
A New Family of High Order Unstructured MOOD and

ADER Finite Volume Schemes for Multidimensional

Sys- tems of Hyperbolic Conservation Laws
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Abstract. In this paper, we investigate the coupling of the Multi-dimensional Optimal Order De-
tection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to
design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme
dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and
tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal
Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of
papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme
in space, using polynomial reconstructions with a posteriori detection and polynomial degree decre-
menting processes to deal with shock waves and other discontinuities. In the following work, the time
discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we
retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is
reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER
technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical
tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison
between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has
been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and
efficiency. The main finding of this paper is that the combination of ADER with MOOD generally
outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive
(memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite
of classical numerical test problems has been solved on unstructured meshes for three challenging
multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics,
the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD
equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic par-
tial differential equation. All tests are run on genuinely unstructured grids composed of simplex
elements.
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1 Introduction and context

This paper deals with the development of a new family of arbitrary high order accurate finite volume
schemes in space and time for the solution of nonlinear systems of hyperbolic partial differential
equations, as for instance the Euler equations of compressible gas dynamics, or the ideal classical and
relativistic magneto-hydrodynamics system (MHD/RMHD). More precisely, we propose to couple
the recently developed a posteriori “Multi-dimensional Optimal Order Detection” (MOOD) concept
[18, 29, 30] with the “Arbitrary high order DERivatives” (ADER) scheme, that allows us to reach
arbitrary order of accuracy in space and time in one single step. The resulting method will be denoted
by ADER-MOOD in the following.

By ’higher order’ we strictly consider better than second order accurate methods, whose effec-
tive numerical order of accuracy is optimal for smooth solutions. More importantly, such numeri-
cal methods must be efficient on general unstructured meshes in multiple space dimensions. Sev-
eral of such methods are available under the key names Discontinuous Galerkin (DG) methods
[19, 21–24, 40], ENO, WENO and HWENO methods (Weighted/Hermite Essentially Non Oscilla-
tory) [1,4,9,16,50,52,55,57,58,68–70,76,85,92], ADER schemes [2,8,9,37–39,59,74,75,83,84,86,88,91],
PNPM schemes [32,34,62,63], etc.

By efficient we understand that such methods can be implemented with acceptable effort and
must be numerically validated on a test suite as exhaustive as possible; they can run on computers of
reasonable size, and they must be robust, stable and accurate. This set of properties seems to be a
general agreement amongst developers of numerical methods for conservation laws.

To avoid Gibbs phenomenon that occurs when shock waves or steep gradients are present, any
better than first order accurate scheme must add some sort of extra dissipation usually manifested
by a non linearity in the scheme. This is a direct consequence of the Godunov theorem, which states
that there exist no better than first order accurate linear schemes for hyperbolic transport equations.
The nonlinearity is usually introduced into the scheme under the form of a so-called ’limiter’. Many
different sorts have been designed: slope limiters for piecewise linear reconstructions (Monotone Up-
stream Schemes for Conservation Laws (MUSCL) [60,93,94]), flux limiter techniques (Flux Corrected
Transport FCT methods [14,15]), or higher order methods that choose the least oscillatory piecewise
polynomial reconstruction (ENO, WENO, HWENO methods) on different candidate stencils, or the
artificial viscosity approach commonly used for finite element methods or Lagrangian schemes, for
instance.
Most of these limitation techniques are effective in special cases but none of them is generic enough
and/or efficient enough. Such limitation techniques are a priori in the sense that from a discrete so-
lution at discrete time tn the limiter must deduce the location of its action and its intensity to ensure
that the solution at tn+1 is valid. Usually this task is achieved, but with too much intensity leading to
a solution which could be less limited, and could therefore be more accurate. Moreover, some limiting
techniques sometimes rely on parameters that have to be fixed, and whose dependencies on the test
problem are not always clear. Note that some of these techniques are still on-going subject of research
in their respective fields. This indicates that no agreement has been reached yet on how and where
the extra dissipation should be properly introduced into a high order numerical method for nonlinear
systems of conservation laws in multiple space dimensions.

In this work we focus on finite volume schemes on fixed unstructured meshes working with piecewise
constant data at the beginning of each timestep. The main representatives of this family of numerical
methods are the second order MUSCL approach and the family of (W)ENO schemes. Both techniques
share some common features, namely
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• They are finite volume methods, i.e. the data are given as cell averages of conservative variables.

• A numerical flux, e.g. a Riemann solver, is employed for flux computation at cell interfaces.

• High-order in space is achieved based on polynomial reconstructions. One piecewise linear poly-
nomial per variable per cell is reconstructed for MUSCL whereas higher order polynomials are
recovered from the cell averages for ENO type methods. These reconstructions feed the numerical
flux with high-order reconstructed boundary states at cell interfaces.

• All classical higher order finite volume methods need to insert some sort of a priori limita-
tion of the reconstructions to avoid Gibbs phenomenon. A slope limiter is typically used for
MUSCL whereas (W)ENO methods use several polynomial reconstructions on different stencils
to construct an essentially non-oscillatory reconstruction.

• Time integration can be either done using the method of lines, based on a TVD Runge-Kutta
scheme [48], or using a one-step approach, like the ADER scheme.

The recently developed Multi-dimensional Optimal Order Detection (MOOD) concept has pro-
posed an a posteriori approach to the problem of limitation. Indeed the mojo of this paradigm is
to run a spatially unlimited high-order finite volume scheme to get a candidate solution. Then the
validity of the candidate solution is tested against a set of predefined admissibility criteria. Some
cells are marked as ’acceptable’ and are therefore valid. Some others may be locally marked as ’prob-
lematic’ if they do not pass the detection process. These cells and their neighbors are consequently
locally recomputed using polynomial reconstructions of a lower degree. Thus, after decrementing the
polynomial degree and local recomputing of the solution, a new candidate solution is obtained. That
solution is again tested for validity and the decrementing procedure re-applies, if necessary.

Such degree decrementing can occur several times within one time step for the same cell, but it
will always halt after a finite number of steps: either the cell is valid for a polynomial degree greater
than 0, or the degree zero is reached. In the latter case, the worst case scenario, the cell is updated
with the robust and stable first order accurate Godunov finite volume scheme, which is supposed to
always produce valid solutions. This a posteriori check and decrementing iteration loop is called the
’MOOD loop’. We refer the reader to [18, 29,30] for more details.

Originally in [18, 29, 30] the third order TVD Runge-Kutta method in time was used (RK3),
together with a suitable timestep restriction in order to reach very high order of accuracy in time.
This scheme was not uniformly high order accurate in space and time and the RK3 time discretization
was also rather expensive due to the multiplication of solution solves required by the Runge-Kutta
substages within one time step.

In recent years, one-step ADER (Arbitrary high order DERivatives) time stepping methods have
emerged as competitors to the RK time stepping methods, see e.g. [64, 89], [83], [90], [86], [36], [34],
[8, 9], [17]. The methods were initially formulated by Toro, Millington and Nejad in [64] and numeri-
cal implementations were presented in Titarev and Toro [83]. While the original ADER approach of
Titarev and Toro approximately solves the generalized Riemann problem (GRP) (van Leer [94], Ben-
Artzi and Falcovitz [12]) at zone boundaries, the most recent ADER methods [8, 9, 34, 36] evolve the
spatially high order accurate reconstruction polynomial locally in time using a weak integral formula-
tion of the conservation law in space-time, and, as such, obtain a space-time accurate representation of
the solution within a cell. At each zone boundary, classical Riemann problems are then solved with the
higher order boundary extrapolated values of the space-time polynomials. An efficient quadrature-free
approach has been proposed in [38]. This most recent version of the ADER schemes is more similar
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to the original ENO scheme proposed by Harten et al. [49], since it first evolves the data in each
element by solving a local Cauchy problem in the small, i.e. without accounting for the neighbor cells,
and then solves the interactions at the zone boundaries. The scheme therefore follows a reconstruct -
evolve - update strategy.

Existing high order ADER-WENO finite volume schemes are attractive because they are uni-
formly high order accurate one-step methods in space and time for any high order polynomial degree.
However, an important practical limitation is introduced by the rather heavy and complex WENO
reconstruction methodology: heavy, because several polynomial reconstructions (one on each stencil)
are required for each variable in each cell; complex, because WENO should employ characteristics
variables, which can be rather expensive to calculate or may even not be available in closed form for
certain hyperbolic systems. On the opposite, MOOD schemes propose an efficient nonlinear a posteri-
ori limiting based on a set of predefined admissibility criteria for any high order polynomial degree of
the spatial reconstruction operator, but were limited so far to formally third order of accuracy in time
due to the use of classical TVD Runge-Kutta time stepping [48]. As a consequence, the combination of
the spatially high order accurate MOOD framework with the latest generation of high order one-step
ADER schemes seems to be reasonable and may lead to accurate, efficient and robust schemes for
multidimensional systems of hyperbolic conservation laws. The purpose of this work can therefore be
summarized as follows:

1. Present how MOOD and ADER schemes can be efficiently coupled and how they naturally lead
to an efficient high-order accurate one-step method in space and time;

2. Numerically validate this ADER-MOOD scheme by

• showing the effective high-order of accuracy in space and time on smooth solutions;

• comparing this method with existing methods of the same kind. We choose the classical
ADER-WENO scheme in characteristic variables for comparison and we provide several
diagnostics such as accuracy measures, CPU time, memory consumption, visualization
versus exact or reference solutions, etc. to provide a fair comparison.

3. Present how the MOOD paradigm can be adapted to other systems of conservation laws such as
the MHD and relativistic MHD system. As such we emphasize the flexibility of the approach.
Numerical validation on known problems are also provided along with comparisons with ADER-
WENO results.

4. Underline by the results obtained in this work that the MOOD paradigm is non invasive to an
already existing code. The MOOD loop has been implemented into the existing 3D MPI parallel
PNPM framework for general hyperbolic systems of conservation laws presented in [34]. Very
few efforts were necessary to generate a working high order ADER-MOOD method, the results
of which are provided in this paper.

