
TOPOLOGICAL ASYMPTOTIC ANALYSIS FOR A

CLASS OF QUASILINEAR ELLIPTIC EQUATIONS

Samuel Amstutz, Alain Bonnafe

To cite this version:

Samuel Amstutz, Alain Bonnafe. TOPOLOGICAL ASYMPTOTIC ANALYSIS FOR A
CLASS OF QUASILINEAR ELLIPTIC EQUATIONS. 2014. <hal-00952109>

HAL Id: hal-00952109

https://hal.archives-ouvertes.fr/hal-00952109

Submitted on 26 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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TOPOLOGICAL ASYMPTOTIC ANALYSIS FOR A CLASS OF

QUASILINEAR ELLIPTIC EQUATIONS

SAMUEL AMSTUTZ AND ALAIN BONNAFÉ

Abstract

Topological asymptotic expansions for quasilinear elliptic equations have not been studied
yet. Such questions arise from the need to apply topological asymptotic methods in shape
optimization to nonlinear elasticity equations as in imaging to detect sets with codimensions
≥ 2 (e.g. points in 2D or segments in 3D). Our main contribution is to provide topological
asymptotic expansions for a class of quasilinear elliptic equations, perturbed in non-empty
subdomains. The obtained topological gradient can be split into a classical linear term and
a new term which accounts for the non linearity of the equation. With respect to topological
asymptotic analysis, moving from linear equations onto nonlinear ones requires to heavily
revise the implemented methods and tools. By comparison with the steps carried out to
obtain such expansions with the Laplace equation, the core issue for a quasilinear equation
lies in the ability to define the variation of the direct state at scale 1 in R

N . Accordingly
we build dedicated weighted quotient Sobolev spaces, which semi-norms encompass both the
Lp norm and the L2 norm of the gradient in R

N . Then we consider an appropriate class of
quasilinear elliptic equations, to ensure that the problem defining the direct state at scale
1 enjoys a combined p and 2 ellipticity property. The needed asymptotic behavior of the
solution of the nonlinear interface problem in R

N is then proven. An appropriate duality
scheme is set up between the direct and adjoint states at each stage of approximation.

Keywords: quasilinear elliptic equations, topological asymptotic analysis, topological de-

rivative, two-norm discrepancy, quasilinear interface problems.

1. Introduction and overview

The present article provides topological asymptotic expansions for a class of quasilinear
elliptic equations of second order.

The methods of so-called topological asymptotic expansions or topological gradients or topo-
logical sensitivity have been developed since the 1990’s [33, 47, 51, 58, 59]. They are applied
in the field of shape optimization (e.g. [4, 14, 33]) as well as in image processing (e.g.
[16, 19, 20, 21, 22, 23, 24, 25, 41, 42]). The key idea is to assess the sensitivity of an appro-
priately chosen functional, taken on the solution of a partial differential equation, when the
latter is perturbed in the vicinity of a given point x0, in a subdomain of which one geometric
parameter goes down to zero.

More precisely, let Ω ⊂ R
N be a bounded domain, and consider a partial differential

equation in Ω, e.g. the Laplace equation, with a boundary condition on boundary ∂Ω.
Assume this equation admits a unique solution u0, called the unperturbed direct state, in an
appropriate functional space F0. Consider a bounded domain ω ⊂ R

N , such that 0 ∈ ω, a
point x0 ∈ Ω and a parameter ε > 0 small enough such that ωε := x0 + ε ω ⊂ Ω. Then,
as shown on Figure 1, modify the equation in ωε, either by changing a coefficient of the
equation in ωε, for instance a conductivity, or by restricting the domain of the equation to
Ωε := Ω \ ω̄ε and by requiring an additional boundary condition on ∂ωε. Assume that the
perturbed equation obtained that way admits a unique solution uε, called the (perturbed)
direct state, in a functional space Fε. Let now Jε : Fε → R be a functional defined for ε ≥ 0
small enough. Then the topological asymptotic expansion of Jε is an expansion of the form

Jε(uε) = J0(u0) + ρ(ε) g(x0) + o(ρ(ε)), ∀ ε ≥ 0 small enough, (1.1)
1
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Figure 1. An equation perturbed in ωε

where ρ is a non negative function such that lim
ε→0

ρ(ε) = 0. The scalar g(x0) is called the

topological gradient, or topological derivative, at point x0. When x0 ranges in Ω, one defines
that way the topological gradient field g : Ω → R.

Topological asymptotic expansions were obtained for many equations such as linear elastici-
ty equations [33], Helmholtz equation [57], Stokes equations [36] and incompressible Navier-
Stokes equations [11]. Regarding the Laplace equation, topological asymptotic expansions
were obtained in the case of Dirichlet boundary condition [12, 35] as in the case of Neumann
boundary condition [15, 52]. Moreover asymptotic expansions were provided for the first
eigenvalues and eigenfunctions of classical problems for the Laplace operator perturbed in
small domain ωε in 2 and 3 dimensional domains [50, 51].

Hence from a mathematical perspective, the question of topological asymptotic expansions
for nonlinear elliptic equations of second order naturally arises next. The case of semilinear
equations, made of the Laplace operator added to a nonlinear term, was studied in [12, 38].

• The topological sensitivity for a class of nonlinear equations of the form

−∆̃u+Φ(u) = σ, u ∈ H1
0 (Ω)

where −∆̃ is a linear and homogeneous differential operator of order 2 and Φ is
a possibly nonlinear function, is studied in [12]. The functional setting is that of
Hilbert spaces.

• Topological derivatives for equations of the form

−∆u = F (x, u(x))

where ∆ is the Laplacian operator and F ∈ C0,α(Ω × R), are obtained in [38]. The
functional setting is that of weighted Hölder spaces.

To our best knowledge, topological asymptotic expansions remain unknown for nonlinear
elliptic equations with a nonlinearity in the principal part of the differential operator, such
as quasilinear equations.

Moreover such questions also arise from at least two applicative fields.

(1) In the field of shape optimization, the use of linear elasticity equations remains a
drawback whenever the actual behavior of mechanical structures is better described
by equations of nonlinear elasticity [30]. This issue was raised e.g. in [3] §8.

(2) In the field of imaging, the detection of subsets of codimension ≥ 2, as points in 2D
and curves in 3D, remains an important task, e.g. in medical imaging. A smooth
curve can be locally approximated by a segment, of length ‘small enough’. Applying
a topological asymptotic method, the task of detecting segments in 2D images was
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dealt with in [10] by means of a Laplace equation with Neumann boundary condition.
According to the theory of potential [2, 37, 46, 49], the Laplace equation can only
detect subsets which codimensions are < 2. For instance it cannot detect points in 2D
or segments in 3D. For such tasks, one may consider the p-Laplace equation, where
parameter p is chosen strictly larger that the codimension of the subsets to detect.

In accordance with such motivations, the present article provides topological asymptotic
expansions for a class of quasilinear elliptic equations of second order, perturbed in non-
empty open subsets.

We first analyze in section 2 some of the specific issues arising in the process of obtaining
topological asymptotic expansions for quasilinear elliptic equations. To serve as a reference,
we sketch the steps usually taken for that purpose in the case of a linear elliptic equation.
Then considering the p-Laplace equation, we raise the conditions required to define the varia-
tion of the direct state at scale 1 in R

N , denoted H.
These conditions justify that we build dedicated quotient weighted Sobolev spaces in ap-

pendix A. We thus introduce Banach spaces denoted W(RN ) and V(RN ) and the Hilbert
space H(RN ), all of them enjoying Poincaré inequalities. Eventually Proposition A.5 will
be pivotal to ensure a combined p- and 2-coercivity to the nonlinear operator defining the
variation of the direct state at scale 1.

The conditions pointed out in section 2 also widely determine the class of quasilinear elliptic
equations which we define in section 3. In particular the corresponding operators satisfy a
combined p- and 2-ellipticity property. Our main contribution is the topological asymptotic
expansion stated in Theorem 3.5. To obtain this result, we study the direct state and its
variation at each stage of approximation. We similarly study the variations of the adjoint
state. The steps taken for the adjoint state are classical as we define the adjoint state as
solution of a linearized equation. By contrast the nonlinear approach applied to the direct
state is fairly new. The needed asymptotic behavior of the solution of the nonlinear interface
problem in R

N is then proven. An appropriate duality scheme is set up between direct and
adjoint states at each stage of approximation. We eventually prove the topological asymptotic
expansion of the functional, separating a linear term and a nonlinear term. While both terms
depend on the variations of the direct and adjoint states at scale 1 in R

N , one essential
ingredient for the nonlinear term is an operator, denoted S, characterizing the nonlinearity
of the considered equation.

For reader’s convenience, most proofs are postponed to section 4.
Let us end this introduction by gathering some notation used throughout this article. The

space dimension is denoted by N , N ∈ N, N ≥ 2. A real number p ∈ [2,∞) and its Hölder
conjugate exponent q such that 1/p + 1/q = 1 are supposed to be given. The following
standard notation will be used.

(1) The symbol |E| denotes either the usual euclidean norm of E in R
N when E ∈ R

N ,
or the N -dimensional Lebesgue measure of E when E ⊂ R

N .
(2) For all a > 0, we denote Ba :=

{

x ∈ R
N ; |x| < a

}

and B′
a := R

N \Ba.

(3) SN−1 will be the unit sphere in R
N and AN−1 its surface area.

(4) IN denotes the N -dimensional identity matrix.
(5) For all open subset O ⊂ R

N or O ⊂ R, C∞
0 (O) denotes the space of infinitely

differentiable functions with compact support ⊂ O and D′(O) denotes the space of
distributions in O.

(6) The topological dual of a normed space F is denoted F∗, and the duality pairing
between F∗ and F by 〈., .〉.

Moreover, Ω is a given bounded domain of RN . We denote

(1) W 1,p(Ω) the Sobolev space defined by

W 1,p(Ω) :=
{

u ∈ D′(Ω);u ∈ Lp(Ω),∇u ∈ Lp(Ω)
}
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endowed with the norm

‖u‖1,p :=
(

‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

)
1
p
;

(2) V :=W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω);
(3) H1(Ω) the Hilbert space defined by

H1(Ω) :=
{

u ∈ D′(Ω);u ∈ L2(Ω),∇u ∈ L2(Ω)
}

endowed with the norm

‖u‖1,2 :=
(

‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)
1
2
;

(4) H := H1
0 (Ω) the closure of C∞

0 (Ω) in H1(Ω).

2. Specific issues arising for a quasilinear elliptic equation

This section points out the specific issues arising in the process of obtaining a topological
asymptotic expansion for a second order quasilinear elliptic equation, by comparison with a
linear elliptic equation. We briefly recall in subsection 2.1 the main steps taken to obtain
the expansion in the case of a linear elliptic equation. In subsection 2.2 we determine in
the quasilinear context the conditions allowing to apply the Minty-Browder Theorem ([45],
Chap. 2 §2, [27] Thm. V.15), so as to give sense to the variation of the direct state at scale
1. In the last subsection 2.4, we complete our preliminary study by announcing how three
other steps of the method will have to be generalized in the quasilinear context.

In all the subsequent we shall study quasilinear elliptic equations of second order Qu = 0
which are Euler-Lagrange equations of functionals of the form

∫

Ω
[γW (∇u)− fu] , (2.1)

where γ : Ω → R
∗
+ is a positive conductivity function, W ∈ C1(RN ,R) is called the potential

and f : Ω → R is a source. For convenience we denote the gradient field T := ∇W .
As is well-known (see e.g. [32], Chap. 8), under relevant assumptions, in an appropriate

functional space and with appropriate boundary condition, a function u minimizes functional
(2.1) if and only if it satisfies the following Euler-Lagrange equation

Qu := − div (γ T (∇u))− f = 0. (2.2)

For a given p ∈ (2,∞), we shall focus on the two following cases:

(1) the p-Laplace equation, weighted by the conductivity function γ,

− div
(

γ |∇u|p−2∇u
)

− f = 0, (2.3)

which derives from the potential W (ϕ) := 1
p |ϕ|

p, ∀ϕ ∈ R
N ;

(2) the modified p-Laplace equation

− div

(

γ
(

a2 + |∇u|2
)

p−2
2

∇u

)

− f = 0, (2.4)

for a given real number a > 0, which derives from the potential

Wa(ϕ) :=
1

p

(

a2 + |ϕ|2
)

p

2
, ∀ϕ ∈ R

N .

From the perspective of topological asymptotic expansions, we shall see that properties of
equations (2.3) and (2.4) broadly differ, far beyond the well-known fact that equation (2.3)
is degenerate while equation (2.4) is not.
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2.1. Standard steps taken for a linear elliptic equation. The task of obtaining the
topological asymptotic expansion for a linear elliptic equation was already performed many
times in the literature [13, 15, 33, 35, 36, 47, 51, 59].

Let’s consider here a conductivity perturbation in the Laplace equation with homogeneous
Dirichlet boundary condition.

