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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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The Stein hull

Clément MARTEAU

Institut de Mathématiques, Université de Toulouse,
INSA - 135, avenue de Rangueil,

F-31 077 Toulouse Cedex 4, France.

Abstract

We are interested in the statistical linear inverse problem Y = Af + ǫξ, where A

denotes a compact operator and ǫξ a stochastic noise. In this setting, the risk hull

point of view provides interesting tools for the construction of adaptive estimators.

It sheds light on the processes governing the behaviour of linear estimators. In this

paper, we investigate the link between some threshold estimators and this risk hull

point of view. The penalized blockwise Stein rule plays a central role in this study.

In particular, this estimator may be considered as a risk hull minimization method,

provided the penalty is well-chosen. Using this perspective, we study the properties

of the threshold and propose an admissible range for the penalty leading to accu-

rate results. We eventually propose a penalty close to the lower bound of this range.

Keywords: Inverse problem - oracle inequality - risk hull - penalized block-

wise Stein rule

Mathematical Subject Classification (2000): 62G05 - 62G20

1 Introduction

This paper deals with the statistical inverse problem

Y = Af + ǫξ, (1)

where H,K are Hilbert spaces and A : H → K denotes a linear operator. The function
f ∈ H is unknown and has to be recovered from a measurement of Af corrupted by some
stochastic noise ǫξ. Here, ǫ represents a positive noise level and ξ a Gaussian white noise
(see [15] for more details). In particular, for all g ∈ K, we can observe

〈Y, g〉 = 〈Af, g〉 + ǫ〈ξ, g〉, (2)
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where 〈ξ, g〉 ∼ N (0, ‖g‖2). Denote by A⋆ the adjoint operator of A. In the sequel,
A is supposed to be a compact operator. Such a restriction is very interesting from
a mathematical point of view. The operator (A⋆A)−1 is unbounded: the least square
solution f̂LS = (A⋆A)−1A⋆Y does not continuously depend on Y . The problem is said to
be ill-posed.

In a statistical context, several studies of ill-posed inverse problems were proposed in
recent years. It would be however impossible to cite them all. For the interested reader,
we may mention [13] and [12] for convolution operators, [16] for the positron emission
tomography problem, [9] in a wavelet setting, or [2] for a general statistical approach and
some rates of convergence. We refer also to [11] for a survey in a numerical setting.

Using a specific representation (i.e. particular choices for g in (2)) may help the
understanding of the model (1). In this sense, the classical singular value decomposition
(SVD) is a very useful tool. Since A⋆A is compact and self-adjoint, the associated sequence
of eigenvalues (b2k)k∈N is strictly positive and converges to 0 as k → +∞. The sequence
of eigenvectors (φk)k∈N is supposed in the sequel to be an orthonormal basis of H. For all
k ∈ N, set ψk = b−1

k Aφk. The triple (bk, φk, ψk)k∈N verifies

{

Aφk = bkψk,
A⋆ψk = bkφk,

(3)

for all k ∈ N. This representation leads to a simpler understanding of the model (1).
Indeed, for all k ∈ N, using (3) and the properties of the Gaussian white noise,

yk = 〈Y, ψk〉 = 〈Af, ψk〉 + ǫ〈ξ, ψk〉 = bk〈f, φk〉 + ǫξk, (4)

where the ξk are i.i.d. standard Gaussian variables. Hence, for all k ∈ N, we can obtain
from (1) an observation on θk = 〈f, φk〉. In the ℓ2-sense, θ = (θk)k∈N and f represent the
same mathematical object. The sequence space model (4) clarifies the effect of A on the
signal f . Since A is compact, bk → 0 as k → +∞. For large values of k, the coefficients
bkθk are negligible compared to ǫξk. In a certain sense, the signal is smoothed by the
operator. The recovery becomes difficult in the presence of noise for large ’frequencies’,
i.e. when k is large.

Our aim is to estimate the sequence (θk)k∈N = (〈f, φk〉)k∈N. The linear estimation
plays an important role in the inverse problem framework and is a starting point for
several recovering methods. Let (λk)k∈N be a real sequence with values in [0, 1]. In the
following, this sequence will be called a filter. The associated linear estimator is defined
by

f̂λ =
+∞
∑

k=1

λkb
−1
k ykφk.
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In the sequel, f̂λ may be sometimes identified with θ̂λ = (λkb
−1
k yk)k∈N. The meaning will

be clear from the context. The error related to f̂λ is measured through the quadratic risk
Eθ‖f̂λ − f‖2. Given a family of estimators T , we would like to construct an estimator θ⋆

comparable to the best possible one contained in T (called the oracle), via the inequality

Eθ‖θ
⋆ − θ‖2 ≤ (1 + ϑǫ)Eθ‖θT − θ‖2 + Cǫ2, (5)

with ϑǫ, C > 0. The quantity Cǫ2 is a residual term. The inequality (5) is said to
be sharp if ϑǫ → 0 as ǫ → 0. In this case, θ⋆ asymptotically mimics the behaviour
of θT . Oracle inequalities play an important, though recent role in statistics. They
provide a precise and non-asymptotic measure on the performances of θ⋆, which
does not require a priori informations on the signal. In several situations, oracle
results lead to interesting minimax rates of convergence. This theory has given rise to
a considerable amount of literature. We mention in particular [9], [1], [6] or [3] for a survey.

The risk hull minimization (RHM) principle, initiated in [5] for spectral cut-off (or
projection) schemes, is an interesting approach for the construction of data-driven pa-
rameter choice rules. The principle is to identify the stochastic processes that control
the behaviour of a projection estimator. Then, a deterministic criterion, called a hull, is
constructed in order to contain these processes. We also mention [18] for a generalization
of this method to some other regularization approaches (Tikhonov, Landweber,...).

In this paper, our aim is to establish a link between the RHM approach and some
specific threshold estimators. We are interested in the family of blockwise constant filters.
In this specific case, this approach leads to the penalized blockwise Stein rule studied
for instance in [8]. This is a new perspective for this well-known threshold estimator.
In particular, the risk hull point of view make precise the role of the penalty through a
simple and general assumption.