The remaining part of this paper is organized as follows. In section 2 we present the unlimited ar-
bitrary high-order ADER finite volume scheme. Then, in section 3, we present the MOOD paradigm.
In particular, we precise which low-order scheme is considered, which cascade of schemes is used and,
the cornerstone, which numerical properties and admissibility criteria the candidate solution must
fulfill to be locally considered as acceptable. Then in section 3.1 three systems of conservation laws
are considered, namely the hydrodynamics (HD) Euler equations for compressible fluids, the equa-
tions of magneto-hydrodynamics (MHD) and finally the relativistic magneto-hydrodynamics equations
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(RMHD). In all cases the physical admissibility criteria are derived from the underlying physics.
Then, a large section on numerical test problems provides the reader with results for numerous test
cases for the Euler system (isentropic vortex, double Mach reflection problem, planar shock tube prob-
lems, spherical 3D explosion problem), the MHD system (Orszag-Tang vortex, MHD rotor problem)
and the RMHD system (large amplitude Alfvén wave, relativistic blast wave and rotor problem).
These problems are run in 2D or 3D on unstructured meshes and all are used to compare the new
ADER-MOOD approach with the classical ADER-WENO method. The last section concludes this
paper by presenting future perspectives of research.

2 Unlimited ADER Finite Volume Schemes

Let us consider the following general form of a nonlinear hyperbolic system of conservation laws in
multiple space dimensions

∂Q

∂t
+∇·F(Q)=0, x∈Ω⊂R

d, t∈R
+
0 , (2.1)

with appropriate initial and boundary conditions

Q(x,0)=Q0(x), ∀x∈Ω, Q(x,t)=QB(x,t) ∀x∈∂Ω, t∈R
+
0 . (2.2)

Here, Q∈ΩQ⊂R
ν is the vector of ν conserved quantities, or the so-called state vector and F(Q)=

(f ,g) is a nonlinear flux tensor that depends on the state Q. Ω denotes the computational domain in d
space dimensions and ΩQ is the space of physically admissible states or phase-space. In this paper we
solve this system of equations by applying the high order accurate PNPM method recently proposed
by [33] maintaining at the same time better than second order of accuracy in space and time. We
focus in this work on the finite volume family of schemes referred to as P0PM schemes. The numerical
method is formulated as one-step local predictor global corrector method. The predictor is based
on an element-local weak solution of equation (2.1), where inside each element the governing PDE
(2.1) is solved in the small (see [49]) by means of a locally implicit space-time discontinuous Galerkin
scheme. This leads to an algebraic system of non-linear equations that must be solved individually
for each element. The globally explicit update in time, on the other hand, is obtained by a standard
finite volume approach. In the following we only summarize the main steps, while for more details the
reader is referred to [8, 32, 33,35,36,43,46,53].

2.1 The P0PM Reconstruction Operator on Unstructured Meshes

The main ingredient of the proposed numerical method to reach high order of accuracy in space is
the PNPM reconstruction operator on unstructured meshes first introduced in [33]. We focus on the
special case of finite volume schemes (N =0) proposed in [37, 38] and further denoted by P0PM or
simply PM . For the details, we refer to the above mentioned publications and give only a short review
in this section.

The computational domain Ω is discretized by conforming elements Ti, where the index i ranges
from 1 to the total number of elements NE . The elements are chosen to be simplex elements, hence
triangles in 2D and tetrahedrons in 3D. The union of all elements is called the triangulation or
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tetrahedrization of the domain, respectively,

TΩ=

NE
⋃

i=1

Ti. (2.3)

At the beginning of a time-step, the numerical solution of equation (2.1) for the state vector Q,
denoted by uh(x,t

n), is represented by piecewise constant cell averages

un
i =

1

|Ti|

∫

Ti

Q(x,tn)dx, with |Ti|=
∫

Ti

dx. (2.4)

The piecewise constant solution uh is therefore given in terms of the cell averages by

uh(x,t
n)=un

i if x∈Ti. (2.5)

From the piecewise constant data representation uh(x,t
n)∈Vh, we then reconstruct piecewise poly-

nomials wh(x,t
n) of maximum degree M ≥ 0 from the space Wh, spanned by the basis functions

Ψl=Ψl(x):

wh(x,t
n)=

∑

l

Ψl(x)ŵ
n
l . (2.6)

As stated in [33], the Ψl form an orthogonal basis on the simplex, for example the Dubiner basis [20,31].
The reconstruction on element Ti then requires a so-called reconstruction stencil, i.e. an appropriate
neighborhood of element Ti that we choose as

Si=

ne
⋃

k=1

Tj(k), (2.7)

containing a total number of ne elements. Here 1≤k≤ne is a local index, counting the elements in
the stencil, and j=j(k) is the mapping from the local index k to the global indexation of the elements
in TΩ. For ease of notation, we omit in the following the dependency on k for j(k) and only write
j. The stencil Si can be constructed automatically by recursively adding neighbors and neighbors of
neighbors of element Ti to a list, which yields the stencil Si. For the unlimited version of the scheme
presented in this work, only one central reconstruction stencil is necessary, in contrast to the WENO
reconstruction, which needs several reconstruction stencils, see [37, 38].

In the present paper the three operators

〈f,g〉Ti
=

tn+1
∫

tn

∫

Ti

(f(x,t)·g(x,t))dxdt, (2.8)

[f,g]tTi
=

∫

Ti

(f(x,t)·g(x,t))dx, (2.9)

{f,g}∂Ti
=

tn+1
∫

tn

∫

∂Ti

(f(x,t)·g(x,t))dSdt, (2.10)

respectively denote the scalar products of two functions f and g over the space-time element Ti×
[

tn;tn+1
]

, over the spatial element Ti, and over the space-time element boundary ∂Ti×
[

tn;tn+1
]

. The
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operators 〈f,g〉 and [f,g]t, written without the index Ti, will denote scalar products on the space-
time reference element TE×[0;1] and on the spatial reference element TE at time t, respectively. The
spatial reference element QE is defined as the unit simplex with vertices (0,0), (1,0), (0,1) in two space
dimensions and vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1) in three space dimensions, respectively.

The reconstruction is now obtained via L2-projection of the (unknown) piecewise polynomials wh

from the space Wh onto the space Vh on each stencil Si as follows:

[1,wh]
tn

Tj
=[1,uh]

tn

Tj
, ∀Tj∈Si, (2.11)

i.e. we require integral conservation in order to obtain the reconstruction polynomial wh.
During the reconstruction step, the polynomials wh are continuously extended over the entire

stencil Si. After reconstruction, the piecewise polynomials wh are again restricted onto each element
Ti. The number of elements in the stencils are chosen in such a way that the number of equations in
equation (2.11) is larger that the number of degrees of freedom in the space Wh. Therefore, equation
(2.11) constitutes an overdetermined linear algebraic equation system for the coefficients of wh and is
solved using a constrained least squares technique, see [33, 37]. In alternative, a much more elegant
kernel based reconstruction can be used [2] and its extension to the general family of PNPM schemes
of [33] is current research in progress. The linear constraint to be imposed for the constrained least
squares method stipulates that equation (2.11) is exactly satisfied for Tj=Ti, i.e. inside the element Ti
under consideration. The integral on the left hand side in equation (2.11) is computed using classical
multidimensional Gaussian quadrature of appropriate order, see [79]. For the pure finite volume case,
the unlimited P0PM reconstruction used here corresponds to the reconstruction operator proposed by
Barth and Frederickson in their pioneering work [10].

2.2 The Local Space-Time Predictor

The reconstruction polynomialswh(x,t
n) are now evolved in time according to a local weak formulation

of the governing PDE in space-time, see [8, 33, 36, 43, 46, 53]. We underline that the local space-time
Galerkin method is only used for the construction of an element-local predictor solution of the PDE
(without the influence of the neighbors), and is later inserted into a corrector that provides the
appropriate coupling between neighbors.

Transformation of the PDE (2.1) into a space-time reference coordinate system (ξ,τ) of the space-
time reference element TE×[0;1] with ∇ξ=∂ξ/∂x·∇ yields

∂Q

∂τ
+∇ξ ·F∗(Q)=0, (2.12)

with
F∗ :=∆t(∂ξ/∂x)T ·F(Q). (2.13)

Multiplication of equation (2.12) with a space-time test function θk=θk(ξ,τ) from the space of piecewise
space-time polynomials of degree M and integration over the space-time reference control volume
TE×[0;1] yields the following weak formulation:

〈

θk,
∂qh

∂τ

〉

+〈θk,∇ξ ·F∗
h(qh)〉=0. (2.14)

For the discrete solution of equation (2.14) in space-time qh we use the same ansatz for qh as well as
for F∗

h, i.e.

qh=qh(ξ,τ)=
∑

l

θl(ξ,τ)q̂l :=θlq̂l, (2.15)
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F∗
h=F∗

h(ξ,τ)=
∑

l

θl(ξ,τ)F̂
∗
l :=θlF̂

∗
l , (2.16)

Using a nodal basis [33], one simply has

F̂∗
l =F∗(q̂l). (2.17)

Integration by parts in time of the first term in (2.14) yields

[θk,qh]
1−[θk,wh]

0−
〈

∂

∂τ
θk,qh

〉

+〈θk,∇ξ ·F∗
h〉=0, (2.18)

where the piecewise high order polynomial reconstruction wh is taken into account as initial condition
of the Cauchy problem in the small in a weak sense by the term [θk,wh]

0.
Inserting (2.15) into (2.18) one gets

(

[θk,θl]
1−

〈

∂

∂τ
θk,θl

〉)

q̂l+〈θk,∇ξθl〉·F∗(q̂l)=[θk,Ψl]
0ŵn

l , (2.19)

which can be easily solved for the unknown expansion coefficients q̂l of the local space-time predictor
solution by an element-local fixed-point iteration scheme, see [33, 43,53].

