj−t1), ∀m ∈ N.

Since we have assumed that t1 > tj for all j ≥ 2, c0(m) = O(1) asm→ +∞. Let δ ∈ [0, 1]
be a constant which will be made precise later on. We can write that

J1 =

R
∑

m=0

e4t1m
(

1−
(m

R

)2s
)

c0(m),

= e4t1R
R
∑

m=0

e4t1(m−R)

(

1−
(

1 +
m− R

R

)2s
)

c0(m),

= e4t1R
R
∑

l=0

e−4t1l

(

1−
(

1− l

R

)2s
)

c̃0(l),

= e4t1R
δR
∑

l=0

e−4t1l

(

1−
(

1− l

R

)2s
)

c̃0(l) + e4t1R
R
∑

l=δR

e−4t1l

(

1−
(

1− l

R

)2s
)

c̃0(l),

:= T1 + T2.

Concerning the term T2, using simple algebra, we get that

T2 := e4t1R
R
∑

l=δR

e−4t1l

(

1−
(

1− l

R

)2s
)

c̃0(l),

≤ e4t1RCe−4t1δR ≤ Ce4t1(1−δ)R.

In order to compute T1, we will use the Taylor expansion

(

1− l

R

)2s

= 1− 2s
l

R
+O

(

l2

R2

)

.
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We obtain

T1 := e4t1R
δR
∑

l=0

e−4t1l

(

1−
(

1− l

R

)2s
)

c̃0(l),

= e4t1R
δR
∑

l=0

e−4t1l

(

2s
l

R
+O

(

l2

R2

))

c̃0(l),

=
2s

R
e4t1R

(

δR
∑

l=0

e−4t1llc̃0(l) +
O(1)

2sR

δR
∑

l=0

e−4t1ll2c̃0(l)

)

,

=
2s

R
e4t1R∆(R, t1)(1 + o(1)).

Hence

J1 = 2s∆(R, t1)
e4t1R

R
(1 + o(1)), as R → +∞,

since ∆(R, t1) = O(1) as R → +∞. Using the same algebra, we obtain

J2 =
∑

l∈Nd
∗

b−4
l Aa2l (1− Aa2l )+,

=

R
∑

m=0

e4mt1
(m

R

)2s
(

1−
(m

R

)2s
)

c0(m),

=

R
∑

m=0

e4mt1
(m

R

)2s

c0(m)−
R
∑

m=0

e4mt1
(m

R

)4s

c0(m),

=
R
∑

m=0

e4mt1
(

1−
(m

R

)2s
)

c0(m)−
R
∑

m=0

e4mt1
(

1−
(m

R

)4s
)

c0(m),

= 4s∆(R, t1)
e4t1R

R
(1 + o(1))− 2s∆(R, t1)

e4t1R

R
(1 + o(1)),

= 2s∆(R, t1)
e4t1R

R
(1 + o(1)).

Remark that we obtain exactly the same asymptotics for J1 and J2 which indicates the
presence of sharp separation rates. Concerning the term J0, we can prove that

J0 =
∑

l∈Nd
∗

b−4
l (1− Aa2l )

2
+,

=

R
∑

m=0

e4t1m
(

1−
(m

R

))2

c0(m),

= 4s2∆̃(R, t1)
e4t1R

R2
(1 + o(1)), as R → +∞.
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In order to find the corresponding separation rates, we have to solve

r2ǫ = A
J1
J2
, and u2ǫ(rǫ) =

(rǫ
ǫ

)4 J0
2J2

1

.

First remark that

r2ǫ = A
J1
J2

⇔ r2ǫ ∼ A⇔ r2ǫ ∼ R−2s ⇔ R ∼ r−1/s
ǫ .

Hence
(rǫ
ǫ

)4 J0
2J2

1

=
r4ǫ
ǫ4
e−4t1r

−1/s
ǫ

Hence, if rǫ = (C log(1/ǫ))−s with C > 1/t1, then u2ǫ(rǫ) → +∞ as ǫ → 0. If rǫ =
(C log(1/ǫ))−s with C ≤ 1/t1, then u

2
ǫ(rǫ) → 0.
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