This paper is organized as follows. In Section 2, we construct a hull for the family of
blockwise constant filters. Section 3 establishes a link between the penalized blockwise
Stein rule and the risk hull method, and investigates the performances of the related
estimator. Section 4 proposes some examples and a discussion on the choice of the penalty.
Some results on the theory of ordered processes and the proofs of the main results are
gathered in Section 5.

2 A risk hull for blockwise constant filters

In this section, we recall the risk hull minimization approach for projection schemes.
Then, we explain why an extension of the RHM method may be pertinent. A specific
family of estimators is introduced and the related hull is constructed.
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2.1 The risk hull principle

For all N ∈ N, denote by θ̂N the projection estimator associated to the filter
(1{k≤N})k∈N. For each value of N ∈ N, the related quadratic risk is

Eθ‖θ̂N − θ‖2 =
∑

k>N

θ2
k + Eθ

N
∑

k=1

(b−1
k yk − θk)

2 =
∑

k>N

θ2
k + ǫ2

N
∑

k=1

b−2
k . (6)

The optimal choice for N is the oracle N0 that minimizes Eθ‖θ̂N − θ‖2. It is a trade-off
between the two sums (bias and variance) in the r.h.s. of (6). This trade-off cannot be
found without a priori knowledge on the unknown sequence θ. Data-driven choices for N
are necessary.

The classical unbiased risk estimation (URE) approach consists in estimating the
quadratic risk. One may use the functional

U(y,N) = −
N
∑

k=1

b−2
k y2

k + 2ǫ2
N
∑

k=1

b−2
k , ∀N ∈ N.

The related adaptive bandwidth is defined as

Ñ = arg min
N∈N

U(y,N).

Some oracle inequalities related to this approach have been obtained in different papers
(see for instance [6]). Nevertheless, this approach suffers from some drawbacks, especially
in the inverse problem framework.

Indeed, this method is based on the average behaviour of the projection estimators:
U(y,N) is an estimator of the quadratic risk. This is quite problematic in the inverse
problem framework where the main quantities of interest often possesses a great variability.
This can be illustrated by a very simple example: f = 0. In this particular case, for all
N ∈ N, the loss of the related projection estimator θ̂N is

‖θ̂N − θ‖2 = ǫ2
N
∑

k=1

b−2
k + ηN , with ηN = ǫ2

N
∑

k=1

b−2
k (ξ2

k − 1) ∀N ∈ N.

Since bk → 0 as k → +∞, the process N 7→ ηN possesses a great variability, which
explodes with N . In this case the behaviour of Eθ‖θ̂N − θ‖2 and ‖θ̂N − θ‖2 are rather
different. The variability is neglected when only considering the average behaviour of
the loss. This leads in practice to wrong decisions for the choice of N . More generally,
as soon as the signal to noise ratio is small, one may expect poor performances for the
URE method. We refer to [5] for a complete discussion illustrated by some numerical
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simulations.

From now on, the problem is to construct a data-driven bandwidth that takes into
account this phenomenon. Instead of the quadratic risk, in [5] it is proposed to consider
a deterministic term V (θ,N), called a hull, satisfying

Eθ sup
N∈N

[

‖θ̂N − θ‖2 − V (θ,N)
]

≤ 0. (7)

This hull bounds uniformly the loss in the sense of inequality (7). Ideally, it is
constructed in order to contain the variability of the projection estimators. The re-
lated estimator is then defined as the minimizer of V (y,N), an estimator of V (θ,N), on N.

The theoretical and numerical properties of this estimator are presented and discussed
in detail in [5] in the particular case of spectral cut-off regularization. In the same spirit, we
mention [18] for an extension of this method to wider regularization schemes (Landweber,
Tikhonov, ...).

2.2 The choice of Λ

In order to construct an estimator leading to an accurate oracle inequality, one
must consider both a family of filters Λ and a procedure in order to mimic the behaviour
of the best element in Λ.

We are interested in this paper in the risk hull principle. This point of view possesses
indeed interesting theoretical properties. It makes the role of the stochastic processes
involved in linear estimation more precise and leads to an accurate understanding of the
problem.

Now, we address the problem of the choice of Λ. In the oracle sense, an ideal goal
of adaptation is to obtain a sharp oracle inequality over all possible estimators. This is
in most cases an unreachable task since this set is too large. The difficulty of the oracle
adaptation increases with the size of the considered family. At a smaller scale, one may
consider Λmon, the family of linear and monotone filters defined as

Λmon =
{

λ = (λk)k∈N ∈ ℓ2 : 1 ≥ λ1 ≥ · · · ≥ λk ≥ · · · ≥ 0
}

,

The set Λmon contains the linear and monotone filters and covers most of the existing
linear procedures as the spectral cut-off, Tikhonov, Pinsker or Landweber filters (see for
instance [11] or [2]). Some oracle inequalities have been already obtained on specific sub-
sets of Λmon in [5] and [18], but we would like to consider in the same time the whole family.

The set Λmon is always rather large and obtaining an explicit estimator in this setting
seems difficult. A possible alternative is to consider a set that contains elements presenting
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a behaviour similar to the best one in Λmon, but where an estimator could be explicitly
constructed. In this sense, the collection of blockwise constant estimators is a good
candidate. In the sequel, this family will be identified to the set

Λ⋆ =
{

λ ∈ l2 : 0 ≤ λk ≤ 1, λk = λKj
, ∀k ∈ [Kj, Kj+1 − 1],

j = 0, . . . , J, λk = 0, k > N} ,

where J , N and (Kj)j=0...J are such that K0 = 1, KJ = N + 1 and Kj > Kj−1. In the
following, we will also use the notations Ij = {k ∈ [Kj−1, Kj − 1]} and Tj = Kj −Kj−1,
for all j ∈ {1, . . . , J}.

In the following, most of the results are established for a general construction of Λ⋆.
There exists several choices that may lead to interesting results. Typically, N → +∞
as ǫ → 0. It is chosen in order to capture most of the nonparametric functions with a
controlled bias (see (17) below for an example). Concerning the size (Tj)j=1...J of the
blocks, we refer to [7] for several examples.