2.3 The Fully Discrete One-Step ADER Scheme

The fully discrete one-step ADER scheme is obtained by integrating the governing PDE over the space-
time control volume Ti×[tn;tn+1], hence by applying the operator 〈1,·〉Ti

to PDE (2.1). Application of
Gauss theorem, introduction of a numerical flux function Gij ·nij and insertion of the local predictor
solution qh into the computation of the numerical fluxes at the element boundaries in normal direction
nij leads to the following conservative, high order accurate one-step finite volume scheme:

un+1
i =un

i −
1

|Ti|
∑

Tj∈Nj

tn+1
∫

tn

∫

∂Tij

Gij(q
−
h ,q

+
h )·nijdSdt. (2.20)

Here, q−
h and q+

h denote the boundary extrapolated data from element Ti and its neighbor Tj at the
common interface ∂Tij , respectively. The set of direct side neighbors of element Ti is denoted by Nj .
In all test cases presented in this paper we use as numerical flux function at the element boundaries
either the simple Rusanov (local Lax Friedrichs) flux [73], or the general Osher-type flux recently
proposed in [41,42].

3 MOOD: an a posteriori limiter paradigm

The MOOD (Multi-dimensional Optimal Order Detection) approach has been introduced in three
recent papers [18, 29, 30] as an original a posteriori technique to prevent the creation of Gibbs phe-
nomenon at discontinuities and has been proved to be a competitive alternative to the well-known
WENO method that is widely used in the design of higher-order schemes. In particular, the original
ADER schemes rely on high order polynomial WENO reconstructions for wh [35, 37, 38,50,52,78].

We recall that the WENO polynomial is the essentially non-oscillatory polynomial of degree M ,
which can be constructed from as many reconstructed polynomials as we can afford by considering
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different reconstruction stencils. For a 2D triangulation the number of stencils to be considered is
7 (1 central stencil, 3 forward stencils and 3 backward stencils). On tetrahedral meshes in 3D, 9
reconstructions per variable and per cell are used, see [37, 38]. When M is greater but close to 3
the extra-cost brought by these successive reconstructions is important. Beyond M =5, this may
become the bottleneck of the method. Not only the CPU time may become large but also the memory
consumption becomes excessively high, in particular for high order WENO schemes in 3D; this further
decreases the performance of the whole method and may be considered as a weakness of ADER-WENO
methods that a MOOD approach may mitigate.

3.1 Basics of the MOOD paradigm

The MOOD method [18, 29, 30] is based on an a posteriori evaluation of the solution to determine if
some sort of limitation has to be applied and where.

The technique is a posteriori in the sense that we compute a candidate solution u∗
h(x,t

n+1), i.e. a
potential approximation of the solution at time tn+1, and then one determines if this candidate solution
is acceptable, or not. More precisely, the detection-limitation mechanism operates in several steps.
A candidate solution is first computed with the highest-order unlimited scheme (the polynomials
with maximal degree M). Then a detection procedure is performed to determine the problematic
cells, i.e. all cells where the approximation does not respect some given criteria. The solution is
locally recomputed with a lower-order scheme (using polynomial reconstructions of lower degree).
This procedure, called the MOOD loop, is repeated until each cell satisfies all detection criteria or the
polynomial degree has reached the smallest possible value. In the last case, a robust scheme, as for
instance a positivity preserving first order finite volume scheme, is triggered and a meaningful physical
solution is provided. Throughout this paper we suppose that the first order method is robust enough
to provide always a physically admissible solution, although finding such a scheme may be non-trivial
for very complex nonlinear hyperbolic systems.
In this work we have replaced the WENO technique originally employed in the ADER-WENO schemes
by the non-invasive and more efficient a posteriori MOOD paradigm. Moreover, while WENO needs
the knowledge of characteristics variables MOOD only considers conservative variables.
When a MOOD loop embraces an already existing code we have to provide answers to the following
questions:

1. What are the constraints that a candidate solution must fulfill for the code to be able to compute
the next time step? In other words, given the system of equations one solves, what are the
minimal requirements to be demanded to a numerical solution to ensure that the code does not
prematurely terminate. Some authors refer to this issue as ensuring ’admissible states’. For
example in the case of the hydrodynamics equations with a perfect gas equation of state, one
must ensure that the discrete density, ρi, and the specific internal energy, Ei− 1

2v
2
i , are both

positive to be able to further compute positive pressures and to have a well defined sound speed.
The authors of [18, 29, 30] refer to these constraints as Physical Admissibility Detection (PAD)
constraints.
For the relativistic magneto-hydrodynamics system (RMHD) one must also require that the
velocity remains less than the speed of light, in order to be consistent with relativistic physics.
For more complex systems of equations these requirements may involve additional quantities,
such as entropy [28], temperature or any other physically meaningful variables.
Note that these constraints do ensure neither accuracy nor stability of the numerical method.
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They simply avoid the unpleasant situation of code crashing. As such they are not ’negotiable’
when designing a numerical scheme.

2. Which scheme is the ’bullet-proof’ or ’parachute’ scheme? In other words, which scheme amongst
all possible schemes implemented in the code is the scheme you, as a developer, do trust. This
scheme must provide a bullet-proof solution when everything else fails. For instance in [18,29,30]
the authors rely on the first-order finite volume scheme. In fact, any other scheme which ensures
that admissible states are provided (hence if all PAD constraints are satisfied) can be used.

3. Which cascade of schemes is considered? The goal is to rank all numerical schemes from the
’bullet-proof’ scheme (inaccurate but always robust) up to the ’most performing’ scheme (highly
accurate but less robust). For instance in [18, 29, 30] the authors propose to use the cascade
PM −→P2−→P0 of unlimited schemes with M=3 or 5.

4. What are the constraints that a candidate solution should fulfill to be considered as acceptable?
These constraints must ensure the stability of the solution, but also some more or less important
features that the developer desires. For example in [18, 29,30] for the hydrodynamics system of
equations the authors rely on the relaxed Discrete Maximum Principle (DMP) by the so-called
u2 detection process based on local regularity of the density variable. This detection criterion
ensures to obtain higher-order of accuracy for regular solutions while preventing spurious numer-
ical oscillations in the vicinity of discontinuous profiles. However, for other systems of equations
different variables may be more appropriate to be checked than the density only. In reality each
practitioner has its own view on what should be a good solution, or, how a solution should
look like. Let us call refer to theses constraints as Numerical Admissibility Detection (NAD)
constraints.

The efficiency of the a posteriori MOOD paradigm is brought by the fact that usually few cells need
a cell polynomial degree decrementing, therefore the extra-work needed to recompute a new candidate
solution on problematic cells is low. Moreover, for a given degree only one polynomial reconstruction
per variable and per cell is computed, which reduces not only the CPU time but also the memory
consumption compared to an a priori WENO reconstruction.
The flexibility of the a posteriori MOOD paradigm is mainly due to the fact that (1) a robust preferred
parachute scheme can be kept as the last and safest scheme, (2) only few modifications are usually
needed within the code because the MOOD loop embraces the existing solver, (3) any constraint can
be added to the list of detection criteria, should they be physics-based or numerics-based or simply
the developer’s whim.

In this work the MOOD loop has been implemented within an existing 3D PNPM code [36–38,82]
for conservative and non-conservative hyperbolic systems and has been parallelized using the MPI
standard. Obviously, for parallel computations with MPI some extra communications are needed
in the case of MOOD, namely if a cell has to be recomputed with decremented polynomial degree.
However, WENO finite volume schemes also require a substantial effort of MPI communications due
to the necessary data exchange over many stencils per cell. But while WENO always requires the
same amount of communications within a simulation, the MOOD framework may require dynamically
more or less MPI communications according to the current numerical solution and the NAD and PAD
criteria used. In this sense, reaching optimal MPI load balancing may be more complicated with the
MOOD approach.
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In the present implementation, the MOOD loop simply embraces the main evolution routines of
the high order ADER method and iterates to recompute those cells with invalid values, detected by the
PAD and NAD admissibility criteria, see the next section for some examples. Our choice as developers
was to use the following cascade: PM −→P

lim
1 −→P0. We have taken M =3, but other values of M

could be used as well (some test cases use M>3 in the section on numerical test problems). The P
lim
1

scheme uses P1 reconstructions with Barth & Jespersen slope limiting [11].
More precisely, the MOOD loop first computes the unlimited PM candidate solution u∗h(x,t

n+1), checks
if any cell is problematic according to developer-given constraints (see 1. above). Then all invalid
cells and their neighbors are recomputed with the P

lim
1 scheme and re-checked for validity. Note that

such a candidate solution may enjoy P3-updated cells and P
lim
1 -updated ones. Nonetheless, some cells

may still be invalid because the P
lim
1 may still compute some non-admissible states, for instance the

pressure positivity for Euler equations is difficult to fulfill under a reasonable CFL condition. As a
consequence, for these still invalid cells the last scheme P0 is triggered. Being the ’parachute’ scheme
any remaining problematic cells are properly updated, in the sense that the PAD criteria are fulfilled.

In the worst case scenario all cells in the domain are updated with the first-order P0 scheme.
Nonetheless, the MOOD loop always converges to an acceptable discrete solution, assuming that
the parachute scheme can always produce an acceptable one. In our implementation of MOOD we
reconstruct PM polynomials using a hierarchical polynomial basis. Only one set of neighbor cells
(stencil) is used per polynomial degree. As such, the neighborhood to reconstruct a P3 polynomial is
wider than the neighborhood for P1 polynomial. No special attention is paid as to carefully choose
the stencils, only the standard number of stencil elements is used, see [37].
Moreover, in the DMP+u2 regularity criteria, contrary to [29, 30], we compute the full curvature of
the third-order polynomial reconstruction after discarding higher order terms†. Let us briefly describe
the DMP+u2 detection process on a generic variable A and a candidate solution A∗

i at time tn+1 in
cell i for a given set of neighbor cells with index j∈Vi. The set of vertex neighbors Vi contains all those
neighbors of cell Ti that have a common vertex with Ti. First, if A∗

i fulfills the Discrete Maximum
Principle (DMP), that is

min
j∈Vi

(An
j ,A

n
i )≤A∗

i ≤max
j∈Vi

(An
j ,A

n
i ), (3.1)

then the cell is valid for this variable. If the DMP is not fulfilled, then one checks the u2 criterion
[29,30], which determines if this new extremum is a smooth extremum, or not. The detection of smooth
local extrema has also been discussed in the context of extremum preserving PPM schemes [25] and
MPWENO schemes [4, 80].

The remaining choices are the detection criteria based on the system of conservation laws to be
solved. The purpose of the next section, is to present several criteria depending on the underlying
physical processes.