∂Ω

ωε

x
0

∂ωε

Ω 

γ0 γ1

f

Figure 2. Perturbation of the conductivity in ωε.

Let Ω ⊂ R
N be a bounded domain with a smooth boundary ∂Ω, x0 ∈ Ω and a smooth

bounded domain ω ⊂ R
N such that 0 ∈ ω. For ε > 0, let ωε := x0 + ε ω. For ε > 0

small enough it holds ωε ⊂⊂ Ω. Given two positive numbers γ0 6= γ1 we define the perturbed
conductivity by

γε := γ0 in Ω \ ωε and γε := γ1 in ωε. (2.5)

Let a source f ∈ L2(Ω) be such that x0 /∈ spt(f), with spt(f) being the support of f . The
perturbed direct state uε is the solution of

{

− div (γε∇uε) = f in Ω,

uε = 0 on ∂Ω.
(2.6)

Let the Hilbert space H = H1
0 (Ω) and J : H → R a Fréchet differentiable functional. The

following steps are taken:

(1) By linearity, the variation ũε := uε−u0 of the direct state is simply defined by means
of the Lax-Milgram theorem in the Hilbert space H.

(2) The perturbed adjoint state vε is defined as the unique solution of the problem:
find v ∈ H such that

∫

Ω
γε∇v.∇η = −〈DJ(u0), η〉 , ∀η ∈ H,

where 〈. , .〉 stands for the inner product of H.
By linearity, the variation ṽε := vε − v0 of the direct state is simply defined by

means of the Lax-Milgram theorem in the Hilbert space H.
Thanks to the fact that the direct and adjoint states are in duality in the Hilbert

space H, one can easily transform the first order Taylor expansion of functional J
and obtains

J(uε)− J(u0) = −

∫

Ω
γε∇ṽε.∇ũε + (γ1 − γ0)

∫

ωε

∇u0.∇v0 + o (‖ũε‖H) . (2.7)
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Assuming enough regularity for ∂Ω and for the sources f and DJ(u0), one may
assume (e.g. [34] Thm 8.34) that ∇u0 and ∇v0 are continuous in Ω, and in particular
at point x0. This entails

∫

ωε

∇v0.∇u0 = |ω| ∇v0(x0).∇u0(x0) ε
N + o(εN ).

Hence, according to (2.7), the main task is to determine the asymptotic expansion
of the integral:

∫

Ω
γε∇ṽε.∇ũε. (2.8)

(3) One thus introduces the variation H of direct state (resp. the variation K of adjoint
state) at scale 1 in such a way that the following approximations hold

ũε(x) ≈ εH(ε−1x) and ṽε(x) ≈ εK(ε−1x), for a.e. x ∈ Ω.

The conductivity γ at scale 1 is defined by

γ := γ0 in R
N \ ω and γε := γ1 in ω. (2.9)

An appropriate Hilbert space H̃ of functions defined on R
N is then built ([31], volume

6, chapter XI and [9]). A Poincaré inequality in H̃ is required for coercivity. One
defines H as solution of the problem:
find H ∈ H̃ such that

∫

RN

γ∇H.∇η + (γ1 − γ0)

∫

ω
∇u0(x0).∇η = 0, ∀η ∈ H̃. (2.10)

Similarly one defines K as solution of the problem:
find K ∈ H̃ such that

∫

RN

γ∇K.∇η + (γ1 − γ0)

∫

ω
∇v0(x0).∇η = 0, ∀η ∈ H̃. (2.11)

Again H and K are defined by means of the Lax-Milgram theorem in the Hilbert
space H̃. The integral

∫

RN

γ∇K.∇H

is well defined. Plugging the test function K ∈ H̃ in (2.10) and using the Green
formula, one obtains

−

∫

RN

γ∇K.∇H = (γ1 − γ0)

∫

ω
∇u0(x0).∇K = (γ1 − γ0) ∇u0(x0).

∫

∂ω
Kn,

where the letter n denotes here the outward unit normal to ∂ω.
Regarding the calculation of the latter integral, it follows from the linearity of

equation (2.11) defining K that the mapping

∇v0(x0) ∈ R
N 7→ (γ1 − γ0)

[

|ω| ∇v0(x0) +

∫

∂ω
Kn

]

∈ R
N

is linear. It only depends on the set ω and on the ratio γ1/γ0. Thus there exists an
N ×N matrix P = P(ω, γ1/γ0), called polarization tensor, such that

(γ1 − γ0)

[

|ω| ∇v0(x0) +

∫

∂ω
Knout

]

= P∇v0(x0).

Such polarization tensor can be explicitly calculated for various types of sets ω, see
e.g. [6, 13, 29, 40, 55].
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(4) One then needs to determine the asymptotic behaviors of variations of direct and
adjoint states at scale 1. Problems (2.11) and (2.10) are two-phase transmission
linear problems in R

N and were extensively studied, see e.g. [6] Part I. By convolution
of the source with a fundamental solution of the Laplace equation, one obtains the
asymptotic behavior of K and ∇K as follows:

K(y) = O
(

|y|1−N
)

and ∇K(y) = O
(

|y|−N
)

when |y| → +∞.

The same asymptotic behaviors hold for H and ∇H.
(5) It matters to know whether the variation of the direct state (resp. of the adjoint state)

‘far away’ from the perturbation ωε is of a higher order, i.e. is negligible, compared to
the same variation ‘near’ the perturbation, as shown on Figure 3. That is the reason
why the asymptotic behaviors of H and K and of their gradient fields play a key role
in the justification of expansion

∫

Ω
γε∇ṽε.∇ũε = εN

∫

RN

γ∇K.∇H + o(εN ). (2.12)

∂Ω

∂ωε

T

ωε :=  x0 + ε .ω

x0

Far away from the 
perturbation in Ω \ B(x0 ,T) 

Close to the perturbation 
in B(x0 ,T)

Figure 3. Close to the perturbation versus far away from the perturbation.

(6) From (2.7) and (2.12), it eventually follows the desired topological asymptotic expan-
sion

J(uε)− J(u0) = g(x0) ε
N + o(εN ),

with

g(x0) = ∇u0(x0). (P∇v0(x0)) = ∇u0(x0)
TP∇v0(x0).

For more details we refer the reader to[13] or to [26].

2.2. First steps taken for a quasilinear elliptic equation. We choose to first study the
case of the p-Laplace equation. For a given f ∈ Lq(Ω), the perturbed direct state uε satisfies
the equation

{

− div
(

γε |∇uε|
p−2∇uε

)

= f in Ω,

uε = 0 on ∂Ω.

In the space V = W 1,p
0 (Ω), it is standard ([44] or [18] §6.6) to argue that uε is uniquely

defined by

{uε} = argmin
u∈V

{
∫

Ω

γε
p
|∇u|p − fu

}

,
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and that equivalently uε is the unique solution of the problem:
find u ∈ V such that

∫

Ω
γε |∇u|

p−2∇u.∇η =

∫

Ω
fη, ∀η ∈ V. (2.13)

Denote u0 the unperturbed direct state and ũε := uε − u0 the variation of the direct state.
Hence calculating the difference between equation (2.13) and the equation satisfied by u0,
one obtains that function ũε solves the problem:

find ũ ∈ V such that
∫

Ω
γε

[

|∇u0 +∇ũ|p−2 (∇u0 +∇ũ)− |∇u0|
p−2∇u0

]

.∇η

+ (γ1 − γ0)

∫

ωε

|∇u0|
p−2∇u0.∇η = 0, ∀η ∈ V. (2.14)

Conversely consider equation (2.14) and the nonlinear operator Aε : V → V∗ defined by

〈Aεũ, η〉 :=

∫

Ω
γε

[

|∇u0 +∇ũ|p−2 (∇u0 +∇ũ)− |∇u0|
p−2∇u0

]

.∇η, ∀ũ, η ∈ V.

Due to Hölder’s inequality, it is clear that Aε is well defined. Moreover, as shown below, the
Minty-Browder theorem ([27], Theorem 5.15) can be applied to operator Aε so as to prove
that equation (2.14) admits a unique solution in V. Due to uniqueness, the latter solution
equals ũε.

Let’s sketch briefly the arguments showing that Aε satisfies the assumptions required by
the Minty-Browder theorem (similar arguments will be detailed later on in the proof of
Proposition 3.7).

(1) The continuity of Aε is based on the following inequality ([44], p.73):

∣

∣

∣
|ϕ+ ψ|p−2 (ϕ+ ψ)− |ϕ|p−2 ϕ

∣

∣

∣
≤ (p− 1) |ψ|

∫ 1

0
|ϕ+ tψ|p−2 dt

≤ 2p−2(p− 1) |ψ|
(

|ϕ|p−2 + |ψ|p−2
)

∀ϕ, ψ ∈ R
N . (2.15)

It follows from (2.15) and from Hölder’s inequality that, for all u, v, η ∈ V,

|〈Aε(u+ v)−Aε(u), η〉| ≤ C

∫

Ω

[

|∇(u0 + u)|p−2 |∇v|+ |∇v|p−1
]

|∇η|

≤ C

[

‖∇(u0 + u)‖p−2
Lp(Ω) ‖∇v‖Lp(Ω) + ‖∇v‖

p

q

Lp(Ω)

]

‖∇η‖Lp(Ω) ,

with C = 2p−2(p− 1)max(γ0, γ1). Hence for all u, v ∈ V, it holds

‖Aε(u+ v)−Aε(u)‖V∗ ≤ C

[

‖∇(u0 + u)‖p−2
Lp(Ω) ‖∇v‖Lp(Ω) + ‖∇v‖

p

q

Lp(Ω)

]

.

The continuity of Aε follows.
(2) As Ω is bounded, by the Poincaré inequality, the norm ‖.‖V is equivalent to the semi-

norm |.|V in V. Moreover the following p-ellipticity inequality holds ([44], page 71
(I)):
for all p ∈ (2,∞), there exists c = c(p) > 0 such that

[

|ϕ+ ψ|p−2 (ϕ+ ψ)− |ϕ|p−2 ϕ
]

.ψ ≥ c |ψ|p , ∀ ϕ, ψ ∈ R
N . (2.16)

The strict monotonicity and the coercivity of Aε follow.
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We now prepare the change of scale by taking an intermediate step. Assume that u0 is
regular enough and denote U0 := ∇u0(x0) its gradient at the center x0 of perturbation. We
first approximate the variation ũε by the function hε solution of:

find h ∈ V such that
∫

Ω
γε

[

|U0 +∇h|p−2 (U0 +∇h)− |U0|
p−2 U0

]

.∇η

+ (γ1 − γ0)

∫

ωε

|U0|
p−2 U0.∇η = 0, ∀η ∈ V.

Similarly the Minty-Browder theorem ensures the existence and uniqueness of the solution.
Moving now to scale 1, we look for a function space W(RN ) in which one can apply the

Minty-Browder theorem to the problem:

find H ∈ W(RN ) such that
∫

RN

γ
[

|U0 +∇H|p−2 (U0 +∇H)− |U0|
p−2 U0

]

.∇η

+ (γ1 − γ0)

∫

ω
|U0|

p−2 U0.∇η = 0 ∀η ∈ W(RN ), (2.17)

where the perturbed conductivity γ at scale 1 is still defined by (2.9).
For that purpose, we exclude the trivial case U0 = 0. We need to find a reflexive Banach

space W(RN ) such that the nonlinear operator A : W(RN ) → W∗(RN ) defined by

〈Au, η〉 :=

∫

RN

γ
[

|U0 +∇u|p−2 (U0 +∇u)− |U0|
p−2 U0

]

.∇η, ∀u, η ∈ W(RN )

is well defined in W(RN ) and satisfies all the assumptions required by the Minty-Browder
theorem.

2.3. A two-norm discrepancy between Lp(RN ) and L2(RN ). From (2.16) we infer

〈Au, u〉 =

∫

RN

γ
[

|U0 +∇u|p−2 (U0 +∇u)− |U0|
p−2 U0

]

.∇u ≥ c′ ‖∇u‖p
Lp(RN )

, (2.18)

with c′ = c min(γ0, γ1) > 0. Therefore the coercivity of A could be secured in W(RN )
provided that u ∈ W(RN ) ⇒ ∇u ∈ Lp(RN ) and should an equivalence hold in W(RN )
between the norm ‖u‖W(RN ) and the semi-norm |u|W(RN ) = ‖∇u‖Lp(RN ).