The family Λ⋆ can easily be handled. In particular, each block Ij can be considered
independently of the other ones. This simplifies considerably the study of the considered
estimators. Moreover, for all θ ∈ ℓ2,

R(θ, λmon) = inf
λ∈Λmon

R(θ, λ) and R(θ, λ0) = inf
λ∈Λ⋆

R(θ, λ), (8)

are in fact rather close, subject to some reasonable constraints on the sequences (bk)k∈N

and (Tj)j=1...J (see Section 4 or [8] for more details).
The extension of the RHM principle to the family Λ⋆ presents other advantages. The

related estimator corresponds indeed to a threshold scheme. Hence, we will be able
to address the question of the choice of the threshold through the risk hull approach.
This may be a new perspective for the blockwise constant adaptive approach, and more
generally to this class of regularization procedures.

2.3 A risk hull for Λ⋆

First, we introduce some notations. For all j ∈ {1, . . . , J}, let ηj defined by

ηj = ǫ2
∑

k∈Ij

b−2
k (ξ2

k − 1). (9)

The random variable ηj plays a central role in blockwise constant estimation. It corre-
sponds to the main stochastic part of the loss in each block Ij. The hull proposed in
Theorem 2.1 below is constructed in order to contain these terms. Introduce also

ρǫ = max
j=1...J

√

∆j and ‖θ‖2
(j) =

∑

k∈Ij

θ2
k, ∀j ∈ {1, . . . , J}, (10)
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with

∆j =
maxk∈Ij

ǫ2b−2
k

σ2
j

, and σ2
j = ǫ2

∑

k∈Ij

b−2
k .

We will see that ρǫ → 0 as ǫ → 0 with appropriate choices of blocks and minor
assumptions on the sequence (bk)k∈N (see Section 4 for more details).

From now on, we are able to present a hull for the family Λ⋆, i.e. a deterministic
sequence (V (θ, λ))λ∈Λ⋆ verifying

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

≤ 0.

The proof of the following result is postponed to the Section 6.

Theorem 2.1 Let (penj)j=1...J a positive sequence verifying

J
∑

j=1

E
[

ηj − penj

]

+
≤ C1ǫ

2, (11)

for some positive constant C1. Then, there exists B > 0 such that

V (θ, λ) = (1 +Bρǫ)

{

J
∑

j=1

[

(1 − λKj
)2‖θ‖2

(j) + λ2
Kj
σ2

j + 2λKj
penj

]

+
∑

k>N

θ2
k

}

+C1ǫ
2 +BρǫR(θ, λ0), (12)

is a risk hull on Λ⋆.

Theorem 2.1 states in fact that the penalized quadratic risk

Rpen(θ, λ) =
J
∑

j=1

[

(1 − λKj
)2‖θ‖2

(j) + λ2
Kj
σ2

j

]

+
∑

k>N

θ2
k + 2

J
∑

j=1

λKj
penj, (13)

is, up to some constants and residual terms, a risk hull on the family Λ⋆. Hence, we will
use Rpen(θ, λ) as a criterion for the construction of a data-driven filter on Λ⋆, provided
that inequality (11) is satisfied (see Section 3).

The construction of a hull can be reduced to the choice of a penalty (penj)j=1...J ,
provided (11) is verified. A brief discussion concerning this assumption is presented in
Section 3. Some examples of penalties are presented in Section 4.
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3 Oracle inequalities

In Section 2, we have proposed a family of hulls indexed by the penalty
(penj)j=1...J . In this section, we are interested in the performances of the estimators
constructed from these hulls.

In the sequel, we set λj = λKj
for all j ∈ {1 . . . J}. This is a slight abuse of notation

but the meaning will be clear from the context. Then define

Upen(y, λ) =
J
∑

j=1

[

(λ2
j − 2λj)(‖ỹ‖

2
(j) − σ2

j ) + λ2
jσ

2
j + 2λjpenj

]

,

where
‖ỹ‖2

(j) = ǫ2
∑

k∈Ij

b−2
k y2

k, ∀j ∈ {1, . . . , J}.

The term Upen(y, λ) is an estimator of the penalized quadratic risk Rpen(θ, λ) defined in
(13). Recall that from Theorem 2.1, Rpen(θ, λ) is, up to some constant and residual terms,
a risk hull. Let θ⋆ denote the estimator associated to the filter

λ⋆ = arg min
λ∈Λ⋆

Upen(y, λ). (14)

Using simple algebra, we can prove that the solution of (14) is

λ⋆
k =







(

1 −
σ2

j +penj

‖ỹ‖2
(j)

)

+

, k ∈ Ij, j = 1 . . . J,

0 , k > N.
(15)

This filter behaves as follows. For all j ∈ {1, . . . , J}, λ⋆
j compares the term ‖ỹ‖2

(j) to

σ2
j +penj. When ‖θ‖2

(j) is ’small’ (or even equal to 0), this comparison may lead to wrong

decision. Indeed, ‖ỹ‖2
(j) is in this case close to σ2

j + ηj. The variance of the variables
ηj is very large since bk → 0 as k → +∞. Fortunately, these variables are uniformly
bounded by the penalty in the sense of (11). Hence, λ⋆

j should be close to 0 for ’small’
‖θ‖2

(j). Theorem 3.1 below emphasizes this heuristic discussion through a simple oracle
inequality.

Remark that the particular case penj = 0 for all j ∈ {1, . . . , J} leads to the unbiased
risk estimation approach. Inequality (11) does not hold in this setting.

Theorem 3.1 Let θ⋆ be the estimator associated to the filter λ⋆. Assume that inequality
(11) holds. Then, there exists C⋆ > 0 independent of ǫ such that, for all θ ∈ ℓ2 and any
0 < ǫ < 1

Eθ‖θ
⋆ − θ‖2 ≤ (1 + τǫ) inf

λ∈Λ⋆
R(θ, λ) + C⋆ǫ2,

where τǫ → 0 as ǫ→ 0 provided maxj penj/σ
2
j → 0 and ρǫ → 0 as ǫ→ 0.
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Although this result is rather general, the constraints on the blocks and the penalty
are only expressed through one inequality (here (11)). This is one of the advantages of
the RHM approach.