3.2 MOOD criteria for some particular hyperbolic systems

This section is devoted to prepare the ADER-MOOD method for three hyperbolic systems that have
been chosen to run the validation and verification tests. As already mentioned, for each physical
system there are possibly different Physical Admissibility Detection (PAD) criteria as well as Numerical
Admissibility Detection (NAD) criteria. Let us consider nonlinear time-dependent hyperbolic systems
of conservation laws of the form (2.1).

†In [29,30] the authors did compute an approximation of the directional second derivatives of the third-order polynomial
reconstruction.
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3.2.1 System 1: Hydrodynamics Euler equations (HD)

The first example are the Euler equations of compressible gas dynamics or hydrodynamics (HD),

∂

∂t





ρ
ρv
ρE



+∇·





ρv
ρvv+pI
v(ρE+p)



=0, (3.2)

where ρ denotes the mass density, v the velocity vector, p the fluid pressure, E the total energy density
and I the d×d identity matrix. With the notation vv we intend the dyadic product of the velocity
vector with itself. To close the system the equation of state (EOS) of a perfect gas is used:

p=(γ−1)

(

ρE− 1

2
ρv2

)

. (3.3)

The pressure is therefore computed as a function of two thermodynamical variables, namely density
and the specific internal energy ε=E− 1

2v
2 and a gas constant γ (ratio of specific heats). Physics

demands that density and specific internal energy remain positive so that pressure and sound-speed
are un-ambiguously determined. As a consequence the PAD criteria will check that for any discrete
(candidate) solution the density and pressure remain strictly positive. For the NAD criteria, following
[18, 29, 30], we choose the DMP+u2 detection criteria but contrarily to the authors who only check
the density, we have decided to perform the detection for each conservative variable ρ,ρv,ρE. Last,
we add the check for impossible discrete values, the famous but annoying NaN (Not-a-Number).

3.2.2 System 2: Ideal magneto-hydrodynamics (MHD)

Next, let us consider a more complicated hyperbolic system, namely the equations of ideal magneto-
hydrodynamics (MHD) in multiple space dimensions. The MHD system introduces an additional
difficulty, since the divergence of the magnetic field vector B must remain zero for all times, i.e.

∇·B=0. (3.4)

For the exact solution of the problem this is always satisfied if the initial data for B are divergence-free.
From the discrete point of view this is not necessarily guaranteed and hence extra care is required in
the discretization. In this article we use the hyperbolic version of the generalized Lagrangian multiplier
(GLM) divergence cleaning approach proposed in [27]. It consists in adding an auxiliary variable ψ
and one linear scalar PDE to the MHD system to transport divergence errors out of the computational
domain with the artificial divergence cleaning speed ch. The augmented MHD system with hyperbolic
GLM divergence cleaning reads

∂

∂t













ρ
ρv
ρE
B
ψ













+∇·













ρv
ρvv+

(

p+ 1
8πB

2
)

I− 1
4πBB

v
(

ρE+p+ 1
8πB

2
)

−v· 1
4πBB

Bv−vB+ψI
c2hB













(3.5)

The equation of state (EOS) is now

p=(γ−1)

(

ρE− 1

2
ρv2− 1

8π
B2

)

. (3.6)
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Several physical constraints for a numerical solution to be admissible are further deduced. First,
the density ρ and the pressure p must always remain positive, as for the Euler equations discussed
before. Note that the extra magnetic term −B

2

8π in the equation of state leads to a difficult p> 0
constraint in the case of a highly magnetized flow field. For the numerical detection criteria, as for
the Euler system we choose the DMP+u2 detection criteria on each conservative variable. Last, we
also check for impossible discrete values (NaN).

3.2.3 System 3: Ideal relativistic magneto-hydrodynamics (RMHD)

The ideal relativistic MHD (RMHD) equations form a very complicated hyperbolic system, for which
the Cauchy-Kovalewski (Lax-Wendroff) procedure as proposed in [38, 40, 44, 82] becomes impossible
for orders greater than two. The reason for that is that the primitive variables (and hence the
flux tensor F) can not be expressed any more in a closed analytical form in terms of the conserved
quantities. However, the local space-time Galerkin predictor scheme used in the latest generation of
ADER schemes is sufficiently simple and general to be able to deal even with such a complex system
as RMHD. The details about this very interesting but very complex hyperbolic system can be found
in [3, 47, 54, 72, 96]. For the multi-dimensional version of the equations, we also have to enforce the
divergence-free condition of the magnetic field. As in the non-relativistic MHD case this is done using
the hyperbolic divergence-cleaning approach [27]. The vector of conserved variables of the RMHD
system reads

Q=













D
q
E
B
ψ













=













γρ
γwtotv−b0b

γ2wtot−b0b0−ptot
B
ψ













, (3.7)

and the flux tensor F(Q) is given by

F=













γρv
γ2wtotvv−bb+ptotI

γ2wtotv−b0b
vB−Bv+ψI

c2hB













. (3.8)

Here, I is the identity matrix, the enthalpy wtot and the total pressure ptot are defined as

wtot=e+p+|b|2, ptot=p+
1

2
|b|2, (3.9)

where the internal energy is given by the following equation of state

e=ρ+
p

Γ−1
. (3.10)

The Lorenz factor is

γ=
1√

1−v2
, (3.11)

and the other quantities appearing in (3.8) are

b0=γ(v·B), b=
B

γ
+γv(v·B), |b|2=B2

γ
+(v·B)2 . (3.12)
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We assume a speed of light normalized to unity. The computation of the primitive variables, namely
W={(ρ,v,p,B),ψ} from the conserved quantities Q has to be done numerically, by using an iterative
Newton or bisection method, as explained in [33,96].

We can exhibit for this system several physical constraints for a numerical solution to be admissible:
First, the density ρ and the pressure p must remain positive. Second, the velocity can never exceed the
speed of light (normalized to unity), therefore |v|<1. For the numerical criteria, as for the previous
systems we choose the DMP+u2 detection criteria on each conservative variable. Since for RMHD the
primitive variables must be computed from the conserved quantities Q by an iterative method that is
not always guaranteed to converge, we also use the failure of convergence of the iterative computation
W=W(Q) as a numerical detection criterion that enforces a local reduction of the polynomial degree
of the reconstruction. Last, we also check for impossible discrete values (NaN).

3.3 Summary of detection criteria

In Table 1 we summarize the detection criteria enforced by the physics underlying the three systems
of equations.

MOOD detection criteria

Name Hyperbolic system Physical Admissibility Numerical Admissibility
Detection (PAD) Detection (NAD)

for all conservative variables

HD hydrodynamics ρ>0, p>0 DMP+u2 NaN
MHD magneto-hydrodynamics ρ>0, p>0 DMP+u2 NaN

RMHD
relativistic ρ>0, p>0 DMP+u2 NaN

magneto-hydrodynamics |v|<1 W=W(Q) failure

Table 1: Summary of the detection criteria for the MOOD method for each hyperbolic system of equations which are considered
in this work. DMP: Discrete Maximum Principle check, u2: curvature regularity check [29,30], NaN: Not-a-Number check.

4 Numerical results

The goals of this section on numerical test cases can be summarized as follows.

1. First we want to show numerically that the coupling of MOOD and ADER techniques provides an
accurate and robust numerical method in 2D and 3D for unstructured meshes made of triangles
and tetrahedra when smooth and non-smooth problems are simulated;

2. Second, we show that this method is efficient in terms of CPU time, accuracy and memory con-
sumption without any code optimization or subtle tricks. The comparison is made between
ADER-MOOD P3 −→ P

lim
1 −→ P0 and ADER-WENO P0P3. These performances provide a

subjective, but nonetheless meaningful measure: both methods are implemented in the same
environment, overheads due to input/output, initialization, MPI parallelization, and other im-
plementation details are shared and can therefore be negligible in the overall count.

3. Third we want to show that MOOD paradigm can adapt to different and more complex sys-
tems of conservation laws, namely hydrodynamics (HD), classical Newtonian MHD (MHD) and
relativistic MHD (RMHD). As such, one expects to show that genuinely complex physics can
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be handled by the MOOD paradigm. Moreover, the ADER-MOOD framework being almost
non-intrusive, its implementation within an existing three-dimensional parallel simulation code
is fairly simple, if not almost immediate.

If not stated otherwise in the following we call ADER-MOOD or simply MOOD the PM−→P
lim
1 −→P0

scheme described in the previous section using conservative variables. The name ADER-WENO or
simply WENO is used to refer to the P0PM scheme with polynomial WENO reconstruction in char-
acteristic variables according to [37, 38]. To our knowledge, this is the most up-to-date unstructured
WENO scheme, together with the mixed-element WENO method described in [85, 92], which uses
the same underlying philosophy. The tetrahedral meshes used in this section are constructed with an
automatic mesh generator specifying the domain boundary and a characteristic length called h.

4.1 Numerical results for the HD system

In this section on the Euler equations of compressible gas dynamics one first uses the isentropic
vortex in motion to verify that optimal orders of convergence are reached. CPU time and memory
consumption are also provided. Then the classical 2D double Mach reflection problem is run to assess
the efficiency of the methods when strong shock waves are present and refined 2D meshes are used.
Moreover, Rusanov and HLLE (Harten-Lax-van Leer [45,51]) fluxes are tested within ADER-MOOD
and ADER-WENO methods to enlight the importance of the Riemann solver. Next, the Sod and Lax
shock tube problems are run on 3D tetrahedral meshes to show the behavior of the scheme when simple
waves are traveling inside the domain without interacting. Finally, a spherical explosion problem is
simulated. The purpose of this last test is to show that the conclusions drawn in 2D do also apply in
3D with even more strength.