To obtain such an equivalence of the norm with the semi-norm in an unbounded domain
(e.g. [31], volume 6, chapter XI and [9], Annexe A), a classical approach would be to define
W(RN ) as the quotient space

W(RN ) = Ww(RN )/Pp,

where Ww(RN ) is a weighted Sobolev space of the type

Ww(RN ) :=
{

u ∈ D′(RN ); wpu ∈ Lp(RN ) and ∇u ∈ Lp(RN )
}

,

for an appropriate weight wp : RN → R+, and Pp is a space of polynomials belonging to
Ww(RN ). In fact here, Pp can only be {0} or R, the set of constants. The weighted space
Ww(RN ) would then be equipped with the norm

‖u‖Ww(RN ) := ‖wpu‖Lp(RN ) + ‖∇u‖Lp(RN ) ,

and its quotient space W(RN ) with the norm ([28], 11.2)

‖u‖W(RN ) := inf
m∈Pp

‖wp(u+m)‖Lp(RN ) + ‖∇u‖Lp(RN ) .
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Suppose that we have built such a quotient space. It follows from inequality (2.15) that for
all u, η ∈ W(RN )

|〈Au, η〉| ≤ C

∫

RN

|∇u|
(

|U0|
p−2 + |∇u|p−2

)

|∇η|

with C = 2p−2(p − 1)max(γ0, γ1). This does not guarantee that A is well defined in all the
space W(RN ). Consider the subspace

V(RN ) :=
{

u ∈ W(RN );∇u ∈ L2(RN )
}

endowed with the norm

‖u‖V(RN ) := inf
m∈Pp

‖wp(u+m)‖Lp(RN ) + ‖∇u‖Lp(RN ) + ‖∇u‖L2(RN ) . (2.19)

For all u, η ∈ V(RN ) the Cauchy-Schwarz and Hölder inequalities entail

|〈Au, η〉| ≤ C

(

|U0|
p−2 ‖∇u‖L2(RN ) ‖∇η‖L2(RN ) + ‖∇u‖

p

q

Lp(RN )
‖∇η‖Lp(RN )

)

. (2.20)

Thus A is well defined in the subspace V(RN ). In addition, A is a bounded linear operator
V(RN ) → V∗(RN ). Nevertheless inequality (2.18) shows that one cannot expect A to be
coercive in V(RN ) equipped with the norm (2.19), as 〈Au, u〉 does not provide control over
the term ‖∇u‖L2(RN ).

In comparison with the method recalled in section 2.1, it thus appears that the step of
defining the variation of the direct state at scale 1 by means of the Minty-Browder theorem,
requires both

• to consider a functional space whose norm gives control on both the Lp and the L2

norms of the gradient, and which in addition enjoys a Poincaré inequality;
• to consider a quasilinear elliptic operator A enjoying both p- and 2- ellipticity prop-
erties, which is not the case for the p-Laplacian.

The first requirement justifies our construction of the Banach space V(RN ) (and the Hilbert
space H(RN ) when p = 2) in appendix A. The second requirement provides restrictions on
the class of quasilinear equations we address in section 3.

This situation is similar to the two-norm discrepancy known since the 1970’s in the stability
analysis of nonlinear optimal control [5, 39, 43, 48], where the Lagrangian is typically twice
differentiable in L∞ norm but only coercive in L2 norm.

2.4. Other changes in the quasilinear context. Several other steps have to be generali-
zed in order to obtain the topological asymptotic expansion in the quasilinear context. In
particular we shall have to:

(1) ensure duality between the variation of the direct state and the corresponding varia-
tion of the adjoint state at each step of approximation. This task, straightforward in
the linear case within the framework of Hilbert spaces, will be made again possible
by considering both relevant embeddings and a posteriori regularity properties.

(2) determine the asymptotic behavior in R
N of the variation of the direct state at scale

1. This function will be solution of a nonlinear transmission problem in V(Rn), for
which techniques of convolution do not apply. We shall build a supersolution and a
subsolution and then prove a comparison theorem.

(3) determine with respect to the variation of the direct state, what does mean ‘far away
from the perturbation’ by opposition to ‘close to the perturbation’. This question
will be dealt with in Propositions 3.15 and 3.16.
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3. Topological asymptotic expansion for a class of quasilinear elliptic

equations

3.1. A class of non-quadratic potentials. LetW : RN → R be a twice Fréchet-differentiable
function. Denote T : RN → R

N the gradient field T := ∇W . At the next order of derivation,
for all ϕ ∈ R

N , we define Sϕ : RN → R
N by

Sϕ(ψ) := T (ϕ+ ψ)− T (ϕ)−DT (ϕ).ψ, ∀ ψ ∈ R
N .

In view of the arguments expounded in section 2, we make:

Assumption 3.1. The potential W satisfies the following conditions.

(1) For some α > 0, it holds W ∈ C2,α(RN ,R).
(2) There exist b0 > a0 > 0 such that

a0 |ϕ|
p ≤W (ϕ) ≤ b0(1 + |ϕ|p), ∀ ϕ ∈ R

N .

(3) There exists a1 > 0 such that

|T (ϕ)| ≤ a1 |ϕ| (1 + |ϕ|p−2), ∀ ϕ ∈ R
N .

(4) There exist 0 < c < C such that

c(1 + |ϕ|2)
p−2
2 |ψ|2 ≤ DT (ϕ)ψ.ψ ≤ C(1 + |ϕ|2)

p−2
2 |ψ|2 , ∀ ϕ, ψ ∈ R

N .

(5) There exists c > 0 such that

(T (ϕ+ ψ)− T (ϕ)) .ψ ≥ c(|ψ|p + |ψ|2), ∀ ϕ, ψ ∈ R
N .

(6) There exists C > 0 such that

|T (ϕ+ ψ)− T (ϕ)| ≤ C |ψ|
[

1 + |ϕ|p−2 + |ψ|p−2
]

, ∀ ϕ, ψ ∈ R
N .

(7) For any M > 0 there exist c0 = c0(M,p) ≥ 0 and cp−3 = cp−3(p) ≥ 0 such that

|Sϕ(ψ2)− Sϕ(ψ1)| ≤ |ψ2 − ψ1| (|ψ1|+ |ψ2|)
[

c0 + cp−3 (|ψ1|+ |ψ2|)
p−3
]

,

∀ϕ ∈ B(0,M), ∀ψ1, ψ2 ∈ R
N .

In addition the constant cp−3 satisfies cp−3 = 0, ∀p ∈ [2, 3].
(8) For any M > 0 there exist d0 = d0(M,p) ≥ 0 and dp−4 = dp−4(p) ≥ 0 such that

|Sϕ2(ψ)− Sϕ1(ψ)| ≤ |ϕ2 − ϕ1| |ψ|
2
[

d0 + dp−4 |ψ|
p−4
]

, ∀ϕ1, ϕ2 ∈ B(0,M), ∀ψ ∈ R
N .

In addition the constant dp−4 satisfies dp−4 = 0, ∀p ∈ [2, 4].

Let us comment on the conditions stated in Assumption 3.1.

(1) Conditions (2), (3) and (4) are classical growth conditions about respectively the
potential W , the gradient field T and the Hessian DT , in works related to quasilinear
elliptic equations (e.g. [34, 46]). Condition (4) entails that potential W is strictly
convex and provides 2-ellipticity to variational problems defining the adjoint state
and its variations.

(2) Condition (5) ensures the combined p- and 2-ellipticity property.
(3) Condition (6) will be essential to estimate the variations of the direct state at various

steps of approximation. When ϕ is bounded it implies:
for any M > 0 there exist b1 > 0 and bp−1 > 0 such that

|T (ϕ+ ψ)− T (ϕ)| ≤ b1 |ψ|+ bp−1 |ψ|
p−1 , ∀ ϕ ∈ B(0,M), ∀ ψ ∈ R

N . (3.1)

Note that, should we have made the additional assumption that T (0) = 0, then
condition (6) would have implied condition (3).
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(4) Condition (7) gives control over nonlinearity of gradient field T at a given point ϕ
and is related to the third derivative of W , if it exists. When ϕ is bounded it implies:
for any M > 0 there exist two constants c0 ≥ 0 and cp−3 ≥ 0 satisfying nullity
condition stated in condition (7), such that

|Sϕ(ψ)| ≤ c0 |ψ|
2 + cp−3 |ψ|

p−1 ∀ϕ ∈ B(0,M), ∀ψ ∈ R
N . (3.2)

(5) Condition (8) takes into account the fourth derivative of W , if it exists, and accounts
for the variation of the nonlinearity of gradient field T from a given point ϕ1 to
another point ϕ2.

In the subsequent we shall only write ‘condition (i)’ instead of ‘condition (i) of Assumption
3.1’ whenever no confusion is possible.

The class of potentials satisfying Assumption 3.1 encompasses the archetype of non-
degenerate elliptic potentials ([34] p.261 or [63] p.343) given, for some a > 0, by

Wa : ϕ ∈ R
N 7→

1

p

(

a2 + |ϕ|2
)p/2

. (3.3)

For potential Wa, the p- and 2-ellipticity property required by condition (5) follows from
a slightly extended version of an inequality given by Lindqvist in [44], page 71 (I).

Proposition 3.2. Let a > 0 and p ∈ [2,∞). Then there exists c > 0 such that
[

(a2 + |ϕ+ ψ|2)
p−2
2 (ϕ+ ψ)− (a2 + |ϕ|2)

p−2
2 ϕ

]

.ψ ≥ c (|ψ|p + |ψ|2), ∀ ϕ, ψ ∈ R
N .

The proof is deferred to subsection 4.1 on page 23. At the price of some calculations we
obtain the following result, whose proof is given in subsection 4.2 on page 24.

Proposition 3.3. Let a > 0 and p ∈ [2,∞). Then potential Wa satisfies Assumption 3.1.

3.2. The perturbed quasilinear equation. We assume that Ω is a bounded domain of
R
N with C2-boundary ∂Ω. Let a function f ∈ C0,α(Ω), for some α > 0, with support

spt(f) ⊂⊂ Ω. A point x0 ∈ Ω \ spt(f) is given. Without loss of generality we assume that
x0 = 0.

Consider a bounded domain ω of RN with a C2-boundary ∂ω such that 0 ∈ ω. For all ε ≥ 0,
let ωε := εω. In all this chapter, we assume ε ≥ 0 is small enough such that ωε ⊂⊂ Ω\spt(f).
Moreover changing if appropriate ω (resp. ε) into ω/λ (resp. into λε) for some λ > 0 large
enough, we can assume without loss of generality that there exist two real numbers

0 < ρ < R such that ω ⊂⊂ B(0, ρ) ⊂ B(0, R) ⊂⊂ Ω \ spt(f). (3.4)

Define the perturbed conductivity function γε : Ω → R by

γε := γ0 in Ω \ ωε and γε := γ1 in ωε, (3.5)

where γ0, γ1 are two positive real numbers with γ0 6= γ1. Denote γ := min(γ0, γ1)(> 0) and
γ := max(γ0, γ1).

We define the direct state uε in the Banach space V :=W 1,p
0 (Ω).

Lemma 3.4. For all ε ≥ 0 small enough, the functional

Wε : η ∈ V 7→

∫

Ω
γεW (∇η) −

∫

Ω
fη

is continuous, strictly convex and coercive in V. We define uε as

{uε} = argmin
η∈V

Wε(η).

This solution is characterized by the Euler-Lagrange equation:

find uε ∈ V such that

∫

Ω
γεT (∇uε).∇η =

∫

Ω
fη, ∀η ∈ V, (3.6)
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whose strong form is

find uε ∈W 1,p(Ω) such that

{

− div (γεT (∇uε)) = f in Ω,

uε = 0 on ∂Ω.

The proof, based on standard arguments, is sketched in subsection 4.3 on page 27.

3.3. Topological asymptotic expansion. For all ε ≥ 0 small enough, consider a functional
Jε : H → R such that

Jε(uε) = J0(u0) + 〈G, uε − u0〉+ δ2 ε
N +R(ε), (3.7)

where

(1) G denotes a bounded linear form on H;
(2) δ2 ∈ R;
(3) the remainder R(ε) is

(a) either of the form

R(ε) = o
(

‖uε − u0‖
2
H

)

, (3.8)

(b) or of the form

R(ε) = O

(

∫

Ω\B(0,α̃εr̃)
|∇(uε − u0)|

p + |∇(uε − u0)|
2

)

, (3.9)

for a given α̃ > 0 and a given r̃ ∈ (0, 1). In this case, the remainder R(ε) is
controlled by the variation of the direct state ‘far away’ from the perturbation.

A classical example of such a functional is given by the compliance

u ∈ H 7→ J(u) =

∫

Ω
fu, (3.10)

with in this particular case, G = f and δ2 = 0.
We now have all the ingredients to state our main result which provides the topological

asymptotic expansion of Jε(uε). We denote:

• by u0 the unperturbed direct state defined by (3.6) in the case ε = 0;
• by U0 := ∇u0(x0) the gradient of u0 at point x0;
• by H the variation of the direct state at scale 1 in R

N defined by (3.19);
• by v0 the unperturbed adjoint state defined by (3.47) in the case ε = 0;
• by V0 := ∇v0(x0) the gradient of v0 at point x0;
• by K the variation of the adjoint state at scale 1 in R

N defined by (3.50);
• by γ the conductivity function at scale 1 defined by

γ := γ0 in R
N \ ω and γ := γ1 in ω; (3.11)

• by P the polarization tensor defined by (3.70), and which only depends on the set ω,
on the definite positive matrix DT (U0) and on the ratio γ1/γ0.