For the particular choice penj = ϕjσ
2
j leading to the penalized blockwise Stein rule,

we obtain a simpler assumption than in [8]. This is an interesting outcome.

We conclude this section with an oracle inequality on Λmon, the family of monotone
filters. We take advantage of the closeness between Λ⋆ and Λmon under specific conditions.
For the sake of convenience, we restrict to one specific type of blocks.

Let νǫ = ⌈log ǫ−1⌉ and κǫ = log−1 νǫ, where for all x ∈ R, ⌈x⌉ denotes the minimal
integer strictly greater than x. Define the sequence (Tj)j=1...J by

T1 = ⌈νǫ⌉, Tj = ⌈νǫ(1 + κǫ)
j−1⌉, j > 1, (16)

and the bandwidth J as

J = min{j : Kj > N̄}, with N̄ = max

{

m :
m
∑

k=1

b−2
k ≤ ǫ−2κ−3

ǫ

}

. (17)

Corollary 3.2 Assume that (bk) ∼ (k−β)k∈N for some β > 0 and that the sequence
(penj)j=1...J satisfies inequality (11). Then , for any θ ∈ ℓ2 and 0 < ǫ < ǫ1, we have:

Eθ‖θ
⋆ − θ‖2 ≤ (1 + Γǫ) inf

λ∈Λmon

R(θ, λ) + C2ǫ
2,

where C2, ǫ1 denote positive constants independent of ǫ, and Γǫ → 0 as ǫ→ 0.

The proof is a direct consequence of Lemma 1 of [8]. It can be in fact extended to other
constructions for blocks. One has only to verify that

max
j=1...J−1

σ2
j+1

σ2
j

≤ 1 + ηǫ, for 0 < ηǫ < 1/2.

The inequality is sharp if ηǫ → 0 as ǫ→ 0. The interested reader can refer to [7] for some
examples of blocks.

The results obtained in this section hold for a wide range of penalties. This range is
characterized and studied in the next section.

4 Some choices of penalty

In this section, we present two possible choices of penalty satisfying inequality (11).
Then, we present a brief discussion on the range in which this sequence can be chosen.
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The goal of this section is not to say what could be a good penalty. This question is
rather ambitious and may require more than a single paper. Our aim here is rather to
present some hint on the way it could be chosen and on the related problem.

For the sake of convenience, we use in this section the same framework of Corollary
3.2. We assume that the sequence of eigenvalues possesses a polynomial behaviour,
i.e. (bk) ∼ (k−β)k∈N for some β > 0. Concerning the set Λ⋆, we consider the weakly
geometrically increasing blocks defined in (16) and (17). All the results presented in
the sequel hold for other constructions (see for instance [7]). We leave the proof to the
interested reader. Concerning the sequence (bk)k∈N, the relaxation of the assumption on
polynomial behaviour is not straightforward. In particular, considering exponentially
decreasing eigenvalues requires a specific treatment in this setting.

Let u and v two real sequences. Here and in the sequel, for all k ∈ N, we write uk . vk

if we can find a positive constant C independent of k such that uk ≤ Cvk, and uk ≃ vk if
both uk . vk and uk & vk. Since the sequence (bk)k∈N possesses a polynomial behaviour,
we can write that for all j ∈ {1 . . . J}

σ2
j = ǫ2

∑

k∈Ij

b−2
k ≃ ǫ2K2β

j (Kj+1 −Kj),

and

∆j =
K2β

j+1

K2β
j (Kj+1 −Kj)

≃ (Kj+1 −Kj)
−1,

since Kj+1/Kj → 1 as j → +∞.

4.1 Examples

The following lemma provides upper bounds on the term Eθ[ηj − penj]+ and makes
more explicit the behaviour of the penalty. It can be used to prove inequality (11) in
several situations.

Lemma 4.1 For all j ∈ {1, . . . , J} and δ such that 0 < δ < ǫ−2b2Kj−1/2,

E[ηj − penj]+ ≤ δ−1 exp







−δpenj + δ2Σ2
j + 4δ3

∑

k∈Ij

ǫ6b−6
k

(1 − 2δǫ2b−2
Kj−1)







,

with
Σ2

j = ǫ4
∑

k∈Ij

b−4
k , ∀j ∈ {1, . . . , J}. (18)
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PROOF. Let j ∈ {1, . . . , J} be fixed. First remark that for all δ > 0

Eθ[ηj − penj]+ =

∫ +∞

penj

P (ηj ≥ t)dt,

=

∫ +∞

penj

P (exp(δηj) ≥ eδt)dt,

≤ δ−1e−δpenjEθ exp(δηj).

Then, provided 0 < δ < ǫ−2b2Kj−1
/2,

Eθ exp(δηj) ≤ exp







δ2Σ2
j + 4δ3

∑

k∈Ij

ǫ6b−6
k

(1 − 2ǫ2δb−2
k )+







.

This concludes the proof.

The principle of risk hull minimization leads to an interesting choice. The only re-
striction on (penj)j=1...J from the risk hull point of view is expressed through inequality
(11)

J
∑

j=1

Eθ

[

ηj − penj

]

+
≤ C1ǫ

2,

for some positive constant C1. Since Eθ [ηj − u]+ ≤ Eθηj1{ηj≥u} for all positive u, we may
be interested in the penalty

penj = (1 + α)Uj, with Uj = inf
{

u : Eθηj1{ηj≥u} ≤ ǫ2
}

, ∀j ∈ {1, . . . , J}, (19)

for some α > 0. This penalty is an extension of the sequence proposed by [5] for spectral
cut-off schemes.

The next corollary establishes that the sequence
(

penj

)

j=1...J
is a relevant choice for

the penalty. We obtain a sharp oracle inequality for the related estimator. In particular,
inequality (11) holds, i.e. the penalty contains the variability of the problem.