4.1.1 Isentropic vortex in motion

The isentropic vortex problem was initially introduced for the two-dimensional space [77] to test the
accuracy of numerical methods since the exact solution is smooth and has an analytical expression.
Let us consider the computational domain Ω=[−5,5]×[−5,5] and an ambient flow characterized by
ρ∞=1.0, u∞=1.0, v∞=1.0, w∞=0.0, p∞=1.0, with a normalized ambient temperature T ∗

∞=1.0
computed with the perfect gas equation of state and γ=1.4.
A vortex is centered on the z axis line at (xvortex,yvortex)=(0,0) and supplemented to the ambient gas
at the initial time t=0 with the following conditions u=u∞+δu, v=v∞+δv, w=w∞, T ∗=T ∗

∞+δT ∗

where

δu=−y′ β
2π

exp

(

1−r2
2

)

, δv=x′
β

2π
exp

(

1−r2
2

)

, δT ∗=−(γ−1)β

8γπ2
exp

(

1−r2
)

,

with r=
√

x′2+y′2 and x′=x−xvortex,y′=y−yvortex. The vortex strength is given by β=5.0 and the
initial density follows the relation

ρ=ρ∞

(

T ∗

T ∗
∞

) 1

γ−1

=

(

1− (γ−1)β

8γπ2
exp

(

1−r2
)

) 1

γ−1

. (4.1)

Periodic boundary conditions are prescribed everywhere, so that at the final time tfinal=10 the vortex is
back to its original position. Note that this problem has a smooth solution and thus could be simulated
with effective high-order of accuracy. Consequently we compute the discrete L2 and L∞ norm errors
between the initial and final piecewise constant data for the density. Successively refined grids made
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of triangles are constructed given a boundary edge length h=Lchar/Nx starting from Nx=24 (coarse
grid) up to Nx=128 (fine grid). In Table 2 we report these errors and the corresponding rates of
convergence. These data show that both ADER-MOOD and ADER-WENO are effectively 4th order
accurate methods. Moreover errors are of the same order. To compare the CPU time we use the
CPU time of the unlimited P0P3 scheme as the basis because this scheme is the fastest method of
effective 4th order. The CPU times reported in Table 2 proves that on this problem WENO is 30%
more expensive than the unlimited scheme whereas MOOD is only 7% more expensive.
Moreover a CPU times and memory comparisons between ADER-MOOD and ADER-WENO have
been carried out using a single CPU core of an Intel i7-2600 processor with 3.4 GHz of clock speed
and 12 GB of RAM, in order to assess the pure serial performance, without accounting for the MPI
overhead. The memory consumption for the Nx=64 mesh is 233.55MB for WENO and 76.10MB for
MOOD, hence a gain of more than 3 in favor of MOOD. We have also measured that the simulation
with ADER-WENO method lasts for 314s whereas ADER-MOOD lasts for 276.7s (ratio 1.13 infavor
of MOOD), see the synthetic Table 7.

ADER-MOOD P3−→P
lim
1 −→P0 ADER-WENO P0P3

Nx CPU time L2 error L∞ error CPU time L2 error L∞ error

24 1.31 2.65E-02 — 3,33E-02 — 1.15 4.49E-02 — 3.24E-02 —

32 1.00 1.08E-02 3.12 1.29E-02 3.29 1.25 1.13E-02 4.78 1.17E-02 3.54

64 1.07 7.19E-04 3.91 6.76E-04 4.26 1.28 7.23E-04 3.97 6.76E-04 4.11

128 1.06 4.14E-05 4.12 4.19E-05 4.01 1.30 4.14E-05 4.13 4.19E-05 4.01

Expected order 4 4 4 4

Table 2: L2 and L∞ errors and convergence rate for the isentropic vortex problem for the MOOD P3 −→P
lim
1 −→P0 and

WENO P0P3 methods. CPU times are normalized according to the unlimited P0P3 scheme.

4.1.2 Le Blanc shock tube

Next we have run the shock tube of Le Blanc [13,61] also called sometimes the shock tube from hell.
This test is an extreme version of shock tube on domain [−5 : 5] for a perfect gas equation of state
(γ=5/3) with the following initial data

(ρ,u,p)(x,t=0)=

{

(1.0,0.0,2/3×10−1) if x<−2
(10−3,0.0,2/3×10−10) if x≥−2

(4.2)

The final time is set to tfinal=6 and an exact solution is derived from [87]. We run this test in 2D on
domain Ω= [−5 : 5]×[−0.5 : 0.5] on the same unstructured mesh (characteristics length 1/50 leading
to 56894 triangles). Comparison between ADER-WENO P0P2 and ADER-MOOD P2−→P

lim
1 −→P0

is made in Fig. 1 where we display the log of the density, the x-component of the velocity and the
specific internal energy variables as a function of x. Several cuts along horizontal lines are shown to
observe if the symmetry along the y-direction is preserved. We also propose the figure showing the
cell polynomial degrees at the final time. The Le Blanc shock tube is known to be a very difficult
problem because of the strong discontinuity and the subsequent strong emerging waves. Initially a
strong entropy deposition is needed at the discontinuity to ensure the stability of the computation.
This generally leads to a relative important error on specific internal energy which is further diffused
by the numerical method. The more diffusive the numerical scheme, the faster the spike is reduced
with an obvious impact on other variables.
Almost any numerical scheme has also difficulties when mesh convergence is demanded. Note that
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the mesh size used here is too large to expect mesh convergence. This is the reason why the position
of the shock wave is not well fitted to the exact solution neither for WENO nor for MOOD even if
both are conservative methods [81]. In Fig. 1 we can see the classical misbehavior of both methods on
internal energy with a more pronounced spike for MOOD. Note that Lagrangian numerical schemes or
high-order Eulerian schemes present some defect on internal energy (spike or wrong wave speed) unless
specific treatment is designed, see as instance [71]. In the same figure we can observe for the last time
step which cells have been decremented (red cells are updated with degree 2, green cells with degree 1,
blue cells with degree 0). Most of cells are updated with the P2 reconstructions apart from three zones
corresponding to the foot of the rarefaction (marginally), the contact and more pronounced ahead of
the shock wave.

4.1.3 2D double Mach reflection of a strong shock

Next we have run the 2D double Mach reflection of a strong shock that was proposed in [95]. This
test problem involves a Mach 10 shock in a perfect gas with γ=1.4 which hits a 30◦ ramp with the
x-axis. Using Rankine-Hugoniot conditions we can deduce the initial conditions in front of and after
the shock wave

(ρ,u,v,p)(x,t=0)=

{

(8.0,8.25,0.0,116.5) if x<0.1
(1.4,0.0,0.0,1.0) if x≥0.1

(4.3)

Reflecting wall boundary conditions are prescribed along the ramp and the upper boundary. Inflow
boundary condition and outflow condition are prescribed on the left side and the right side respectively.
The same meshes as in [38] using characteristics lengths h=1/200 (NE=355656 cells) and h=1/400
(NE=1418590 cells) are used. Classically the results are presented as 31 isolines ranging from 1.5 to
21.5 for the density variable at tfinal=0.2.

Comparison WENO P0P3 and MOOD P3−→P
lim
1 −→P0. In Figure 2, we present such isoline

contours for WENO and MOOD methods. Furthermore, a zoom on the area of wave interactions is also
provided on right panels of Figure 2 to ease the comparison. The results obtained with MOOD present
more features than WENO results which indicate that MOOD is less dissipative. As a comparison the
reader is referred to [38], where WENO P2 was run on a refined grid (h=1/400). Indeed, a somewhat
refined grid is needed for the WENO method to be qualitatively comparable to the MOOD method,
see for instance the zooms for the h=1/400 grid.

Moreover a CPU times comparison has been carried out using a grid with characteristic mesh
spacing of h=1/100 on a single CPU core of an Intel i7-2600 processor with 3.4 GHz of clock speed
and 12 GB of RAM, in order to assess the pure serial performance of both schemes, without accounting
for the MPI overhead. We have found that for this test case the ADER-WENO method produces a
more dissipative solution and is about 1.63 times slower compared to ADER-MOOD, see Table 7.
Moreover the memory consumption is 3.41 times less important for MOOD.

Comparison ADER-WENO P0P3 and ADER-MOOD P3−→P
lim
1 −→P0 with HLLE numer-

ical flux. In order to show the relative insensitivity of the method to the numerical flux employed
we have run the double Mach problem with the HLLE (Harten-Lax-van Leer [45,51]) numerical flux.
This numerical flux was also used in [34] but the underlying ADER-WENO scheme is slightly different
(the meshes are not exactly the same but are comparable and also the Cauchy-Kovalewski procedure
is not used anymore in the latest generation ADER schemes, like the ones adopted in this paper).
The results in Figure 3 are obtained the same way as those of Figure 2 but by using the HLLE flux
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Figure 2: Double Mach problem at tfinal =0.2 on triangular unstructured meshes — Rusanov numerical flux — Top line:
ADER-WENO P0P3 method. Bottom line: ADER-MOOD P3−→P

lim
1 −→P0 method — The full domain is shown on the left

panel (h=1/200 mesh). Zooms for h=1/200 (middle) and h=1/400 (right) meshes enhance the results.



20

Problem ρL uL pL ρR uR pR tend

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.2

Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.14

Table 3: Initial left and right states for the density ρ, velocity u and the pressure p for the planar shock tube problems. The
final simulation times tfinal are also given.

instead of the Rusanov flux. As such we can observe how WENO and MOOD methods react to the
modification of the numerical flux. It seems that HLLE flux is more appropriate for this test case as
more structures develop for both methods. Refining the mesh shows the occurrence of more vortices.
The conclusions drawn with the Rusanov flux when comparing WENO and MOOD still hold: MOOD
method seems to be less dissipative and to produce less oscillatory solutions.

In Figure 4, the cells polynomial degrees map (corresponding to the scheme order minus one)
is shown for the last iteration of the MOOD P3−→P

lim
1 −→P0 method for the two resolutions. As

expected the scheme order is maximal almost everywhere except around the principal waves. Some
local instabilities which develop behind the waves demand a less accurate scheme to be properly
handled, hence the blue/green cells away from principal waves which denote low-order polynomial
degrees. Also we observe the presence of the well-known startup error ‡ manifested by two vertical
waves located at x=0.7 and x=1.65, visible for both methods and all grid resolutions, see Figure 3.
Moreover we remark that around the region where vortices develop (approximatively x> 1.75 and
y < 1.3) the MOOD scheme nicely detects that the solution is almost smooth except for few local
extrema. As a consequence, this region seems to be updated with the most accurate scheme. This is
appropriate should we believe that the solution in this region is smooth enough.