Theorem 3.5. Assume that

• the potential W satisfies Assumption 3.1;
• the functional Jε satisfies an expansion of the type (3.7);
• the direct unperturbed state satisfies u0 ∈ L∞(Ω);
• the unperturbed adjoint state satisfies v0 ∈ L∞(Ω), ∇v0 ∈ L∞(Ω) and ∇v0 is Hölder
continuous in a neighborhood of x0;

• the variation of the direct state at scale 1 satisfies the asymptotic behavior stated in
Assumption 3.13.
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Then for ε > 0 small enough it holds

Jε(uε)− J0(u0) = εNg(x0) + o(εN ), (3.12)

where the topoogical gradient is given by

g(x0) := T (U0)
TPV0 + δ2 (3.13)

+

∫

RN

γSU0(∇H). (V0 +∇K) . (3.14)

Two terms (3.13) and (3.14) appear in the formula on the topological gradient.

• In the linear case, where SU0 = 0, the topological gradient g(x0) reduces to the first
term (3.13). At least when δ2 = 0, it can be computed at every point x0 ∈ Ω with the
only knowledge of the fields ∇u0, ∇v0 and the polarization tensor P, which however
also depends on DT (∇u0). A number of closed formulas for the polarization tensor
can be found e.g. in [7, 13, 33, 40].

• The term (3.14) appears here for the first time. It accounts for the component of the
topological gradient which is caused by the nonlinearity of the equation.

It is worth emphasizing that some of the regularity assumptions made in Theorem 3.5 can
be directly ascertained in some cases as follows.

• In the prototype case ω = B(0, 1), W =Wa for some a > 0 and γ1 < γ0, define

p̄ := 2 +

(

1 +
a2

|U0|
2

)

N

N − 2
,

with the convention that p̄ = +∞ when N = 2. If p ∈ [2, p̄), then no assumption has
to be made about the asymptotic behavior of function H, as it is then ensured by
virtue of the Theorem 3.12 stated hereafter on page 18.

• The assumption u0 ∈ L∞(Ω) is theoretically needed for proving the C1,β(Ω) regularity
of u0 (see Lemma 3.6). In practice this assumption can be taken for granted.

• When G is regular enough, Lemma 3.17 states that v0 in C1,β̃(Ω). Hence no assump-
tion is needed about the regularity of v0.

So as to prove Theorem (3.5), we shall now study the variation of the direct state in section
3.4, the variation of the adjoint state in section 3.5 and lastly the asymptotic behavior of
Jε(uε) in section 3.6.

3.4. Variation of the direct state.

3.4.1. About the regularity of the unperturbed direct state. In the unperturbed case ε = 0,
Euler-Lagrange equation (3.6) reads

∫

Ω
γ0T (∇u0).∇η =

∫

Ω
fη, ∀η ∈ V. (3.15)

Lemma 3.6. Assume that u0 ∈ L∞(Ω). Then it holds u0 ∈ C1,β(Ω) for some β > 0.

The proof is available in subsection 4.4 on page 28.

3.4.2. Step 1: variation uε − u0. Let ũε := uε − u0 ∈ V. After (3.15), it is straightforward
from Lemma 3.4 that ũε is characterized by the Euler-Lagrange equation: find ũ ∈ V such
that

∫

Ω
γεT (∇u0 +∇ũ).∇η =

∫

Ω
γ0T (∇u0).∇η, ∀η ∈ V, (3.16)

Since γε − γ0 = γ1 − γ0 in ωε and γε − γ0 = 0 in Ω \ ωε, the latter can be rewritten
∫

Ω
γε [T (∇u0 +∇ũε)− T (∇u0)] .∇η + (γ1 − γ0)

∫

ωε

T (∇u0).∇η = 0, ∀η ∈ V. (3.17)
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3.4.3. Step 2: approximation of variation ũε. We approximate ũε by the solution hε of the
following Euler-Lagrange equation: find h ∈ V such that

∫

Ω
γε [T (U0 +∇h)− T (U0)] .∇η + (γ1 − γ0)

∫

ωε

T (U0).∇η = 0, ∀η ∈ V. (3.18)

3.4.4. Step 3: change to scale 1. We look for a function H which may approximate the map
y ∈ Ω/ε 7→ ε−1hε(εy).

With our set of assumptions, there is no a priori guarantee that W (∇H) is integrable over
R
N . For instance, in the case of Wa, it holds Wa(ψ) ≥ 1

pa
p > 0. Hence there is no hope

to define function H as the minimizer of a functional involving the integral
∫

RN γW (∇H).
Instead we start from the variational form (3.18) by applying the Minty-Browder theorem in
the reflexive Banach space V(RN ) (see appendix A).

Proposition 3.7. There exists a unique function H ∈ V(RN ) such that
∫

RN

γ [T (U0 +∇H)− T (U0)] .∇η = −(γ1 − γ0)

∫

ω
T (U0).∇η, ∀η ∈ V(RN ). (3.19)

Proof. Using inequality (3.1) and Hölder’s inequality, we obtain that for all η1, η2 ∈ V(RN )
∫

RN

|γ [T (U0 +∇η1)− T (U0)] .∇η2| ≤

∫

RN

γ
(

b1 |∇η1|+ bp−1 |∇η1|
p−1
)

|∇η2|

≤ γb1 ‖∇η1‖L2(RN ) ‖∇η2‖L2(RN ) + γbp−1 ‖∇η1‖
p

q

Lp(RN )
‖∇η2‖Lp(RN ) . (3.20)

Define operator A by

〈Aη1, η2〉 :=

∫

RN

γ [T (U0 +∇η1)− T (U0)] .∇η2, ∀ η1, η2 ∈ V(RN ). (3.21)

According to inequality (3.20), 〈Aη1, η2〉 is well defined for all η1, η2 ∈ V(RN ). Moreover for
all η1 ∈ V(RN ), it holds Aη1 ∈ V∗(RN ) with

‖Aη1‖V∗(RN ) ≤ γ

(

b1 ‖∇η1‖L2(RN ) + bp−1 ‖∇η1‖
p

q

Lp(RN )

)

.

Then define L ∈ V∗(RN ) by

L : η ∈ V(RN ) 7→ − (γ1 − γ0)

∫

ω
U0.∇η.

The variational problem (3.19) can be equivalently written: find H ∈ V(RN ) such that
AH = L. Let us check the assumptions required by the Minty-Browder theorem.

(1) Let η1 ∈ V(RN ). According to condition (6) and by Hölder’s inequality, it holds for
all η, η2 ∈ V(RN )

|〈[A(η1 + η)−Aη1] , η2〉| =

∣

∣

∣

∣

∫

RN

γ [T (U0 +∇(η1 + η))− T (U0 +∇η1)] .∇η2

∣

∣

∣

∣

≤ C

∫

RN

|∇η|
[

1 + |U0 +∇η1|
p−2 + |∇η|p−2

]

|∇η2|

≤ C

∫

RN

|∇η|
[(

1 + 2p−2 |U0|
p−2
)

+ 2p−2 |∇η1|
p−2 + |∇η|p−2

]

|∇η2|

≤ C
(

1 + 2p−2 |U0|
p−2
)

‖∇η‖L2(RN ) ‖∇η2‖L2(RN )

+ C

[

2p−2 ‖∇η1‖
p−2
Lp(RN )

‖∇η‖Lp(RN ) + ‖∇η‖
p

q

Lp(RN )

]

‖∇η2‖Lp(RN ) ,
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where C := C γ and C is the constant of condition (6). Hence

‖A(η1 + η)−Aη1‖V∗(RN ) ≤ C̃

[

‖∇η‖L2(RN ) + ‖∇η1‖
p−2
Lp(RN )

‖∇η‖Lp(RN ) + ‖∇η‖
p

q

Lp(RN )

]

,

where C̃ := Cmax
(

1 + 2p−2 |U0|
p−2 , 2p−2

)

. It follows that A(η1 + η) − Aη1 → 0 in

V∗(RN ) when η → 0 in V(RN ). Thus A is continuous at point η1, for all η1 ∈ V(RN ).
(2) According to condition (5), there exists c > 0 such that for all η1, η2 ∈ V(RN ),

〈Aη1 −Aη2, η1 − η2〉 =

∫

RN

γ [T (U0 +∇η1)− T (U0 +∇η2)] .(∇η1 −∇η2)

≥ cγ
(

‖∇η1 −∇η2‖
p
Lp(RN )

+ ‖∇η1 −∇η2‖
2
L2(RN )

)

.

Hence

〈Aη1 −Aη2, η1 − η2〉 ≥ 0, ∀η1, η2 ∈ V(RN ).

In addition, if

〈Aη1 −Aη2, η1 − η2〉 = 0

then ∇η1 = ∇η2 a.e. in R
N , and thus η1 = η2 in the quotient space V(RN ). Hence A

is strictly monotone.
(3) Lastly, according to condition (5), there exists c > 0 such that for all η ∈ V(RN )

〈Aη, η〉 =

∫

RN

γ [T (U0 +∇η)− T (U0)] .∇η

≥ cγ(‖∇η‖p
Lp(RN )

+ ‖∇η‖2L2(RN )).

It follows from Proposition A.5 that

lim
‖η‖→∞

〈Aη, η〉

‖η‖V(RN )

= +∞,

whereby A is coercive in V(RN ).

Therefore by virtue of the Minty-Browder theorem ([27], Theorem V-15), there exists a unique
H ∈ V(RN ) such that AH = L, which completes the proof of Proposition 3.7. �

3.4.5. Step 4: asymptotic behavior of variations of the direct state. For all ε > 0 small enough,
set

Hε(x) := εĤ(ε−1x) (3.22)

where Ĥ ∈ Vw(RN ) is for the time being an arbitrary element of the class H ∈ V(RN ).

As infx∈Ωwp
(

ε−1x
)

> 0, it follows from Ĥ ∈ Vw(RN ) that Hε ∈W 1,p(Ω) ⊂ H1(Ω). Using
the combined p- and 2-ellipticity property stated in condition (5), we obtain the following
estimates.

Lemma 3.8. It holds:

‖∇ũε‖
p
Lp(Ω) + ‖∇ũε‖

2
L2(Ω) = O(εN ), (3.23)

‖∇hε‖
p
Lp(Ω) + ‖∇hε‖

2
L2(Ω) = O(εN ), (3.24)

‖∇Hε‖
p
Lp(Ω) + ‖∇Hε‖

2
L2(Ω) = O(εN ). (3.25)

The proof is available in subsection 4.5 on page 28.
Further estimation of the variation of the direct state at scale ε requires to estimate the

asymptotic behavior of function H at scale 1 in R
N . To our best knowledge, no such result

is available in the literature, e.g. [53, 54, 56, 60].
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Let us first study the asymptotic decay of a radial function of V(RN ). Let η ∈ Vw(RN )
such that for some C, τ ∈ R and M > 0, it holds

η(x) = C |x|−τ , ∀x ∈ R
N , |x| ≥M.

By definition of Vw(RN ), it holds wpη ∈ Lp(RN ) and ∇η ∈ Lp(RN ) ∩ L2(RN ). An easy
calculation shows that these conditions imply

τ >
N

2
− 1

and that, whatever the values of N ≥ 2 and p ∈ [2,∞), the constraint ∇η ∈ L2(RN ) is always
the active one with respect to exponent τ .

In the subsequent we shall prove that the asymptotic decay of function H is similar to
that of a radial function of V(RN ), at least in the prototype case, that is when ω = B(0, 1)
and W =Wa. Accordingly, relaxing the assumption about the shape of ω and assuming only
that potential W belongs to the class of potentials defined by Assumption 3.1, we shall make
the Assumption 3.13 hereafter about the asymptotic behavior of function H.

3.4.6. Asymptotic behavior of function H. Denote Q the operator such that QH = 0, that is

〈Qη1, η2〉 :=

∫

RN

γ [T (U0 +∇η1)− T (U0)] .∇η2 + (γ1 − γ0)

∫

ω
T (U0).∇η2,

∀η1, η2 ∈ V(RN ). (3.26)

We assume ω = B(0, 1) and W = Wa for some a > 0. Assuming again the non trivial case

U0 6= 0, set e1 = |U0|
−1 U0 and let (e1, e2, ..., eN ) be an orthonormal basis of RN . Denote

(x1, x2, ..., xN ) the system of coordinates in this basis.
Denote RN+ the half-space

{

x ∈ R
N ;U0. x ≥ 0

}

. Due to the symmetry of ω = B(0, 1) with
respect to the line RU0, it follows straightforwardly from the uniqueness stated in Proposition
3.7, that H is odd with respect to the first coordinate. Thus there exists an element H̃ of
the class H such that

H̃(−x1, x2, ..., xN ) = −H̃(x1, x2, ..., xN ), ∀(x1, x2, ..., xN ) ∈ R
N .

In particular it holds

H̃(0, x2, ..., xN ) = 0, ∀(x2, ..., xN ) ∈ R
N−1.

Hence it suffices to study the asymptotic behavior of function H̃ in the half-space R
N
+ .