Corollary 4.2 Let θ⋆ the estimator introduced in (15) with the penalty (penj)j=1...J . Then

Eθ‖θ
⋆ − θ‖2 ≤ (1 + γǫ) inf

λ∈Λ⋆
R(θ, λ) +

C4

α
ǫ2, (20)

where C4 denotes a positive constant independent of ǫ and γǫ = o(1) as ǫ→ 0.
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PROOF. We use the following lower bound on Uj:

Uj = inf
{

u : Eθηj1{ηj≥u} ≤ ǫ2
}

≥
√

2Σ2
j log

(

Cǫ−4Σ2
j

)

, (21)

where for all j ∈ {1 . . . J}, Σ2
j is defined in (18). The proof can be directly derived from

the Lemma 1 of [5]. Then, thanks to Theorems 2.1 and 3.1, we only have to prove that
inequality (11) holds since maxj penj/σ

2
j converges to 0 as ǫ → 0. For all j ∈ {1, . . . , J},

using Lemma 4.1,

E
[

ηj − penj

]

+
≤

1

δ
exp







−δpenj + δ2Σ2
j + 4δ3

∑

k∈Ij

ǫ6b−6
k

(1 − 2δǫ2b−2
Kj−1

)







, (22)

for all 0 < δ < ǫ−2b2Kj−1/2. Setting

δ =

√

log(Cǫ−4Σ2
j)

2Σ2
j

,

and using (21), we obtain

E[ηj − penj]+

≤

√

2Σ2
j

log(Cǫ−4Σ2
j)

exp

{

1

2
log(Cǫ−4Σ2

j)

}

× exp
{

−(1 + α) log(Cǫ−4Σ2
j)
}

,

≤ Cǫ2

√

1

log(Cǫ−4Σ2
j)

exp
{

−α log(Cǫ−4Σ2
j)
}

.

Indeed, provided (16) and (17) hold, δb−2
Kj−1 and the last term in the right hand side of

the exponential in (22) converge to 0 as j → +∞. Hence, we eventually obtain

J
∑

j=1

E[ηj − penj]+ ≤ Cǫ2
J
∑

j=1

1

log1/2(CTj)
exp{−α log(CTj)},

≤ Cǫ2
J
∑

j=1

j−1/2 exp
{

−α log(Cνǫ(1 + κǫ)
j)
}

,

≤ Cǫ2
+∞
∑

j=1

j−1/2 exp{−αDj} <
Cǫ2

α
,

where D and C denote two positive constants independent of ǫ. This concludes the proof
of Corollary 4.3..
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The penalty (19) is not explicit. Nevertheless, it can be computed using Monte-Carlo
approximation: there are only J terms to compute. Remark that it is also possible to
deal with the lower bound (21) which is explicit. The theoretical results are essentially
the same since we use this bound in the proof of Corollary 4.3.

Now, we consider the penalty introduced in [8]. For all j ∈ {1, . . . , J}, it is defined as

penCT
j = ∆γ

jσ
2
j , with 0 < γ < 1/2.

Remark that with our assumptions on Λ⋆ and (bk)k∈N

penCT
j ≃ ǫ2K2β

j (Kj+1 −Kj)
1−γ & penj.

This inequality entails that (11) is satisfied. Hence, an oracle inequality similar to (20)
can be obtained for this sequence. This is the same result as in [8]. However, we construct
a different proof thanks to the RHM approach.

4.2 The range

Theorem 3.1 provides in fact an admissible range for the penalty. If we want a sharp
oracle inequality, necessarily maxj penj/σ

2
j → 0 as ǫ → 0. Hence, the penalty should not

be too large. At the same time, we require from inequality (11) that the penalty contains
in a certain sense the variables (ηj)j=1...J . Hence, small penalties will not be convenient.

From inequality (11) and Lemma 4.1, the sequence (penj)j=1...J should at least fulfil
penj & Σj for all j ∈ {1, . . . , J}. Since we require in the same time maxj σ

2
j/penj → 0 as

j → +∞, an admissible penalty in the sense of Theorem 3.1 should satisfy

Σj . penj . σ2
j , ∀ j ∈ {1, . . . , J}. (23)

With our assumptions, this range is equivalent to

ǫ2K2β
j (Kj+1 −Kj)

1/2 . penj . ǫ2K2β
j+1(Kj+1 −Kj), ∀j ∈ {1, . . . , J}.

It is possible to prove that a similar to (20) oracle inequality holds for all penalty
(penj)j=1...J satisfying (23). This is in particular the case for (penj)j=1...J and
(penCT

j )j=1...J .
Using the same bounds as in the proof of Corollary 4.3, it seems difficult to obtain

a sharp oracle inequality with the penalty (Σj)j=1...J . Nevertheless, the range (23) is
derived from upper bounds on the estimator θ⋆ and may certainly be refined. A lower
bound approach may perhaps produce interesting results (see for instance [10]).
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In order to conclude this discussion, it would be interesting to compare the two penal-
ties presented in this section. Remark that (penj)j=1...J is closer to the lower bound of the
range than (penj)j=1...J . However, we do not claim than a penalty is better than another.
This is an interesting but very difficult question that should be addressed in a separate
paper.

4.3 Conclusion

The main contribution of this paper is an extension of the RHM method to the family
Λ⋆ and a link between the penalized blockwise Stein rule and the risk hull approach. It
is rather surprising that a threshold estimator may be studied via some tools usually
related to a parameter selection setting. In any case, this approach allows us to develop a
general study on this threshold estimator. In particular, we impose a simple assumption
on the threshold which is related to the variance of the ηj in each block. This treatment
may certainly be applied to other existing adaptive approaches. For instance, one may
be interested in wavelett threshold estimators in a wavelet-vaguelette decomposition
framework (see [9]). The generalization of our work in this setting is not straightforward
since the ’blocks’ are of size 1. Nevertheless, this approach may provide some new
interesting perspectives.