4.1.4 Planar shock tube problems on 3D unstructured tetrahedral meshes

Here we run the 1D planar Sod shock tube problem and the classical Lax shock tube problem on a 3D
unstructured tetrahedral mesh to assess the ability of the methods to capture one-dimensional simple
waves. The initial conditions for density, velocity component u and pressure are listed in Table 3. The
other two velocity components are initialized with v=w=0.
The ratio of specific heats is set to γ=1.4 and for both test problems the discontinuity is initially

located at x=0.0. An exact solution can be derived for the one-dimensional Riemann problem, see [87]
for details. The computational domain Ω=[−0.5;0.5]×[0;0.1]×[0;0.1] is paved with an unstructured
mesh made of 190089 tetrahedra constructed with a characteristic mesh size of h=1/100, leading to an
equivalent 100 cell 1D mesh in the principal direction, see Figure 5. Dirichlet boundary condition in x
direction are imposed, while in y and z direction we apply periodic boundary conditions. Because the
mesh is truly unstructured, 3D effects are to be expected, thus leading to possible loss of symmetry in
the transverse directions (y and z). In Figures 6 and 7 we present the results for fourth order ADER-
MOOD and ADER-WENO methods: density, velocity in x-direction and pressure are displayed as
1D cut along the x direction versus the exact solution. Both, ADER-WENO and ADER-MOOD can
capture the exact solution rather well. The shock wave is spread across one or two characteristic mesh
lengths for both methods, and also the contact discontinuity is resolved in a sharp manner. The star
region of the Riemann problem is essentially captured, although some loss of 1D symmetry is observed

‡The startup error occurs when starting from an isolated traveling shock wave according to the exact Rankine Hugoniot
conditions. Since the numerical scheme introduces numerical dissipation in the shock front, spurious waves develop, the
so-called startup error. It could be cured by starting with an appropriate discrete shock profile as initial condition.
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Figure 3: Double Mach problem at tfinal=0.2 on triangular unstructured meshes — HLLE numerical flux — Top line: ADER-
WENO P0P3 method. Bottom line: ADER-MOOD P3−→P

lim
1 −→P0 method — The full domain is shown on the left panel

(h=1/200 mesh). Zooms for h=1/200 (middle) and h=1/400 (right) meshes enhance the results.
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Figure 4: Double Mach problem at tfinal=0.2 on triangular unstructured meshes — Local order of the scheme (or (CellPD +1)-
map) ranging from 1 to 4 — ADER-MOOD P3−→P

lim
1 −→P0 method — Left: h=1/200 mesh. Right: 1/400 mesh.

Problem ADER-WENO P0P3 ADER-MOOD P3→P
lim
1 →P0

L1 L2 L∞ L1 L2 L∞

Sod 3.0672E-05 9.0131E-04 0.1155 2.5327E-05 7.6584E-04 0.1134

Lax 1.0235E-04 4.9910E-03 0.7020 8.4124E-05 4.2497E-03 0.7227

Table 4: Errors for the density ρ in three different norms for the fourth order ADER-MOOD and ADER-WENO methods
simulating the Sod and Lax problems on a 3D unstructured mesh made of 190089 tetrahedra.

for both methods.

The contact discontinuity seems sharper for MOOD than for WENO. Finally, MOOD presents a
slight over- and undershoot at the head and tail of the rarefaction fan. To quantify the errors, we
show L1, L2 and L∞ error norms for the density for both methods in Table 4. From these results we
conclude that ADER-MOOD gives better L1 and L2 errors, while ADER-WENO provides a better
L∞ error for the Lax shock tube problem. For the Sod shock tube, both schemes have essentially the
same L∞ error. Considering the absolute value of the errors reached, we can conclude that both high
order methods present excellent results on these simple 1D waves.
Finaly, on a single processor, we have measured that MOOD is 1.7 times faster and uses 6 times less
memory than WENO, see Table 7 for details.

4.1.5 3D spherical explosion problem

The last problem is the 3D explosion problem from [87] given by a gas initially at rest in the unit
sphere R= 1. An inside sphere of radius rc = 0.5 centered at the origin has a density ρb = 1.0, a
pressure pb=1.0 whereas the exterior is initialized by ρe=0.125, pe=0.1 with a perfect gas equation
of state with γ=1.4. The simulation is run up to the final time tfinal=0.2 on an unstructured mesh
made of 3,464 millions of tetrahedra with a characteristic length between h=0.002 and h=0.02, see
Figure 8 to see one hemi-sphere. This problem is run using an MPI parallelized version of the methods
on 128 processors. This problem enjoys a spherical symmetry and, as such, a reference solution has
been computed using a second-order scheme on the associated 1D partial differential equations with
geometric source terms and 10,000 cells, see [87] for details.
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X
Y

Z

Figure 5: Planar Sod problem at tfinal=0.2 on a 3D unstructured mesh made of 190089 tetrahedra — MOOD P3−→P
lim
1 −→P0

results — Mesh and (color) density. Red color corresponds to the unperturbed region to the left, dark blue region to the
unperturbed region to the right of the Ox axis.

In Figure 9 we present the results for ADER-MOOD (right row) and ADER-WENO (left row)
using P3 polynomials versus the reference solution (straight line). The density, velocity (u component)
and pressure are displayed along the positive x axis in the plane y=z=0 using 100 equidistant sample
points. Both methods are able to compute this spherical solution well, reaching a good level of
accuracy. The ADER-MOOD scheme seems to produce a slightly sharper shock wave and contact
discontinuity compared to the ADER-WENO method. The rarefaction wave for MOOD, however,
presents a small over- and undershoot on the head of the fan, as was already seen on the planar
Sod/Lax problems. Also the peak made at the foot of the rarefaction wave (see the velocity, middle
panels of Figure 9) seems to be better approximated by MOOD method.
On 512 processors we have measured that MOOD method is 1.28 times faster and uses 3.28 less
memory than WENO approach, see Table 7.
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Figure 6: Planar Sod problem at tfinal=0.2 on a 3D unstructured mesh made of 190089 tetrahedra — Left row: ADER-WENO
P0P3 results. Right row: ADER-MOOD P3−→P

lim
1 −→P0 results — 1D projection along the Ox axis of the variable (from

top to bottom: density, velocity u, pressure) versus the exact solution.
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Figure 7: Planar Lax problem at tfinal=0.14 on a 3D unstructured mesh made of 190089 tetrahedra — Left row: ADER-WENO
P0P3 results. Right row: ADER-MOOD P3−→P

lim
1 −→P0 results — 1D projection along the Ox axis of the variable (from

top to bottom: density, velocity u, pressure) versus the exact solution.
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Figure 8: 3D explosion problem at tfinal=0.2 on a 3D unstructured mesh made of 3,464 millions of tetrahedra — ADER-MOOD
P3−→P

lim
1 −→P0 results for density (color) on the hemi-sphere.
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Figure 9: 3D explosion problem at tfinal=0.2 on a 3D unstructured mesh made of 3,464 millions of tetrahedra — Left row:
ADER-WENO P0P3 results. Right row: ADER-MOOD P3−→P

lim
1 −→P0 results — 1D projection along the Ox axis of the

variable (from top to bottom: density, velocity u, pressure) versus the reference solution.
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4.2 Numerical results for the MHD system

In this section we present the results obtained by the two methods when solving the ideal MHD system
in section 3.2.2. The so-called Orszag-Tang Vortex problem [65] and the Rotor problem proposed by
Balsara and Spicer in [6] are considered.

4.2.1 Orszag-Tang vortex system

The vortex system of Orszag and Tang [65], see also [67] and [26] for more details on the physics of the
problem, is now considered. Let us recall the initial data: the computational domain is Ω=[0;2π]2,
the same parameters of the computation of Jiang and Wu [58] are used, however, scaling the magnetic
field by

√
4π due to the different normalization of the governing equations. The initial condition of

the problem is given by

(ρ,u,v,p,Bx,By)=
(

γ2,−sin(y),sin(x),γ,−
√
4πsin(y),

√
4πsin(2x)

)

, (4.4)

with w=Bz = 0 and γ = 5
3 . The final time is tfinal = 5.0. We use a ADER-WENO P0P3 scheme

with reconstruction in conservative variables since the computation of the characteristic variables is
too complex and time consuming for this system. Note that MOOD P3 −→ P

lim
1 −→ P0 still uses

reconstruction in conservative variables.
An unstructured triangular mesh with 90126 elements (h= 1

200) is considered. The divergence
cleaning speed is set to ch =2.0, see [33]. In Figure 10 the results are reported for both methods
(WENO on the left column and MOOD on the right) at different output times t=0.5,2.0,3.0 and
tfinal=5. Both methods essentially capture the main features and agree with the numerical solutions
obtained in [58] and [33], the differences being minor flow details. Comparing the speed and the
memory consumption on a single processor we have measured that MOOD is slower than WENO
(ratio 0.94) but the gain in memory in favor of MOOD is about 2.5, see Table 7 for details.