We denote

p̄ := 2 +

(

1 +
a2

|U0|
2

)

N

N − 2
, (3.27)

with the convention that p̄ = +∞ if N = 2. The following results provide adequate superso-
lution and subsolution of function H̃, respectively.

Proposition 3.9. Assume ω = B(0, 1), γ1 < γ0 and W = Wa for some a > 0. If p ∈ [2, p̄),
then there exists β > N/2 and a function P ∈ V(RN ) ∩ L∞(RN ) such that

{

P (x) = k(U0.x) |x|
−β , if |x| > 1,

P (x) = k(U0.x), if |x| ≤ 1,
(3.28)

〈QP, η〉 ≥ 0, ∀η ∈ V(RN ), spt(η) ⊂ R
N
+ , η ≥ 0 a.e.,

where

k :=
γ0 − γ1

γ1 + γ0(β − 1)
. (3.29)

The proof is available in subsection 4.6 on page 29.
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Lemma 3.10. Assume ω = B(0, 1), γ1 < γ0 and W = Wa for some a > 0. Denote 0 the
null function in R

N . Then

〈Q0, η〉 ≤ 0, ∀η ∈ V(RN ), spt(η) ⊂ R
N
+ , η ≥ 0 a.e. .

The proof is easy following the steps taken for proving Proposition (3.9). Only is the
transmission condition to be checked across ∂ω, as obviously Q0 = 0 in ω and in R

N \ ω̄.

Proposition 3.11. Assume ω = B(0, 1), γ1 < γ0 andW =Wa for some a > 0 and p ∈ [2, p̄).

Let P be the supersolution defined in Proposition (3.9). Then there exists an element H̃ of
the class H such that

0 ≤ H̃(x) ≤ P (x), for a.e. x ∈ R
N
+ . (3.30)

The proof is available in subsection 4.7 on page 32. Therefore we can now state

Theorem 3.12. Assume ω = B(0, 1), γ1 < γ0 and W = Wa for some a > 0. Assume
p ∈ [2, p̄) where p̄ is defined by equation (3.27).

Then there exists an element H̃ of the class H ∈ V(RN ) and τ > N
2 − 1 such that

H̃(y) = O
(

|y|−τ
)

as |y| → +∞. (3.31)

Moreover it holds
H ∈ L∞(RN ). (3.32)

This completes our analysis of the asymptotic behavior of H in the case ω = B(0, 1) and
W =Wa. Accordingly we make the following assumption in the general case.

Assumption 3.13. We assume that

(1) there exists an element H̃ of the class H ∈ V(RN ) and τ > N
2 − 1 such that

H̃(y) = O
(

|y|−τ
)

as |y| → +∞; (3.33)

(2) and

H ∈ L∞(RN ). (3.34)

Lemma 3.14. It holds H ∈ H(RN )

The proof is available in subsection 4.8 on page 33.
From now on, function Hε is defined choosing Ĥ = H̃ in (3.22), i.e.

Hε(x) := εH̃(ε−1x), ∀x ∈ Ω. (3.35)

Proposition 3.15. It holds

‖∇hε −∇Hε‖
p
Lp(Ω) + ‖∇hε −∇Hε‖

2
L2(Ω) = o(εN ), (3.36)

∀α > 0, ∀r ∈ (0, 1),

∫

Ω\B(0,αεr)
|∇hε|

p + |∇hε|
2 = o(εN ), (3.37)

∫

Ω
|∇u0 − U0|

(

|∇hε|
p + |∇hε|

2
)

= o(εN ), (3.38)

∀ p ∈ (4,∞),

∫

Ω
|∇u0 − U0| |∇hε|

p−2 = o(εN ), (3.39)

∀ p ∈ (3,∞),

∫

Ω
|∇u0 − U0| |∇hε|

p−1 = o(εN ), (3.40)

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|) = o(εN ), (3.41)

∀ p ∈ (3,∞),

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|)

p−2 = o(εN ). (3.42)

The proof is available in subsection 4.9 on page 33.
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Proposition 3.16. It holds

‖∇ũε −∇hε‖
p
Lp(Ω) + ‖∇ũε −∇hε‖

2
L2(Ω) = o(εN ), (3.43)

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|) = o(εN ), (3.44)

∀ p ∈ (3,∞),

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|)

p−2 = o(εN ), (3.45)

∀α > 0, ∀ r ∈ (0, 1),

∫

Ω\B(0,αεr)
|∇ũε|

p + |∇ũε|
2 = o(εN ). (3.46)

The proof is available in subsection 4.10 on page 36.
Estimate (3.46) states that the energy of the variation outside a ball of radius αεr, r ∈ (0, 1)

can be neglected at first order in the asymptotic expansion. When ε → 0, the radius of the
ball B(0, αεr) goes to 0, but compared to the size of the perturbation subdomain ωε it goes
to infinity. The radius αεr follows directly from the asymptotic behavior of function H.

3.5. Variation of the adjoint state. We define the adjoint state as solution of a linearized
equation in the Hilbert space H = H1

0 (Ω). Using the coercivity provided by condition (4)
and the Lax-Milgram theorem in H, one obtains that, for all ε ≥ 0 small enough, there exists
a unique vε ∈ H solution of variational problem

∫

Ω
γεDT (∇u0)∇vε.∇η = −〈G, η〉 , ∀η ∈ H. (3.47)

3.5.1. About the regularity of the unperturbed adjoint state.

Lemma 3.17. If the functional Jε is the compliance (3.10), then it holds v0 ∈ C1,β̃(Ω) for

some β̃ > 0. In particular this implies v0 ∈ L∞(Ω), ∇v0 ∈ L∞(Ω) and v0 ∈ V.

The proof is available in subsection 4.11 on page 39. Accordingly, in the general case we
shall make the assumptions that v0 ∈ L∞(Ω) and ∇v0 ∈ L∞(Ω). As by definition v0 ∈ H, it
follows that v0 ∈ V.

3.5.2. Step 1: variation vε − v0. Let ṽε = vε − v0. After (3.47), one obtains
∫

Ω
γεDT (∇u0)∇ṽε.∇η = − (γ1 − γ0)

∫

ωε

DT (∇u0)∇v0.∇η, ∀ η ∈ H. (3.48)

3.5.3. Step 2: approximation of variation ṽε. Applying the Lax-Milgram theorem, we ap-
proximate the variation ṽε by the unique function kε ∈ H such that

∫

Ω
γεDT (U0)∇kε.∇η = − (γ1 − γ0)

∫

ωε

DT (U0)V0.∇η, ∀η ∈ H. (3.49)

3.5.4. Step 3: change to scale 1. We look for a function K which may approximate the map
y ∈ Ω/ε 7→ ε−1kε(εy). The weighted quotient Hilbert space H(RN ) is defined in section A.2.
Applying the Lax-Milgram theorem in H(RN ), one obtains

Lemma 3.18. There exists a unique function K ∈ H(RN ) such that
∫

RN

γDT (U0)∇K.∇η = − (γ1 − γ0)

∫

ω
DT (U0)V0.∇η, ∀ η ∈ H(RN ). (3.50)
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3.5.5. Step 4: asymptotic behavior of variations of the adjoint state. For all ε > 0 small
enough, let

Kε : x ∈ Ω 7→ Kε(x) := εK̂(ε−1x) (3.51)

where K̂ ∈ Hw(RN ) is for the time being an arbitrary element of the class K ∈ H(RN ).

Making the change of scale backward, as infx∈Ωw2

(

ε−1x
)

> 0, it follows from K̂ ∈ Hw(RN )

that Kε ∈ H1(Ω).

Lemma 3.19. It holds

‖∇ṽε‖
2
L2(Ω) = O(εN ), (3.52)

‖∇kε‖
2
L2(Ω) = O(εN ), (3.53)

‖∇Kε‖
2
L2(Ω) = O(εN ). (3.54)

The proof is available in subsection 4.12 on page 39.

Proposition 3.20. There exists an element K̃ of the class K ∈ H(RN ) such that

K̃(y) = O
(

|y|1−N
)

as |y| → +∞, (3.55)

and

∇K(y) = O
(

|y|−N
)

as |y| → +∞. (3.56)

Moreover, it holds

K ∈ V(RN ). (3.57)

The proof is available in subsection 4.13 on page 39.
From now on, function Kε will be defined choosing K̂ = K̃ in (3.51).

Lemma 3.21. It holds

‖∇kε −∇Kε‖
2
L2(Ω) = o(εN ), (3.58)

and

∀α > 0, ∀r ∈ (0, 1),

∫

Ω\B(0,αεr)
|∇kε|

2 = o(εN ). (3.59)

The proof is available in subsection 4.14 on page 41.

Lemma 3.22. It holds

‖∇ṽε −∇kε‖
2
L2(Ω) = o(εN ). (3.60)

The proof is available in subsection 4.15 on page 41.

3.6. Topological asymptotic expansion. For simplicity we denote

j(ε) := Jε(uε), ∀ε ≥ 0 small enough. (3.61)

Expansion (3.7) reads

j(ε)− j(0) = 〈G, ũε〉+ δ2 ε
N +R(ε).

• In the first case (3.8), after estimate (3.23), it holds

R(ε) = o
(

‖uε − u0‖
2
H

)

= o
(

εN
)

.

• In the second case (3.9), after estimate (3.46), it holds

R(ε) = O

(

∫

Ω\B(0,α̃εr̃)
|∇ũε|

p + |∇ũε|
2

)

= o
(

εN
)

.
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Then plugging test function η = ũε ∈ V ⊂ H in variational form (3.47), one obtains

j(ε)− j(0) = −

∫

Ω
γεDT (∇u0)∇ũε.∇vε + δ2 ε

N + o(εN )

= −

∫

Ω
γεDT (∇u0)∇ũε.∇v0 −

∫

Ω
γεDT (∇u0)∇ũε.∇ṽε + δ2 ε

N + o(εN ). (3.62)

Plugging now η = ũε ∈ V ⊂ H in variational form (3.48) yields
∫

Ω
γεDT (∇u0)∇ṽε.∇ũε + (γ1 − γ0)

∫

ωε

DT (∇u0)∇v0.∇ũε = 0. (3.63)

Since we have assumed that v0 ∈ V (see Lemma 3.17), we can plug η = v0 in variational form
(3.17) and obtain

∫

Ω
γε [T (∇u0 +∇ũε)− T (∇u0)] .∇v0 + (γ1 − γ0)

∫

ωε

T (∇u0).∇v0 = 0. (3.64)

Summing equalities (3.62), (3.63) and (3.64), it follows

j(ε)− j(0) = j1(ε) + j2(ε) + δ2 ε
N + o(εN ) (3.65)

with

j1(ε) := (γ1 − γ0)

∫

ωε

T (∇u0).∇vε (3.66)

and

j2(ε) :=

∫

Ω
γε [T (∇ũε +∇u0)− T (∇u0)−DT (∇u0)(∇ũε)] .∇v0

+ (γ1 − γ0)

∫

ωε

[DT (∇u0)∇v0.∇ũε − T (∇u0).∇ṽε]

=

∫

Ω
γεS∇u0(∇ũε).∇v0 + (γ1 − γ0)

∫

ωε

[DT (∇u0)∇v0.∇ũε − T (∇u0).∇ṽε] . (3.67)

We shall see hereafter that j2(ε) accounts for the contribution of the nonlinear behavior of
T to j(ε), while j1(ε) provides the variation of j(ε) caused by the ‘affine component’ of T .

3.6.1. Expansion of linear term j1(ε). Following the approximation steps 2 and 3, we define

j̃1(ε) := (γ1 − γ0)

∫

ωε

T (U0).(V0 +∇kε), (3.68)

and

J1 := (γ1 − γ0)

∫

ω
T (U0).(V0 +∇K)

= (γ1 − γ0) T (U0).

[

|ω|V0 +

∫

∂ω
Kn

]

, (3.69)

the last equality stemming from Green’s formula, where n is the outward unit normal to ∂ω.
Regarding the calculation of the latter integral, it follows from the linearity of equation

(3.50) that the mapping

V0 7→ (γ1 − γ0)

[

|ω|V0 +

∫

∂ω
Kn

]

is linear R
N → R

N . It only depends on the set ω, on the definite positive matrix DT (U0)
and on the ratio γ1/γ0. Hence there exists a second order tensor, called polarization tensor,

P = P(ω,DT (U0), γ1/γ0),
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such that

(γ1 − γ0)

[

|ω|V0 +

∫

∂ω
Kn

]

= PV0. (3.70)

Eventually we arrive at
J1 = T (U0). (PV0) = T (U0)

TPV0. (3.71)

Lemma 3.23. For all ε ≥ 0 small enough it holds

j̃1(ε)− εNJ1 = o(εN ). (3.72)

The proof is available in subsection 4.16 on page 43.

Lemma 3.24. For all ε ≥ 0 small enough it holds

j1(ε)− j̃1(ε) = o(εN ). (3.73)

The proof is available in subsection 4.17 on page 44.
Summing estimates (3.72) and (3.73) we derive the following.