In order to conclude this paper, it seems necessary to discuss the role played by the
constant α in the penalty (penj)j=1...J . Inequality (11) does not hold for α = 0. On
the other hand, the proof of Corollary 4.3 indicates that large values for α will not lead
to an accurate recovering. The choice of α has already been discussed and illustrated
via some numerical simulations in a slightly different setting: see [5] or [18] for more
details. Remark that we do not require α to be greater than 1 in this paper. This is
a small difference compared to the constraints expressed in a regularization parameter
choice scheme. This can be explained by the blockwise structure of the variables (ηj)j=1...J .

5 Proofs and technical lemmas

5.1 Ordered processes

Ordered processes were introduced in [17]. In [4], these processes are studied in
details and very interesting tools are provided. These stochastic objects may play an
important role in adaptive estimation: see in particular [14] or [18] for more details.

The aim of this section is not to provide an exhaustive presentation of this theory but
rather to introduce some definitions and useful properties.

14



Definition 5.1 Let ζ(t), t ≥ 0 a separable random process with Eζ(t) = 0 and finite
variance Σ2(t). It is called ordered if for all t2 ≥ t1 ≥ 0

Σ2(t2) ≥ Σ2(t1) and E[ζ(t2) − ζ(t1)]
2 ≤ Σ2(t2) − Σ2(t1).

Let ζ be a standard Gaussian random variable. The process t 7→ ζt is the most simple
example of ordered process. Wiener processes are also covered by Definition 5.1. The
family of ordered processes is in fact quite large.

Assumption C1. There exists κ > 0 such that

ϕ(κ) = sup
t1,t2

E exp

{

κ
ζ(t1) − ζ(t2)

√

E[ζ(t1) − ζ(t2)]2

}

< +∞.

This assumption is not very restrictive. Several processes encountered in linear estimation
satisfy it.

The proof of the following result can be found in [4].

Lemma 5.2 Let ζ(t), t ≥ 0 an ordered process satisfying ζ(0) = 0 and Assumption C1.
There exists a constant C = C(κ) such that for all γ > 0

E sup
t≥0

[

ζ(t) − γΣ2(t)
]

+
≤
C

γ
.

This lemma is rather important in the theory of ordered processes and leads to several
interesting results. In particular, the following corollary will be often used in the proofs.

Corollary 5.3 Let ζ(t), t ≥ 0 an ordered process satisfying ζ(0) = 0 and Assumption
C1. Consider t̂ measurable with respect to ζ. Then, there exists C = C(κ) > 0 such that

Eζ(t̂) ≤ C

√

EΣ2(t̂).

PROOF.Let γ > 0 be fixed. Using Lemma 5.2

Eζ(t̂) = Eζ(t̂) − γEΣ2(t̂) + γEΣ2(t̂),

≤ E sup
t≥0

[

ζ(t) − γΣ2(t)
]

+
+ γEΣ2(t̂),

≤
C

γ
+ γEΣ2(t̂)

Choose γ =
(

EΣ2(t̂)
)−1/2

in order to conclude the proof.

�
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5.2 Proofs

Proof of Theorem 2.1. First, remark that

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

= Eθ sup
λ∈Λ⋆

{

+∞
∑

k=1

(1 − λk)
2θ2

k + ǫ2
+∞
∑

k=1

λ2
kb

−2
k ξ2

k − 2ǫ
+∞
∑

k=1

λk(1 − λk)θkb
−1
k ξk

−V (θ, λ)} ,

= Eθ sup
λ∈Λ⋆







J
∑

j=1



(1 − λj)
2‖θ‖2

(j) + λ2
j

∑

k∈Ij

ǫ2b−2
k ξ2

k − 2λj(1 − λj)Xj





+
∑

k>N

θ2
k − V (θ, λ)

}

,

= Eθ

J
∑

j=1



(1 − λ̂j)
2‖θ‖2

(j) + λ̂2
j

∑

k∈Ij

ǫ2b−2
k ξ2

k + 2λ̂j(λ̂j − 1)Xj





+
∑

k>N

θ2
k − EθV (θ, λ̂),

with
λ̂ = arg sup

λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

,

and
Xj = ǫ

∑

k∈Ij

θkb
−1
k ξk, ∀j ∈ {1, . . . , J}. (24)

Let j ∈ {1, . . . , J} be fixed. Use the decomposition

Eθ2λ̂j(λ̂j − 1)Xj = Eθλ̂
2
jXj + Eθ(λ̂

2
j − 2λ̂j)Xj,

= Eθλ̂
2
jXj + Eθ(1 − λ̂j)

2Xj = A1
j + A2

j , (25)

since EθXj = 0. First consider A1
j . Let λ0

j denotes the blockwise constant oracle on the
block j. Using Corollary 5.3 in Section 5.1

A1
j = Eθλ̂

2
jXj = Eθ

[

λ̂2
j − (λ0

j)
2
]

Xj ≤ C

√

Eθ

[

λ̂2
j − (λ0

j)
2
]2∑

k∈Ij

ǫ2b−2
k θ2

k,

where C > 0 denotes a positive constant. Indeed, both processes ζ : t 7→ (t2 − (λ0
j)

2)Xj,
t ∈ [(λ0

j)
2, 1] and ζ̄ : t 7→ (t−2 − (λ0

j)
2)Xj, t ∈ [(λ0

j)
−1; +∞[ are ordered and satisfy

Assumption C1. For all γ > 0, use
[

λ̂2
j − (λ0

j)
2
]2

≤ 4
[

(1 − λ̂j)
2 + (1 − λ0

j)
2
]

(λ̂2
j + (λ0

j)
2),
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and the Cauchy-Schwartz and Young inequalities

A1
j ≤ C

√

Eθ

[

(1 − λ̂j)2 + (1 − λ0
j)

2
]

(λ̂2
j + (λ0

j)
2) max

k∈Ij

ǫ2b−2
k ‖θ‖2

(j),

≤ CEθ

[

γ(1 − λ̂j)
2‖θ‖2

(j) + γ−1∆jλ̂
2
jσ

2
j

]

+ Cγ(1 − λ0
j)

2‖θ‖2
(j)

+Cγ−1∆j(λ
0
j)

2σ2
j + C

√

Eθ(1 − λ̂j)2λ̂2
j max

k∈Ij

ǫ2b−2
k ‖θ‖2

(j), (26)

for some positive constant C. The bound of the last term in the r.h.s. of (26) requires
some work. First, suppose that

‖θ‖2
(j) ≤ σ2

j . (27)

In such a situation, for all γ > 0

√

Eθ(1 − λ̂j)2λ̂2
j max

k∈Ij

ǫ2b−2
k ‖θ‖2

(j) ≤
√

‖θ‖2
(j)Eθλ̂2

j max
k∈Ij

ǫ2b−2
k ,

≤ γ‖θ‖2
(j) + γ−1∆jEθλ̂

2
jσ

2
j .