4.2.2 MHD Rotor Problem.

The second test case is the classical MHD rotor problem proposed by Balsara and Spicer in [6]. It
consists of a rapidly rotating fluid of high density embedded in a fluid at rest with low density. Both
fluids are subject to an initially constant magnetic field. The rotor causes torsional Alfvén waves that
are launched into the fluid at rest. As a result the angular momentum of the rotor is diminished. The
problem is set up on a circular computational domain Ω with radius r= 1

2 The density of the rotor
is ρ=10 for 0≤ r≤0.1 and ρ=1 for the ambient fluid. The rotor has a constant angular velocity ω
that is determined in such a way to obtain a toroidal velocity of v=ω·r=1 at r=0.1. The pressure is
p=1 in the whole domain and the magnetic field vector is set to B=(2.5,0,0)T in the whole domain.
As proposed by Balsara and Spicer we apply a linear taper to the velocity and density field in the
range from 0.1≤ r≤0.13 such that density and velocity match those of the ambient fluid at rest at
a radius of r=0.13. The speed for the hyperbolic divergence cleaning is set to ch =2 and γ=1.4
is used. Transmissive boundary conditions are applied at the outer boundaries of the disk. We use
a locally refined mesh towards the center of the disk with a total number of 106930 triangles. The
characteristic mesh size is h=0.003 for 0≤r≤0.21 and h=0.005 for 0.21<r≤0.5. Results obtained
by ADER-WENO and ADER-MOOD are displayed in Figure 11. Density (top line), pressure (middle
line) and ’magnetic pressure’ (|B|2/(8π)) are presented with the same colored scales for each variable
to ease the comparison. Both schemes capture the main features of the problem. It seems that
MOOD produces smoother profiles than WENO apart from the center of the rotor. We interpret this
better behavior by the fact that MOOD is considering only one centered stencil for the polynomial



29

ADER-WENO P0P3 ADER-MOOD P3→P
lim
1 →P0

T
im

e
t=

0
.5

T
im

e
t=

2
.0

T
im

e
t=

3
.0

T
im

e
t=

5
.0

Figure 10: Evolution of the pressure field of the Orszag-Tang problem at times t=0.5, t=2.0, t=3.0 and t=5.0 (top to
bottom) using the ADER-WENO P0P3 scheme (left column) and ADER-MOOD P3−→P

lim
1 −→P0 (right column).
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reconstructions for the entire simulation. Contrarily ENO and WENO (in a less pronounced way)
consider possibly non-centered stencils which also may change from one time step to the other; this
asymmetric treatment has a clear tendency to generate small yet visible numerical instabilities. In
the center of the of the rotor, where a plateau seems to be the correct solution the WENO method
behaves better because it succeeds in building “almost flat” polynomials. Unfortunately, MOOD does
not correct its high-order polynomial if it does not generate a violation of detection criteria. In this
almost flat area nothing is invalid after the MOOD cycle, the candidate solution is acceptable as such.
For a simulation carried out on a single CPU core for this test MOOD is about 1.14 times faster than
WENO and the gain in memory in favor of MOOD is about 2.5, see Table 7 for details.
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Figure 11: MHD Rotor problem results for the ADER-WENO P0P3 scheme (left column) and ADER-MOOD P3−→P
lim
1 −→P0

scheme (right column) — Top line: density. Middle line: pressure. Bottom: magnetic pressure |B|2/(8π).
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4.3 Numerical results for the RMHD system

In this section we present the results obtained by the two methods when solving the resistive relativis-
tic MHD system of equations from section 3.2.3.

4.3.1 Large Amplitude Alfvén wave.

The relativistic MHD equations (RMHD) are an extremely challenging and highly nonlinear system
of conservation laws. As a direct consequence, it is extremely difficult to devise accurate and robust
numerical methods for this system. To verify the accuracy of the proposed high order one-step ADER-
MOOD finite volume schemes we perform a numerical convergence study of the third, fourth and fifth
order version of our schemes on a time-dependent test case originally proposed in the work of Del
Zanna et al. in [97]. Subsequently, it has also been used for the validation of other high order
schemes in [33, 43, 66]. It consists in a space-time periodic Alfvén wave with large amplitude. The
initial condition for the primitive variables is chosen as the exact solution of the problem at time
t=0. The chosen parameters and the space-time periodic solution are ρ=p=1, u=Bx=Ψ=0, By=
ηB0cos(kx−vAt), Bz=ηB0sin(kx−vAt) and v=−vABy/B0, w=−vABz/B0. We use the wavenumber
k=2π, the 2D computational domain is Ω=[0;1]×[−0.1;+0.1] with four periodic boundary conditions
and Γ= 5

3 . With these parameters and B0=η=1, the speed of the Alfvén wave in positive x-direction is
vA=0.433892047069424, see [97] for details and a closed expression for vA. The final computation time
is set to tfinal=0.5 In all the computations we use a Courant number of 0.5. Table 5 shows the errors
in L2 norm, ǫL2, the measured convergence orders OL2 for the flow variable By and the wallclock time
needed for the entire simulation on an AMD Opteron cluster with 64 CPU. The number 1/h denotes
the reciprocal characteristic mesh spacing along each coordinate direction and four successively refined
meshes are considered.
One can observe that both the ADER-WENO and ADER-MOOD schemes reach their designed order
of accuracy, however, the ADER-MOOD method requires sufficiently refined meshes. On coarse grids,
the MOOD scheme considers by design that the solution is not resolved enough and as a consequence
reduces the polynomial degree of the reconstruction. One also notes that the gains in CPU time
are less important for MOOD in this case, since the most expensive part of the scheme is not the
reconstruction, but the high order accurate time discretization and the flux calculations. Both require
the costly iterative conversion from conservative variables to primitive variables, as outlined above.
In addition to that, MOOD requires further extra computations of primitive variables to compute the
physical admissibility criteria (PAD), which are based on pressure and density positivity as well as on
the norm of the velocity vector, all of which are primitive variables and cannot be easily obtained from
the known vector of conserved quantities. The memory consumption for this test for 1/h=100 on a
single processor is 263.9MB for WENO and 112.5MB for MOOD; a ratio of 2.3 in favor of MOOD.

4.3.2 The RMHD blast wave problem.

This problem is similar to the classical MHD blast wave problem [6] and was also used in the context
of resistive RMHD equations in [43]. The initial computational domain is a circle of radius R0=0.5
and a mesh with a characteristic mesh size of h=1/400 and a total number of NE=282860 elements
is used. The initial condition reads

Q(x,0)=

{

Qi if r≤R,
Qo if r>R.

(4.5)
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ADER-WENO O3 ADER-WENO O4 ADER-WENO O5

1/h ǫL2 OL2 tCPU 1/h ǫL2 OL2 tCPU 1/h ǫL2 OL2 tCPU

50 1.066E-04 — 11.96 25 3.644E-05 — 5.91 25 1.165E-05 — 10.18

100 1.313E-05 3.02 86.07 50 1.576E-06 4.53 25.90 50 3.512E-07 5.05 44.14

150 3.906E-06 2.99 259.2 75 2.642E-07 4.40 55.36 75 4.625E-08 5.00 94.66

200 1.650E-06 2.99 564.9 100 7.559E-08 4.38 157.4 100 1.116E-08 4.98 273.3

ADER-MOOD O3 ADER-MOOD O4 ADER-MOOD O5

1/h ǫL2 OL2 tCPU 1/h ǫL2 OL2 tCPU 1/h ǫL2 OL2 tCPU

50 8.478E-03 — 25.37 25 1.212E-02 — 13.53 25 1.100E-02 — 25.17

100 4.878E-03 0.80 156.0 50 1.570E-06 12.9 25.28 50 3.510E-07 14.9 43.07

150 3.907E-06 17.6 247.4 75 2.638E-07 4.40 53.18 75 4.622E-08 5.00 91.53

200 1.651E-06 2.99 533.2 100 7.516E-08 4.38 151.3 100 1.115E-08 4.98 258.5

Table 5: Numerical convergence study of third, fourth and fifth order unstructured ADER-WENO and ADER-MOOD finite
volume schemes for the relativistic MHD equations (RMHD). Errors refer to the variable By.

We use γ=4/3 and the final simulation time is set to tfinal=0.3. The divergence cleaning speed is ch=1.
We use the initial condition reported in Table 6 and transmissive boundary conditions are imposed
everywhere. We use the third order accurate version of the ADER-WENO finite volume scheme with

ρ u v w p Bx By Bz Ψ

Inner state Qi 1.0 0.0 0.0 0.0 1.0 0.05 0.0 0.0 0.0

Outer state Qo 1.0 0.0 0.0 0.0 10−3 0.05 0.0 0.0 0.0

Table 6: Initial condition for the RMHD blast wave problem.

the simple Rusanov–type flux and compare it with a third order ADER-MOOD method on the same
grid (h=1/400). The numerical results are depicted in Figure 12. The contour colors of the magnetic
field component Bx are reported (11 color contours are exponentially distributed between 0.03 and
0.3) and the numerical results obtained with both schemes agree well with each other.

4.3.3 RMHD rotor problem

We propose to solve a relativistic version of the MHD rotor problem of Balsara and Spicer [6]. The test
case is exactly the same as proposed in [96]. For this situation the Lorentz factor is very high (γ≈10)
and high order methods may encounter difficulties with pressure positivity. Therefore, a strategy as
described in detail in [5] should be applied. For WENO method we must reduce the order of accuracy
locally to one in those elements where negative pressures are encountered in the time evolution phase.
The rotor has a radius of Ri=0.1 and is spinning with an angular frequency of ω=9.95, leading to
maximal toroidal velocities of v=0.995. Recall that the speed of light is normalized to 1, consequently
the maximal toroidal velocity is less than 0.5% close. The density is ρ=10 inside the rotor and ρ=1
in the fluid initially at rest. The pressure is p=1 and the magnetic field is B=(1,0,0)T in the en-
tire domain. The speed for the hyperbolic divergence cleaning is set to ch=1 and Γ=5/3 is used.
Finally transmissive boundary conditions are applied at the outer boundary. The same mesh as for
the classical MHD rotor test case is used. We use the P0P3 ADER-WENO scheme on conservative
variables, since the computation of the characteristic variables is too complex and time consuming
for this system, and the same ADER-MOOD method as previously. Only the new constraint on the
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Figure 12: Results for the magnetic field component Bx for the RMHD blast wave problem at the final time tfinal=0.3. 11
color contours are exponentially distributed between 0.03 and 0.3. Left: Third order ADER-WENO scheme on a grid with
h=1/400. Right: Third order ADER-MOOD scheme on the same grid.