Proposition 3.25. It holds:

j1(ε) = εNT (U0)
TPV0 + o

(

εN
)

. (3.74)

3.6.2. Expansion of nonlinear term j2(ε). The term j2(ε) can be approximated with the help
of approximation steps 2 and 3 as follows. Since ∇hε ∈ Lp(Ω) and ∇kε ∈ L2(Ω), in view of
the growth condition (3.2) one can define

j̃2(ε) :=

∫

Ω
γεSU0(∇hε).V0 + (γ1 − γ0)

∫

ωε

[DT (U0)V0.∇hε − T (U0).∇kε] . (3.75)

Similarly since ∇H ∈ Lp(RN ) ∩ L2(RN ) and ∇K ∈ L2(RN ), one can define

J2 :=

∫

RN

γSU0(∇H).V0 + (γ1 − γ0)

∫

ω
[DT (U0)V0.∇H − T (U0).∇K] . (3.76)

In addition after Propositions 3.14 and 3.20, it holds H ∈ H(RN ) and K ∈ V(RN ). Plugging
test function K into variational form (3.19) defining H and plugging test function H into
variational form(3.50) defining K, one obtains

J2 =

∫

RN

γSU0(∇H).(V0 +∇K). (3.77)

Lemma 3.26. For ε ≥ 0 small enough it holds

j̃2(ε)− εNJ2 = o(εN ). (3.78)

The proof is available in subsection 4.18 on page 44.

Lemma 3.27. It holds
∫

Ω
|∇v0 − V0|

(

|∇hε|
p + |∇hε|

2
)

= o(εN ), (3.79)

∀ p ∈ (3,∞),

∫

Ω
|∇v0 − V0| |∇hε|

p−1 = o(εN ). (3.80)

The proof is available in subsection 4.19 on page 45.

Lemma 3.28. For ε ≥ 0 small enough it holds

j2(ε)− j̃2(ε) = o(εN ). (3.81)

The proof is available in subsection 4.20 on page 45.
Eventually summing estimates (3.78) and (3.81) yields the following.

Proposition 3.29.

j2(ε) = εN
(
∫

RN

γSU0(∇H). (V0 +∇K)

)

+ o
(

εN
)

. (3.82)
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3.6.3. Topological asymptotic expansion. Lastly, according to (3.65), summing the estimate
of j1(ε) given by (3.74) and the estimate of j2(ε) given by (3.82), one obtains the topological
asymptotic expansion claimed in Theorem 3.5.

4. Proofs

4.1. Proof of Proposition 3.2. Let ϕ, ψ ∈ R
N . It is easy to check the following algebraic

identity by expanding both sides

R(ϕ, ψ) :=
[

(a2 + |ϕ+ ψ|2)
p−2
2 (ϕ+ ψ)− (a2 + |ϕ|2)

p−2
2 ϕ

]

.ψ

=
(a2 + |ϕ+ ψ|2)

p−2
2 − (a2 + |ϕ|2)

p−2
2

2

(

|ϕ+ ψ|2 − |ϕ|2
)

+
(a2 + |ϕ+ ψ|2)

p−2
2 + (a2 + |ϕ|2)

p−2
2

2
|ψ|2 .

By monotonicity of the function x ∈ R+ 7→ (a2 + x)
p−2
2 , the first term on the right-hand side

is always non negative. Hence

R(ϕ, ψ) ≥
(a2 + |ϕ+ ψ|2)

p−2
2 + (a2 + |ϕ|2)

p−2
2

2
|ψ|2 . (4.1)

It follows immediately from (4.1) that

R(ϕ, ψ) ≥ c2 |ψ|
2 ,

where c2 := ap−2 > 0 does not depend on ϕ, ψ.
Let us now prove the p-coercivity. As the case ψ = 0 is trivial, we assume ψ 6= 0 and we

decompose ϕ as follows

ϕ = ξ + sψ, with ξ ∈ R
N , s ∈ R and ξ.ψ = 0.

Let b ∈ R+ such that b2 = a2 + |ξ|2. The Pythagorean theorem yields

R(ϕ, ψ) =

[

(

b2 + (s+ 1)2|ψ|2
)

p−2
2 (s+ 1)−

(

b2 + s2|ψ|2
)

p−2
2 s

]

|ψ|2.

Let

d :=
b

|ψ|
and Q(ϕ, ψ) :=

R(ϕ, ψ)

|ψ|p
.

Thus

Q(ϕ, ψ) =
(

d2 + (s+ 1)2
)

p−2
2 (s+ 1)−

(

d2 + s2
)

p−2
2 s. (4.2)

We distinguish between several cases.

(1) If s ≥ 0. Due to the monotonicity of the map x ∈ R+ 7→ (d2 + x2)
p−2
2 , it holds

[

(

d2 + (s+ 1)2
)

p−2
2 −

(

d2 + s2
)

p−2
2

]

s ≥ 0

and
(

d2 + (s+ 1)2
)

p−2
2 ≥

(

d2 + 1
)

p−2
2 ≥ 1.

It thus follows from formula (4.2) that Q(ϕ, ψ) ≥ 1.
(2) If s < 0. Let t := |s| = −s. Rewrite (4.2) as follows

Q(ϕ, ψ) =
(

d2 + (1− t)2
)

p−2
2 (1− t) +

(

d2 + t2
)

p−2
2 t. (4.3)

We distinguish again two cases.
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(a) If t ≤ 1. Due to the monotonicity of the maps x ∈ R+ 7→ x
p−2
2 and x ∈ R+ 7→

xp−1 and since

max(1− x, x) ≥
1

2
, ∀x ∈ (0, 1],

one obtains from (4.3) that

Q(ϕ, ψ) ≥ (1− t)p−2(1− t) + tp−2t = (1− t)p−1 + tp−1 ≥ 21−p.

(b) If t > 1. As 0 < t− 1 < t, by monotonicity, it holds

−
(

d2 + (1− t)2
)

p−2
2 +

(

b2 + t2
)

p−2
2 ≥ 0.

From equation (4.3), one thus obtains

Q(ϕ, ψ) =

[

−
(

d2 + (1− t)2
)

p−2
2 +

(

d2 + t2
)

p−2
2

]

t+
(

d2 + (1− t)2
)

p−2
2

≥

[

−
(

d2 + (1− t)2
)

p−2
2 +

(

d2 + t2
)

p−2
2

]

+
(

d2 + (1− t)2
)

p−2
2

=
(

d2 + t2
)

p−2
2 ≥

(

d2 + 1
)

p−2
2 ≥ 1.

Let cp = min(1, 21−p) = 21−p. We have thus proved that

R(ϕ, ψ) ≥ cp |ψ|
p , ∀ ϕ, ψ ∈ R

N .

Lastly choosing c = 1
2 min(c2, cp) completes the proof of Proposition 3.2.

4.2. Proof of Proposition 3.3. We shall prove that, for all a > 0, the potentialWa satisfies
Assumption 3.1.

(1) The two maps ϕ ∈ R
N 7→ |ϕ|2 and t ∈ R+ 7→ 1

p(a
2 + t)

p

2 are C∞. It follows that the

composite function Wa is also C∞.
(2) Regarding condition (2), it is obvious that the lower bound holds with a0 :=

1
p . Then,

for all ϕ ∈ R
N , we have by convexity that

Wa(ϕ) =
1

p

(

a2 + |ϕ|2
)

p

2
≤

1

p
2

p−2
2 (ap + |ϕ|p) .

Hence the upper bound of condition (2) holds choosing b0 :=
1
p2

p−2
2 max(ap, 1).

(3) About condition (3), it first holds

Ta(ϕ) =
(

a2 + |ϕ|2
)

p−2
2
ϕ ∀ϕ ∈ R

N .

Thus
{

|Ta(ϕ)| ≤ 2
p−2
2 ap−2 |ϕ| if |ϕ| ≤ a,

|Ta(ϕ)| ≤ 2
p−2
2 |ϕ|p−1 if |ϕ| > a.

Hence inequality in condition (3) holds choosing a1 := 2
p−2
2 max(ap−2, 1).

(4) For all ϕ, ψ ∈ R
N it holds

DTa(ϕ)ψ = (p− 2)
(

a2 + |ϕ|2
)

p−4
2

(ϕ.ψ)ϕ+
(

a2 + |ϕ|2
)

p−2
2
ψ.

Thus

DTa(ϕ)ψ.ψ = (p− 2)
(

a2 + |ϕ|2
)

p−4
2

(ϕ.ψ)2 +
(

a2 + |ϕ|2
)

p−2
2

|ψ|2

≥
(

a2 + |ϕ|2
)

p−2
2

|ψ|2 .

Hence the lower bound in condition (4) holds choosing c := min(1, ap−2) > 0.
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Moreover the Cauchy-Schwarz inequality yields

DTa(ϕ)ψ.ψ ≤

[

(p− 2)
(

a2 + |ϕ|2
)

p−4
2

|ϕ|2 +
(

a2 + |ϕ|2
)

p−2
2

]

|ψ|2

≤ (p− 1)
(

a2 + |ϕ|2
)

p−2
2

|ψ|2 .

Hence the upper bound in condition (4) holds choosing C := (p− 1)max(1, ap−2).
(5) Condition (5) follows immediately from Proposition 3.2.
(6) Regarding condition (6), let ϕ, ψ ∈ R

N . Let g : t ∈ (0, 1) 7→ Ta(ϕ+ tψ). The equality

g(1)− g(0) =

∫ 1

0
g′(t)dt

may be expanded into

Ta(ϕ+ ψ)− Ta(ϕ) = (p− 2)

∫ 1

0

(

a2 + |ϕ+ tψ|2
)

p−4
2

((ϕ+ tψ).ψ)(ϕ+ tψ) dt

+

∫ 1

0

(

a2 + |ϕ+ tψ|2
)

p−2
2
ψ dt.

Thus

|Ta(ϕ+ ψ)− Ta(ϕ)| ≤ (p− 2)

∫ 1

0

(

a2 + |ϕ+ tψ|2
)

p−4
2

|ϕ+ tψ|2 |ψ| dt

+

∫ 1

0

(

a2 + |ϕ+ tψ|2
)

p−2
2

|ψ| dt

≤ (p− 1) |ψ|

∫ 1

0

(

a2 + |ϕ+ tψ|2
)

p−2
2

dt

≤ (p− 1) |ψ|
(

a2 + 2 |ϕ|2 + 2 |ψ|2
)

p−2
2
. (4.4)

Moreover










(

a2 + 2 |ϕ|2 + 2 |ψ|2
)

p−2
2

≤ 2
p−2
2

(

a2 + 2 |ϕ|2
)

p−2
2

if 2 |ψ|2 ≤ a2 + 2 |ϕ|2 ,
(

a2 + 2 |ϕ|2 + 2 |ψ|2
)

p−2
2

≤ 2p−2 |ψ|p−2 if 2 |ψ|2 > a2 + 2 |ϕ|2 .

Hence inequality (4.4) entails

|Ta(ϕ+ ψ)− Ta(ϕ)| ≤ (p− 1) |ψ|

[

2
p−2
2

(

a2 + 2 |ϕ|2
)

p−2
2

+ 2p−2 |ψ|p−2

]

≤ C |ψ|
[

1 + |ϕ|p−2 + |ψ|p−2
]

,

with C := (p− 1)2
p−2
2 max(1, 2

p−4
2 )max(ap−2, 2

p−2
2 ). This proves condition (6).

(7) Regarding condition (7), let M > 0 and let ϕ ∈ B(0,M). For all ψ1, ψ2 ∈ R
N , the

Taylor formula reads

Sϕ(ψ2)− Sϕ(ψ1) = Ta(ϕ+ ψ2)− Ta(ϕ+ ψ1)−DTa(ϕ)(ψ2 − ψ1)

=

∫ 1

0
[DTa(ϕ+ ψ1 + t(ψ2 − ψ1))−DTa(ϕ)] (ψ2 − ψ1)) dt

=

∫ 1

0

∫ 1

0
D2Ta (ϕ+ s [(1− t)ψ1 + tψ2]) ((1− t)ψ1 + tψ2) (ψ2 − ψ1) ds dt. (4.5)



26

For all ξ1, ξ2, ξ3 ∈ R
N one obtains by differentiation

DTa(ξ1)(ξ2) = (p− 2)
(

a2 + |ξ1|
2
)

p−4
2

(ξ1.ξ2)ξ1 +
(

a2 + |ξ1|
2
)

p−2
2
ξ2.

Next one gets

D2Ta(ξ1)(ξ2, ξ3) = (p− 2)(p− 4)
(

a2 + |ξ1|
2
)

p−6
2

(ξ1.ξ2)(ξ1.ξ3)ξ1

+ (p− 2)
(

a2 + |ξ1|
2
)

p−4
2

[(ξ2.ξ3)ξ1 + (ξ1.ξ2)ξ3 + (ξ1.ξ3)ξ2] . (4.6)

After Cauchy-Schwarz’s inequality it follows

∣

∣D2Ta(ξ1)(ξ2, ξ3)
∣

∣ ≤ C(p)
(

a2 + |ξ1|
2
)

p−3
2

|ξ2| |ξ3| .

where C(p) = (p− 2)(|p− 4|+ 3).
• If p ∈ [2, 3] then

∣

∣D2Ta(ξ1)(ξ2, ξ3)
∣

∣ ≤ C(p)ap−3 |ξ2| |ξ3| .