If (27) holds, then

‖θ‖2
(j) =

σ2
j‖θ‖

2
(j)

σ2
j + ‖θ‖2

(j)

(

1 +
‖θ‖2

(j)

σ2
j

)

≤ 2
{

(1 − λ0
j)

2‖θ‖2
(j) + (λ0

j)
2σ2

j

}

,

where λ0 is the oracle defined in (8). Indeed

λ0
j =

‖θ‖2
(j)

σ2
j + ‖θ‖2

(j)

, ∀j ∈ {1, . . . , J}.

Now, suppose
‖θ‖2

(j) > σ2
j . (28)

Then, for all γ > 0

√

Eθ(1 − λ̂j)2λ̂2
j max

k∈Ij

ǫ2b−2
k ‖θ‖2

(j) ≤
√

max
k∈Ij

ǫ2b−2
k Eθ(1 − λ̂j)2‖θ‖2

(j),

≤ γEθ(1 − λ̂j)
2‖θ‖2

(j) + γ−1∆jσ
2
j .

Using (28):

σ2
j =

σ2
j‖θ‖

2
(j)

σ2
j + ‖θ‖2

(j)

(

1 +
σ2

j

‖θ‖2
(j)

)

≤ 2
{

(1 − λ0
j)

2‖θ‖2
(j) + (λ0

j)
2σ2

j

}

.
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Setting γ =
√

∆j, we eventually obtain

A1
j ≤ C

√

∆jEθ

[

(1 − λ̂j)
2‖θ‖2

(j) + λ̂2
jσ

2
j

]

+ C
√

∆j

[

(1 − λ0
j)

2‖θ‖2
(j) + (λ0

j)
2σ2

j

]

, (29)

for some constant C > 0 independent of ǫ. The same bound occurs for the term A2
j in

(25). Hence, there exists B > 0 independent of ǫ such that

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

≤ Eθ

J
∑

j=1



(1 +Bρǫ)(1 − λ̂j)
2‖θ‖2

(j) + λ̂2
j

∑

k∈Ij

ǫ2b−2
k ξ2

k +Bρǫλ̂
2
jσ

2
j





+
∑

k>N

θ2
k +BρǫR(θ, λ0) − EθV (θ, λ̂),

≤ Eθ sup
λ∈Λ⋆







J
∑

j=1



(1 +Bρǫ)(1 − λj)
2‖θ‖2

(j) + λ2
j

∑

k∈Ij

ǫ2b−2
k ξ2

k +Bρǫλ
2
jσ

2
j





+
∑

k>N

θ2
k +BρǫR(θ, λ0) − V (θ, λ)

}

,

where ρǫ is defined in (10). Now, using (9) and (12),

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

≤ Eθ sup
λ∈Λ⋆

{

J
∑

j=1

[

λ2
jηj − 2λjpenj

]

− C1ǫ
2

}

,

=
J
∑

j=1

Eθ sup
λj∈[0,1]

[

λ2
jηj − 2λjpenj

]

− C1ǫ
2.

Let j ∈ {1 . . . J} be fixed. We are looking for λj ∈ [0, 1] that maximizes the quantity
λ2

jηj − 2λjpenj. If ηj < 0, the function λ 7→ λ2ηj − 2λpenj is concave and the maximum
on [0, 1] is attained for λ = 0. Now, if ηj > 0, the function λ 7→ λ2ηj − 2λpenj is convex
and the maximum on [0, 1] is attained in 0 or in 1. Therefore

sup
λj∈[0,1]

{

λ2
jηj − 2λjpenj

}

=
[

ηj − 2penj

]

+
, (30)

Using inequality (11), we eventually obtain

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 − V (θ, λ)
}

≤
J
∑

j=1

Eθ

[

ηj − 2penj

]

+
− C1ǫ

2,

≤
J
∑

j=1

Eθ

[

ηj − penj

]

+
− C1ǫ

2 ≤ 0.
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This concludes the proof of Theorem 2.1.

�

Remark: Using the same algebra in the proof of Theorem 2.1, it is possible to prove that

Eθ sup
λ∈Λ⋆

{

‖θ̂λ − θ‖2 −W (θ, λ)
}

≤ 0, (31)

where

W (θ, λ) = (1 +Bρǫ)

{

J
∑

j=1

[

(1 − λKj
)2‖θ‖2

(j) + λ2
Kj
σ2

j + λ2
Kj

penj

]

+
∑

k>N

θ2
k

}

+C1ǫ
2 +BρǫR(θ, λ0),

Hence, W (θ, λ) is also a risk hull. For all j ∈ {1 . . . J}, the only difference with V (θ, λ) is
contained in the bound of

sup
λj∈[0,1]

{

λ2
jηj − λ2

jpenj

}

≤ [ηj − penj]+.

Then, we use inequality (11) in order to obtain (31).

Proof of Theorem 3.1. In the situation where inequality (11) holds, (31) yields

Eθ‖θ
⋆ − θ‖2 ≤ W (θ, λ⋆) = (1 +Bρǫ)R̄pen(θ, λ

⋆) +BρǫR(θ, λ0) + C1ǫ
2, (32)

where

R̄pen(θ, λ
⋆) =

J
∑

j=1

[

(1 − λ⋆
j)

2‖θ‖2
(j) + (λ⋆

j)
2σ2

j + (λ⋆
j)

2penj

]

+
∑

k>N

θ2
k,

and B denotes a positive constant independent of ǫ. Moreover, from (14),

Upen(y, λ
⋆) ≤ Upen(y, λ), ∀λ ∈ Λ⋆.