speed of light is added to the set of detection criteria, as well as the failure in the iterative conservative
to primitive variable conversion process, see section 3.2.3. The whole computational domain together
with the results for density, pressure and magnitude of the magnetic field (in colors and isolines) at
final time tfinal=0.4 are displayed in Figure 13 for ADER-WENO scheme (left column) and ADER-
MOOD (right column). We observe that the Alfvén waves ejected by the rotor into the medium at
rest are well reproduced by both methods. As reported in [96] we also observe a strong roll-up of the
shear waves. Qualitatively MOOD seems to be less sensitive to parasitical instabilities than WENO
for this very difficult problem. Note that the polynomial degree decrementing implemented for WENO
method when negative pressures are encountered is mandatory for the code not to crash. Obviously
the MOOD method also needs such constraint, however, this is one of the physical admissible detection
(PAD) criteria.
For a simulation carried out on a single CPU core for this test MOOD runs at about the same speed
than WENO (ratio 0.96) and the gain in memory in favor of MOOD is about 2.5, see Table 7 for
details.
This test somewhat justifies why a posteriori treatment of bad cells is an interesting approach. Indeed
this shows that the most up-to-date high-order ADER-WENO method is not a priori positivity pre-
serving for the pressure when the underlying system becomes complex and the test case is demanding.
Nonetheless a simple a posteriori correction like the proposed ’trick’ cures this flaw. Unfortunately, as
it stands, there is no place for such a useful a posteriori trick within the classical WENO philosophy.
For more recent developments on a very elegant formulation of positivity preserving WENO schemes,
the reader is referred to a recent series of papers [7, 56, 98] and references therein. However, it is not
yet clear how to assure positivity with this new high order WENO approach for the very complex
RMHD system. Contrarily, the high order MOOD method is positivity preserving by construction,
under the assumption that the parachute scheme is positivity–preserving.
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Figure 13: Relativistic MHD Rotor problem results for the ADER-WENO P0P3 scheme (left column) and ADER-MOOD
P3−→P

lim
1 −→P0 scheme (right column) at tfinal=0.4 — Top line: density. Middle line: pressure. Bottom: magnetic field

|B|2.
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4.4 CPU time, memory and algorithm

For the previous test cases and comparisons we have observed that the high order MOOD method
often seems to be more accurate, or is at least as accurate as the classical WENO method in most cases.
Now it remains to compare the cost of both methods in terms of CPU time and memory consumption.
These two measures are equally important: ’CPU time’ refers to how much time one should wait for
the results, ’memory consumption’ refers to how fine can be the mesh resolution because on parallel
machines and for scalable implementation the last bottleneck is the memory charge.
In theory we can estimate the possible gain in the reconstruction procedure when comparing WENO
and MOOD methods. By ’reconstruction procedure’ we mean the time needed to build and store the
matrix depending on the chosen stencil, and, the matrix dimensions depend on the polynomial degree.
To reconstruct such a polynomial the machine loads the matrix from the memory then inverts it and
stores the obtained polynomial coefficients. The matrix storage (memory) and inversion (CPU time)
are the two places where MOOD and WENO differ. In 3D WENO P3 demands at least 9 different
reconstruction stencils whereas MOOD method reconstructs one P3 polynomial and one limited P1

polynomial. The limited P1 polynomial for MOOD costs less than one WENO P3 reconstruction. As
a consequence, for the reconstruction step only, we can expect MOOD to be 8 times more efficient
in time and memory than WENO. In 2D this drops to 6 times. However the MOOD loop has an
extra-cost which is rather difficult to estimate. Experiments have shown that 10%−15% of invalid
cells per time step are usually observed. (Recall that for the isentropic vortex MOOD was 6% more
expensive than the unlimited scheme, WENO was 30% more expensive.)

For a dedicated code to simulate 3D Euler equations without source terms the cost of the re-
construction overtops all other costs for the WENO method. As a consequence, in such a situation,
MOOD is expected to be less expensive than WENO with a ratio no better than 8 times. Around
6−7 times is presumably a good estimate taking into account the extra-cost of the MOOD loop.
This is different for a non-dedicated code, as instance the code used in this article. Indeed the original
code has been designed to solve very general systems of PDEs of the form

Qt+∇·F(Q,∇Q)+B(Q)·∇Q=S(Q), (4.6)

with viscous terms, source terms and non-conservative products all included, some of which demand
volume integrals, etc. The relative cost of the polynomial reconstruction procedure drops significantly
since the computation of all other complex terms is usually more demanding [34]. Also in such a
code the ADER technique demands to keep in memory not only the space-time polynomials of state
variables but also the space-time flux tensor, and the algebraic source terms. Therefore the relative
cost in memory of the polynomial reconstruction procedure is lower for such a general code. Even if
the WENO polynomial reconstruction is still expensive its relative cost to the whole scheme drops to
60%. The 40% remaining is the incompressible cost of the code that MOOD can not further reduce.
Therefore the ratio 8 between MOOD and WENO estimated previously will apply only to 60% of the
overall cost. Hence for 100=60+40 unit of times for WENO method, MOOD should outperforms
with a cost of 60/8+40=47.25≃50 units of times, that is to say an effective ratio of 2.

As already mentioned one of our goal in this paper was to show that without any fine tunings
and with ultra light developments a MOOD paradigm instantaneously improves the performance of
an already existing code solving hyperbolic system of equations. More advanced development into the
code would certainly improve the memory consumption and CPU time in favor of MOOD. As such
the observed gains are presumably below the maximal expected gains.
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PDEs Test case CPU time [s] Memory [GB]
WENO MOOD Ratio WENO MOOD Ratio

HD

2D Isentropic vortex (1 CPU core) 313.8 276.7 1.13 233.55 76.10 3.07

2D Double Mach reflection (1 CPU core) 5425 3327 1.63 2.14 0.628 3.41

3D planar Sod shock tube (1 CPU core) 46606 27283 1.70 13.44 2.464 5.98

3D Explosion (512 CPU cores, MPI) 1791.6 1399.0 1.28 460.5 140.6 3.28

MHD
2D Orszag-Tang vortex (1 CPU core) 15602 16599 0.94 2.536 1.002 2.53

2D MHD rotor (1 CPU core) 3315 2902 1.14 1.991 0.793 2.51

RMHD 2D RMHD rotor (1 CPU core) 17434 18098 0.96 1.993 0.794 2.51

Table 7: Wallclock times and memory consumption for WENO and MOOD methods. Also the ratio of computer resource
consumption of WENO with respect to MOOD is given.

In Table 7 we present the CPU times and memory consumptions for several test cases provided
in this paper and for both methods. (Some of these results have already been previously given and
commented.) Some tests have been run on a single processor, some on 64, 128 or 512, consequently the
number of seconds for the CPU time is not truly informative, only the ratio between the WENO and
MOOD performance matters. Here we mainly focus on single CPU core results to avoid the overhead
brought by the parallelization.

Finally in Figure 14 we present a sketch of the MOOD loop embracing an existing hyperbolic solver.
The solver provides a candidate solution at tn+1 which is tested according to the Physical Admissible
Detection and Numerical Admissible Detection criteria (blue boxes). If all cells pass the test then the
solution as a whole is acceptable and the time step is done. In the case some problematic cells do not
pass the tests, they are listed into a set P and a set P′ where their neighbors are also gathered. P′

corresponds to the set of cells which need to be recomputed. Next the polynomial degree of any cell
in P is decremented. Accordingly the face polynomial degrees are modified, they correspond to the
actual degree of the polynomials used to evaluate the fluxes at cell interfaces, see [29] for the details.
This set of few cells is further sent to the solver for recomputation which provides a new candidate
solution to be tested.
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Figure 14: Sketch of the MOOD LOOP embracing an existing hyperbolic solver. The blue boxes correspond to the detection
process where a candidate solution in a given cell is declared acceptable or marked as problematic in the set P. The green
box performs the decrementing of cell polynomial degree di for problematic cells which are to be recomputed along with their
neighbors. Once every cells are acceptable (or if their polynomial degree has dropped to 0) the candidate solution is considered
to be acceptable and the timestep is terminated.
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5 Conclusion and perspectives

In this work we have presented the coupling of the MOOD concept with a high order one-step ADER
discretization for hyperbolic systems of equations on unstructured meshes in two and three space di-
mensions. The previous a priori WENO type of limitation within the ADER scheme has been replaced
by the a posteriori polynomial degree decrementing developed in the MOOD concept. Reciprocally,
the ADER technique has replaced the RK3 time discretization in the original MOOD method. As
such, we have built a high order one-step space and time discretization method. Let us recall the
developer’s choices which must be done when a MOOD loop is to be implemented within an existing
simulation code:

• Which cascade of schemes is to be used? Here we have chosen the cascade PM −→P
lim
1 −→P0

with M=3, 4, or 5.

• Which Physical Admissibility Detection (PAD) and Numerical Admissibility Detection (NAD)
criteria are to be used? The system of partial differential equations usually dictates the PAD
whereas the NAD must be designed. Here we have used the so-called DMP+u2 detection criteria
on all conservative variables.

Note that these choices could be different but usually the user/developer has a clear understanding
of the system to solve and the properties of the solution to be maintained. This coupling of netween
ADER and MOOD was indeed the first purpose of this work.

The second goal was to numerically validate this new approach. The ADER-MOOD scheme has
been first implemented and tested on the Euler equations of compressible gas dynamics. Numeri-
cal evidences have been provided to assess the effective high-order of accuracy in space and time on
smooth solutions but also the accuracy by comparing our results with classical ADER-WENO results.
Accuracy, memory and CPU time consumption have also been compared between the two approaches.
For the test cases we carried out, the ADER-MOOD scheme requires at least 3 times less memory
storage and runs 60% faster when sequential and 30% when parallelized with MPI than classical
ADER-WENO schemes. Only very little efforts were necessary to implement the MOOD loop into the
existing 3D PNPM MPI parallel simulation code. In other words, we have not tried to optimize in any
possible way the MOOD procedure to fit neither the existing data-structure nor the parallelization
choices. Because this original PNPM code is not designed to welcome a MOOD loop the improvement
measured in this paper is at minimal level that one could expect — this was also the fourth goal of
this paper, to show that MOOD is non-invasive to an existing code.
The fifth goal was to show that the MOOD concept adapt instantaneously to other systems of con-
servation laws: in this paper we extended it to MHD and relativistic MHD. The underlying physics
implies new detection criteria to supplement the already existing listed in the Physical Admissibil-
ity Detection set.Numerical validation on known problems were also provided along with a detailed
comparison with ADER-WENO results. For the same mesh resolution, computational times are com-
parable for ADER-MOOD and ADER-WENO but ADER-MOOD produces less oscillatory results for
most of the test cases and demands about 2.5 time less memory.

In the near future we plan to investigate how ADER-MOOD behaves when stiff source terms
and non-conservative products are present within the system, e.g. for the multi-layer shallow water
equations or the Baer-Nunziato model of compressible multi-phase flows. We recall that the simulation
code has been designed to solve such generic systems as given by equation (4.6). As a consequence,
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we plan to investigate more thoroughly how the MOOD concept will adapt to more physics based
systems, should they be conservative or not.
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