Hence (4.5) entails

|Sϕ(ψ2)− Sϕ(ψ1)| ≤ C(p)ap−3 |ψ2 − ψ1| (|ψ1|+ |ψ2|) .

Therefore condition (7) holds with c0 = C(p)ap−3 and cp−3 = 0.
• If p ∈ (3,∞), for all s, t ∈ (0, 1) it holds

(

a2 + |ϕ+ s [(1− t)ψ1 + tψ2]|
2
)

p−3
2

≤
(

a2 + 2 |ϕ|2 + 2 (|ψ1|+ |ψ2|)
2
)

p−3
2

≤ 2
p−3
2
(

a2 + 2M2
)

p−3
2 + 2p−3 (|ψ1|+ |ψ2|)

p−3 .

Therefore (4.5) yields condition (7) with c0 = 2
p−3
2 C(p)

(

a2 + 2M2
)

p−3
2 and

cp−3 = 2p−3C(p).
(8) Regarding condition (8), we set for clarity Zψ(ϕ) := Sϕ(ψ). For a given ψ ∈ R

N , the
map ϕ 7→ Zψ(ϕ) is C

∞. According to the Taylor formula with integral remainder, for

all ϕ, ψ, ξ ∈ R
N it holds

DZψ(ϕ)(ξ) = DTa(ϕ+ ψ)(ξ)−DTa(ϕ)(ξ)−D2Ta(ϕ)(ψ, ξ)

=

∫ 1

0
(1− s)D3Ta(ϕ+ sψ)(ψ, ξ, ψ) ds.

Let M > 0 and let ϕ1, ϕ2 ∈ B(0,M). For all ψ ∈ R
N it thus holds

Zψ(ϕ2)− Zψ(ϕ1) =

∫ 1

0
DZψ(ϕ1 + t(ϕ2 − ϕ1))(ϕ2 − ϕ1) dt

=

∫ 1

0

∫ 1

0
(1− s)D3Ta(ϕ1 + t(ϕ2 − ϕ1) + sψ)(ψ, ϕ2 − ϕ1, ψ) ds dt. (4.7)
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Differentiating (4.6), for all ξ1, ξ2, ξ3 ∈ R
N one obtains

D3Ta(ξ1)(ξ2, ξ3, ξ2) = (p− 2)(p− 4)(p− 6)
(

a2 + |ξ1|
2
)

p−8
2

(ξ1.ξ2)
2(ξ1.ξ3)ξ1

+ (p− 2)(p− 4)
(

a2 + |ξ1|
2
)

p−6
2
[

|ξ2|
2 (ξ1.ξ3)ξ1 + (ξ1.ξ2)(ξ2.ξ3)ξ1 + (ξ1.ξ2)(ξ1.ξ3)ξ2

]

+ (p− 2)(p− 4)
(

a2 + |ξ1|
2
)

p−6
2

(ξ1.ξ2) [(ξ2.ξ3)ξ1 + (ξ1.ξ2)ξ3 + (ξ1.ξ3)ξ2]

+ (p− 2)
(

a2 + |ξ1|
2
)

p−4
2
[

|ξ2|
2 ξ3 + 2(ξ2.ξ3)ξ2

]

.

Thus
∣

∣D3Ta(ξ1)(ξ2, ξ3, ξ2)
∣

∣ ≤ C(p)
(

a2 + |ξ1|
2
)

p−4
2

|ξ2|
2 |ξ3| .

where C(p) = (p− 2)[3 + |p− 4| (6 + |p− 6|)].
• If p ∈ [2, 4], it holds

∣

∣D3Ta(ξ1)(ξ2, ξ2, ξ3)
∣

∣ ≤ C(p)ap−4 |ξ2|
2 |ξ3| .

Hence it follows from (4.7)

|Sϕ2(ψ)− Sϕ1(ψ)| ≤
1

2
C(p)ap−4 |ϕ2 − ϕ1| |ψ|

2 .

Therefore condition (8) holds with d0 = C(p)ap−4/2 and dp−4 = 0.
• If p > 4, for all t, s ∈ (0, 1) it holds

(

a2 + |ϕ1 + t(ϕ2 − ϕ1) + sψ|2
)

p−4
2

≤
(

a2 + 2M2 + 2 |ψ|2
)

p−4
2

≤ 2
p−4
2
(

a2 + 2M2
)

p−4
2 + 2p−4 |ψ|p−4 .

Hence (4.7) yields

|Sϕ2(ψ)− Sϕ2(ψ)| ≤ |ϕ2 − ϕ1| (d0 |ψ|
2 + dp−4 |ψ|

p−2)

with d0(M,p) = 2
p−6
2 C(p)

(

a2 + 2M2
)

p−4
2 and dp−4(p) = 2p−5C(p).

This completes the proof of condition (8).

4.3. Proof of Lemma 3.4. It follows from the upper-bound of condition (2) and from
f ∈ C0,α(Ω) ⊂ Lq(Ω) that the functional Wε is well defined in V.

(1) Applying the Lebesgue dominated convergence theorem and using the assumptions,
one proves in a standard way that functionalWε is continuous and Gâteaux-differentiable
in V, with

DWε(u)(η) =

∫

Ω
[γεT (∇u).∇η − fη] , ∀u, η ∈ V. (4.8)

See e.g. [18], proof of Thm. 6.6.1. Note that, according to condition (3), ∇u ∈ Lp(Ω)
implies that T (∇u) ∈ Lq(Ω). Hence the integral in (4.8) is well defined.

(2) The strict convexity of functional Wε follows immediately from that of W .
(3) After Poincaré inequality in V and after condition (2), it holds

Wε(u) ≥ γa0|u|
p
V − C ‖f‖Lq(Ω) |u|V , ∀u ∈ V,

which entails the coercivity of Wε in V.

Therefore (see e.g. [18], Theorem 3.3.4.) the minimization of Wε in V admits a unique
solution. This solution is equivalently defined by the first order condition DWε(uε) = 0
which is the claimed Euler-Lagrange equation.



28

4.4. Proof of Lemma 3.6. The unperturbed direct state u0 ∈ V is weak solution of the
Dirichlet problem

{

− div (γ0T (∇u)) = f in Ω,

u = 0 on ∂Ω.

According to condition (1) it holds T ∈ C1,α(RN ) and by assumption f ∈ C0,α(Ω). Moreover
referring to [46], structure conditions (3.46) p.181 hold by virtue of condition (4). Hence it
follows from [46] Theorem 3.20 that u0 ∈ C1,β(Ω), for some β > 0.

4.5. Proof of Lemma 3.8.

(1) Plugging η = ũε ∈ V the variational form (3.17) yields
∫

Ω
γε [T (∇ũε +∇u0)− T (∇u0)] .∇ũε = − (γ1 − γ0)

∫

ωε

T (∇u0).∇ũε. (4.9)

It follows from condition (5) that there exists c > 0 such that

γ c(‖∇ũε‖
p
Lp(Ω) + ‖∇ũε‖

2
L2(Ω)) ≤

∫

Ω
γε [T (∇ũε +∇u0)− T (∇u0)] .∇ũε. (4.10)

In addition ∇u0 ∈ L∞(Ω̄) by Lemma 3.6 and T is continuous. Thus let

M := sup
{

|T (ψ)| ; |ψ| ≤ ‖∇u0‖L∞(Ω)

}

<∞.

• According to Hölder’s inequality it holds
∣

∣

∣

∣

∫

ωε

T (∇u0).∇ũε

∣

∣

∣

∣

≤M |ω|
1
q ε

N
q ‖∇ũε‖Lp(Ω) .

Therefore equations (4.9) and (4.10) imply

γ c ‖∇ũε‖
p
Lp(Ω) ≤ |γ1 − γ0|M |ω|

1
q ε

N
q ‖∇ũε‖Lp(Ω) .

Dividing both sides by ‖∇ũε‖Lp(Ω) and powering the inequality to the power of

q entails

‖∇ũε‖
p
Lp(Ω) = O(εN ).

• Similarly applying Cauchy-Schwarz’s inequality, it holds
∣

∣

∣

∣

∫

ωε

T (∇u0).∇ũε

∣

∣

∣

∣

≤M |ω|
1
2 ε

N
2 ‖∇ũε‖L2(Ω) .

Hence one obtains from (4.9) and (4.10) that

‖∇ũε‖
2
L2(Ω) = O(εN ),

which completes the proof of (3.23).
(2) The proof of estimate (3.24) is similar to the one of (3.23), starting from variational

form (3.18).
(3) Lastly, since H ∈ V(RN ), by definition it holds ∇H ∈ Lp(RN ) ∩ L2(RN ). Thus

making a change of scale yields

‖∇Hε‖
p
Lp(Ω) =

∫

Ω
|∇Hε|

p = εN
∫

Ω/ε
|∇H|p ≤ εN ‖∇H‖p

Lp(RN )
= O(εN ).

Similarly one obtains

‖∇Hε‖
2
L2(Ω) = O(εN ),

which completes the proof of estimate (3.25).
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Remark 4.1. By convexity, it follows immediately from estimates (3.23), (3.24) and (3.25)
that

‖∇ũε −∇hε‖
p
Lp(Ω) + ‖∇ũε −∇hε‖

2
L2(Ω) = O(εN ), (4.11)

‖∇hε −∇Hε‖
p
Lp(Ω) + ‖∇hε −∇Hε‖

2
L2(Ω) = O(εN ). (4.12)

Moreover ũε, hε ∈ V ⊂ H. Thus according to Poincaré inequalities in V and in H, inequalities
(3.23) and (3.24) imply

‖ũε‖
p
Lp(Ω) + ‖ũε‖

2
L2(Ω) = O(εN ), (4.13)

‖hε‖
p
Lp(Ω) + ‖hε‖

2
L2(Ω) = O(εN ). (4.14)

By convexity again it follows from (4.13) and (4.14) that

‖ũε − hε‖
p
Lp(Ω) + ‖ũε − hε‖

2
L2(Ω) = O(εN ). (4.15)

4.6. Proof of Proposition 3.9. Consider the function P defined by (3.28) for some β ∈
(N/2, N). It is easy to check that P ∈ V(RN ) ∩ L∞(RN ). Recall we denote

R
N
+ =

{

x ∈ R
N ; U0. x ≥ 0

}

.

We shall prove that P is a supersolution of operator Q in the half-space R
N
+ for some appro-

priately chosen β ∈ (N/2, N). We shall need the following elementary inequalities: for all
β > N/2, it holds

1 + k(1− β) > 0, (4.16)

−2 + k(β − 2) < 0. (4.17)

According to the Green formula, one can split operator Q into the sum of three operators
Qint, Qtrans and Qext, with supports respectively in ω̄, on ∂ω and in R

N \ ω, as follows:

〈QP, η〉 :=

∫

RN

γ [T (U0 +∇P )− T (U0)] .∇η + (γ1 − γ0)

∫

ω
T (U0).∇η,

= 〈QintP, η〉+ 〈QtransP, η〉+ 〈QextP, η〉 , ∀η ∈ V(RN ),

with

〈QintP, η〉 := −γ1

∫

ω
div T (U0 +∇P )η,

〈QtransP, η〉 :=

∫

∂ω
[γ1T (U0 + (∇P )int)− γ0T (U0 + (∇P )ext)] .n η,

〈QextP, η〉 := −γ0

∫

RN\ω
div T (U0 +∇P )η.

Hence P is a supersolution of Q in the half-space R
N
+ , that is

〈QP, η〉 ≥ 0, ∀η ∈ V(RN ), spt(η) ⊂ R
N
+ , η ≥ 0 a.e.

if and only if the three following conditions are satisfied:

− div(T (U0 +∇P )) ≥ 0, ∀x ∈ ω ∩ R
N
+ ; (4.18)

[γ1T (U0 + (∇P )int(x))− γ0T (U0 + (∇P )ext(x))] .n ≥ 0, ∀x ∈ ∂ω ∩ R
N
+ ; (4.19)

− div(T (U0 +∇P )) ≥ 0, ∀x ∈ R
N
+ \ ω̄. (4.20)

As W =Wa, we denote for simplicity

Ta(ϕ) = σ(|ϕ|2) ϕ, ∀ϕ ∈ R
N ,

with

σ(λ) =
(

a2 + λ
)

p−2
2 , ∀λ ∈ R+.
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In ω and in R
N \ ω̄, it holds

div(Ta(U0 +∇P )) = σ(|U0 +∇P |2) ∆P + 2σ′(|U0 +∇P |2) (U0 +∇P )T∇2P (U0 +∇P )

= σ(|U0 +∇P |2)

[

∆P +
p− 2

a2 + |U0 +∇P |2
(U0 +∇P )T∇2P (U0 +∇P )

]

. (4.21)

Thus, as σ > 0, the study of the sign in internal (resp. external) condition (4.18) (resp.
(4.20)) can be carried out studying the sign of the term

(

a2 + |U0 +∇P |2
)

∆P + (p− 2)(U0 +∇P )T∇2P (U0 +∇P ). (4.22)

(1) It is obvious that div(Ta(U0 + ∇P )) = 0 in ω. Thus internal condition (4.18) is
satisfied.