The proof of Theorem 3.1 is mainly based on these two equalities. First remark that

Upen(y, λ
⋆) − R̄pen(θ, λ

⋆)

=
J
∑

j=1

[

{(λ⋆
j)

2 − 2λ⋆
j}(‖ỹ‖

2
(j) − σ2

j ) + (λ⋆
j)

2σ2
j + 2λ⋆

jpenj − (1 − λ⋆
j)

2‖θ‖2
(j)

−(λ⋆
j)

2σ2
j − (λ⋆

j)
2penj

]

−
∑

k>N

θ2
k,

=
J
∑

j=1

[

{(λ⋆
j)

2 − 2λ⋆
j}(‖ỹ‖

2
(j) − σ2

j ) − (1 − λ⋆
j)

2‖θ‖2
(j)

+{2λ⋆
j − (λ⋆

j)
2}penj

]

−
∑

k>N

θ2
k.
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Hence

Upen(y, λ
⋆) − R̄pen(θ, λ

⋆)

=
J
∑

j=1



{(λ⋆
j)

2 − 2λ⋆
j}
∑

k∈Ij

(θ2
k + ǫ2b−2

k (ξ2
k − 1) + 2ǫb−1

k ξkθk) − (1 − λ⋆
j)

2‖θ‖2
(j)

+{2λ⋆
j − (λ⋆

j)
2}penj

]

−
∑

k>N

θ2
k,

=
J
∑

j=1

{(λ⋆
j)

2 − 2λ⋆
j}(ηj + 2Xj − penj) − ‖θ‖2,

where ηj and Xj are respectively defined in (9) and (24). Hence, from (14)

R̄pen(θ, λ
⋆) = Upen(y, λ

⋆) + ‖θ‖2 +
J
∑

j=1

{2λ⋆
j − (λ⋆

j)
2}(ηj + 2Xj − penj),

≤ Upen(y, λ
p) + ‖θ‖2 +

J
∑

j=1

{2λ⋆
j − (λ⋆

j)
2}(ηj + 2Xj − penj),

where
λp = arg inf

λ∈Λ⋆
Rpen(θ, λ).

and Rpen(θ, λ) is defined in (13). Then, with simple algebra

EθUpen(y, λ
p) = Eθ

J
∑

j=1

[

{(λp
j)

2 − 2λp
j}(‖ỹ‖

2
(j) − σ2

j ) + (λp
j)

2σ2
j + 2λp

jpenj

]

,

= Rpen(θ, λ
p) − ‖θ‖2.

This leads to

EθR̄pen(θ, λ
⋆) ≤ Rpen(θ, λ

p) + Eθ

J
∑

j=1

{2λj − (λ⋆
j)

2}(ηj + 2Xj − penj). (33)

We are now interested in the behaviour of the right hand side of (33). First, using (25)-(29)
in the proof of Theorem 2.1

Eθ{2λj − (λ⋆
j)

2}Xj

≤ Cρǫ

{

(1 − λp
j)

2‖θ‖2
(j) + (λp

j)
2σ2

j

}

+ C̄ρǫEθ

{

(1 − λ⋆
j)

2‖θ‖2
(j) + (λ⋆

j)
2σ2

j

}

,
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for all j ∈ {1, . . . , J}. Here, C and C̄ denote positive constants independent of ǫ. In
particular, it is always possible to obtain C̄ verifying C̄ρǫ < 1 (see the proof of Theorem
2.1 for more details). Hence

EθR̄pen(θ, λ
⋆)

≤ (1 + Cρǫ)Rpen(θ, λ
p) + C̄ρǫEθR̄pen(θ, λ

⋆) + Eθ

J
∑

j=1

{2λ⋆
j − (λ⋆

j)
2}(ηj − penj).

Then, from inequality (11) and (30)

Eθ

J
∑

j=1

{2λ⋆
j − (λ⋆

j)
2}(ηj − penj) = Eθ

J
∑

j=1

[ηj − penj]+ ≤ C1ǫ
2.

This leads to

EθR̄pen(θ, λ
⋆) ≤ (1 + Cρǫ)Rpen(θ, λ

p) + C̄ρǫEθR̄pen(θ, λ
⋆) + C1ǫ

2,

⇒ (1 − C̄ρǫ)EθR̄pen(θ, λ
⋆) ≤ (1 + Cρǫ)Rpen(θ, λ

p) + C1ǫ
2,

⇒ EθR̄pen(θ, λ
⋆) ≤

(1 + Cρǫ)

(1 − C̄ρǫ)
Rpen(θ, λ

p) + Cǫ2. (34)

Using (32) and (34)

Eθ‖θ
⋆ − θ‖2 ≤ (1 +Bρǫ)EθR̄pen(θ, λ

⋆) + C1ǫ
2 +BρǫR(θ, λ0),

≤ (1 + µǫ)Rpen(θ, λ
p) + Cǫ2 +BρǫR(θ, λ0),

where µǫ = µǫ(ρǫ) is such that µǫ → 0 as ρǫ → 0 and C is a positive constant independent
of ǫ. In order to conclude the proof, we just have to compare R(θ, λ0) to Rpen(θ, λp). For
all j ∈ {1, . . . , J}, introduce

Rj
pen(θ, λ) = (1 − λj)

2‖θ‖2
(j) + λ2

jσ
2
j + 2λjpenj, and Rj(θ, λ) = (1 − λj)

2‖θ‖2
(j) + λ2

jσ
2
j .

Then

Rj
pen(θ, λ

p) ≤
σ4

j‖θ‖
2
(j)

(σ2
j + ‖θ‖2

(j))
2

+
σ2

j‖θ‖
4
(j)

(σ2
j + ‖θ‖2

(j))
2

+ 2
penj

σ2
j

σ2
j‖θ‖

2
(j)

σ2
j + ‖θ‖2

(j)

,

=

(

1 + 2
penj

σ2
j

)

Rj(θ, λ0),

since Rj
pen(θ, λ

p) ≤ Rj
pen(θ, λ

0) from the definition of λp. This concludes the proof of
Theorem 3.1.
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