(2) We now study external condition (4.20). For all x ∈ R
N , |x| > 1 and all ϕ ∈ R

N ,
denoting

r := |x| and er :=
x

|x|
,

an easy calculation shows that

∇P (x) = kr−β [U0 − β (U0.er) er] (4.23)

and

ϕT∇2P (x)ϕ = kβr−2−β
[

(β + 2)(U0.x) (er.ϕ)
2 − 2(x.ϕ)(U0.ϕ)− (U0.x) |ϕ|

2
]

. (4.24)

In particular one gets

∆P (x) = −kβr−2−β(U0.x)(N − β). (4.25)

As β < N , it follows that ∆P < 0 in R
N
+ \ω̄. In order to study the sign of (4.22), let us

consider an arbitrary x ∈ R
N
+ \ω̄. Obviously, if (U0+∇P (x))T∇2P (x)(U0+∇P (x)) ≤

0, it follows immediately that
(

a2 + |U0 +∇P (x)|2
)

∆P (x) + (p− 2) (U0 +∇P (x))T∇2P (x)(U0 +∇P (x)) ≤ 0,

therefore external condition (4.20) is satisfied at point x.
Hence, let us assume that (U0 +∇P (x))T∇2P (x)(U0 +∇P (x)) > 0. Denoting

ϕ̃ := U0 +∇P (x) and cos θ :=
x

|x|
.
U0

|U0|
= er.

U0

|U0|
,

one obtains

er.ϕ̃ = |U0| cos θ
[

1 + kr−β(1− β)
]

,

x.ϕ̃ = (U0.x)
[

1 + kr−β(1− β)
]

,

U0.ϕ̃ = |U0|
2
[

1 + kr−β(1− β cos2 θ)
]

,

|ϕ̃|2 = |U0|
2

[

sin2 θ
(

1 + kr−β
)2

+ cos2 θ
(

1 + kr−β(1− β)
)2
]

.

Thus formula (4.24) entails

ϕ̃T∇2P (x)ϕ̃ = kβr−2−β(U0.x) |U0|
2 f(r, θ, k, β) (4.26)

with

f(r, θ, k, β) := (β + 1) cos2 θ
(

1 + kr−β(1− β)
)2

− 2
(

1 + kr−β(1− β)
)(

1 + kr−β(1− β cos2 θ)
)

− sin2 θ
(

1 + kr−β
)2
.
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In addition formula (4.25) yields
(

a2 + |ϕ̃|2
)

∆P (x) = −kβr−2−β(U0.x) |U0|
2 (N − β)

×

[

a2

|U0|
2 + sin2 θ

(

1 + kr−β
)2

+ cos2 θ
(

1 + kr−β(1− β)
)2
]

. (4.27)

Hence the sign of (4.22) is negative if and only if the sign of

− (N−β)

[

a2

|U0|
2 + sin2 θ

(

1 + kr−β
)2

+ cos2 θ
(

1 + kr−β(1− β)
)2
]

+(p−2) f(r, θ, k, β)

(4.28)

is negative. As p ≥ 2 and β < N , it thus suffices that

−(N − β)

[

a2

|U0|
2 + cos2 θ

(

1 + kr−β(1− β)
)2
]

+

(p− 2)

[

(β + 1) cos2 θ
(

1 + kr−β(1− β)
)2

− 2
(

1 + kr−β(1− β)
)(

1 + kr−β(1− β cos2 θ)
)

]

be negative. By inequality (4.16), it holds

1 + kr−β(1− β cos2 θ) ≥ 1 + kr−β(1− β) ≥ 1 + k(1− β) > 0.

It follows that

− 2
(

1 + kr−β(1− β)
)(

1 + kr−β(1− β cos2 θ)
)

≤ −2
(

1 + kr−β(1− β)
)2

≤ −2 cos2 θ
(

1 + kr−β(1− β)
)2
.

Hence it suffices that

− (N − β)
a2

|U0|
2 + cos2 θ

(

1 + kr−β(1− β)
)2

[β −N + (p− 2)(β + 1− 2)] ≤ 0. (4.29)

As β > N/2 ≥ 1, it follows from inequality (4.16) that

cos2 θ
(

1 + kr−β(1− β)
)2

≤ 1,

Thus it suffices that

−(N − β)
a2

|U0|
2 + [β −N + (p− 2)(β − 1)] ≤ 0,

which is equivalent to

β ≤
N
(

1 + a2

|U0|
2

)

+ (p− 2)

1 + a2

|U0|
2 + (p− 2)

. (4.30)

There exists β ∈ (N/2, N) satisfying inequality (4.30) as soon as

N

2
<
N
(

1 + a2

|U0|
2

)

+ (p− 2)

1 + a2

|U0|
2 + (p− 2)

. (4.31)

The latter condition (4.31) is equivalent to

p < 2 +

(

1 +
a2

|U0|
2

)

N

N − 2
= p̄,

with the convention that p̄ = +∞ if N = 2.
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(3) Lastly let us prove that, for β chosen as above and k defined by (3.29), function P
satisfies the transmission condition (4.20), that is

γ1T (U0 + (∇P )int(x)).x ≥ γ0T (U0 + (∇P )ext(x)).x, ∀x, |x| = 1, U0. x > 0.

As
T (ϕ) = σ(|ϕ|2)ϕ, ∀ϕ ∈ R

N

with σ an increasing function, a sufficient condition is given by the following three
conditions:

γ1(U0 + (∇P )int(x)).x = γ0(U0 + (∇P )ext(x)).x, ∀x, |x| = 1, (4.32)

|U0 + (∇P )int(x))| ≥ |U0 + (∇P )ext(x))| , ∀x, |x| = 1, (4.33)

(U0 + (∇P )int(x)) . x ≥ 0, ∀x, |x| = 1, U0.x > 0. (4.34)

(a) After the definition (3.28) of P , the first condition (4.32) reads

γ1(1 + k) = γ0 (1 + k(1− β)) .

which exactly provides the value of k chosen in definition (3.29).
(b) After the definition (3.28) of P , the second condition (4.33) reads

(1 + k)2 ≥ (1 + k)2 + kβ cos2 θ (−2 + k(β − 2)) , ∀θ ∈ [−π/2,+π/2].

This condition is satisfied due to inequality (4.17).
(c) Regarding the latter condition (4.34), it holds

(U0 + (∇P )int(x))) .x = (1 + k)U0.x ≥ 0.

The proof of Proposition 3.9 is now complete.

4.7. Proof of proposition 3.11. Recall that by symmetry there exists an element H̃ of the
class H such that

H̃(x) = 0, ∀x ∈ R
N , U0. x = 0.

Let P the supersolution defined in Proposition (3.9). For all η ∈ V(RN ) such that spt(η) ⊂ R
N
+

and η ≥ 0 a.e., we have obtained
〈QP, η〉 ≥ 0.

As by definition of H, it holds QH = 0, it follows that

〈QP −QH, η〉 ≥ 0,

that is
∫

RN

γ [T (U0 +∇P )− T (U0 +∇H)] .∇η ≥ 0. (4.35)

As P = H̃ = 0 in the hyperplane (RU0)
⊥, the test function defined by

η(x) :=

{

max(0, H̃(x)− P (x)) if x ∈ R
N
+ ,

0 otherwise

satisfies the conditions η ∈ V(RN ), spt(η) ⊂ R
N
+ and η ≥ 0. Hence it can be plugged into

inequality (4.35). It follows
∫

{H̃>P} ∩ RN
+

γ [T (U0 +∇P )− T (U0 +∇H)] .(∇H −∇P ) ≥ 0.

Moreover after the ellipticity condition (5), there exists c > 0 such that

c

∫

{H̃>P} ∩ RN
+

|∇H −∇P |p + |∇H −∇P |2

≤

∫

{H̃>P} ∩ RN
+

γ [T (U0 +∇P )− T (U0 +∇H)] .(∇P −∇H).
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One concludes that
∫

RN

|∇η|p + |∇η|2 =

∫

{H̃>P} ∩ RN
+

|∇H −∇P |p + |∇H −∇P |2 = 0.

Due to the Poincaré inequality stated in Corollary (A.4), it follows that η = 0 in V(RN ).

Hence P ≥ H̃ a.e. in R
N
+ .

Similarly, one easily obtains from Lemma 3.10 that H̃ ≥ 0 a.e. in R
N
+ .

We have thus obtained that 0 ≤ H̃ ≤ P in R
N
+ . As P ∈ L∞(RN ) and

P (y) = O
(

|y|−τ
)

as |y| → +∞, y ∈ R
N
+ ,

with τ := β − 1 > N/2− 1, one concludes that H̃ ∈ L∞(RN+ ) with

H̃(y) = O
(

|y|−τ
)

as |y| → +∞, y ∈ R
N
+ .

Since H̃ is an odd function with respect to the first coordinate x1, i.e. along the line RU0,
the above properties immediately extend to the whole R

N .

4.8. Proof of Lemma 3.14. AsH ∈ V(RN ), by definition it holds∇H ∈ L2(RN ). Moreover

according to Assumption 3.13, H̃ ∈ L∞(RN ). As in addition w2 ∈ L2(RN ), it follows that

w2H̃ ∈ L2(RN ), which completes the proof of the assertion H ∈ H(RN ).

4.9. Proof of Proposition 3.15. Let us begin proving a technical lemma. Recall 0 < ρ < R
defined in (3.4) such that ω ⊂⊂ B(0, ρ) ⊂ B(0, R) ⊂⊂ Ω.

Let θ : RN → R a smooth function such that

θ(x) = 0, ∀x ∈ B(0, ρ) and θ(x) = 1, ∀x ∈ R
N \B(0, R). (4.36)

Recall

Hε(x) := εH̃(ε−1x), ∀x ∈ Ω, (4.37)

and set

κε(x) = θ(x)Hε(x).

Lemma 4.2. It holds κε ∈W 1,p(Ω) and Hε − κε ∈ V. Moreover

‖∇κε‖
p
Lp(Ω) + ‖∇κε‖

2
L2(Ω) = o(εN ). (4.38)

Proof. Denote Cθ := max(‖θ‖L∞(RN ) , ‖∇θ‖L∞(RN )). Since |κε(x)| ≤ Cθ |Hε(x)| for a.e. x ∈

Ω, it follows from Hε ∈ Lp(Ω) that κε ∈ Lp(Ω). Next, from

∇κε(x) = ∇θ(x) Hε(x) + θ(x) ∇Hε(x)

we infer by convexity

|∇κε(x)|
p ≤ 2p−1Cpθ (|Hε(x)|

p + |∇Hε(x)|
p) .

Thus Hε ∈ W 1,p(Ω) entails that ∇κε ∈ Lp(Ω). One concludes κε ∈ W 1,p(Ω). Moreover by

definition of θ, it holds Hε − κε = 0 on ∂Ω. Thus Hε − κε ∈W 1,p
0 (Ω) = V.

Let us now prove (4.38). Let C := max(2p−1Cpθ , 2C
2
θ ). By convexity, for a.e. x ∈ Ω it

holds

|∇κε(x)|
p + |∇κε(x)|

2 ≤ C
(

|Hε(x)|
p + |Hε(x)|

2 + |∇Hε(x)|
p + |∇Hε(x)|

2
)

. (4.39)

(1) Since θ = 0 in B(0, ρ), we have
∫

B(0,ρ)
|∇κε|

p + |∇κε|
2 = 0. (4.40)
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(2) Then let’s integrate in B(0, R) \ B(0, ρ). Making a change of scale and applying the

asymptotic behavior of H̃ given by (3.33), we obtain
∫

B(0,R)\B(0,ρ)
|Hε|

p + |Hε|
2 = εN

∫

B(0,R/ε)\B(0,ρ/ε)
εp
∣

∣

∣
H̃
∣

∣

∣

p
+ ε2

∣

∣

∣
H̃
∣

∣

∣

2

≤ εN O

(

R

ε

)N

O

(

εp
(

ε

ρ

)pτ

+ ε2
(

ε

ρ

)2τ
)

≤ O
(

εp(1+τ) + ε2(1+τ)
)

= o(εN ),

since p(1 + τ) ≥ 2(1 + τ) > N .
Recall ∇H ∈ Lp(RN ) ∩ L2(RN ). Thus

∫

B(0,R)\B(0,ρ)
|∇Hε|

p + |∇Hε|
2 ≤ εN

∫

RN\B(0,ρ/ε)
|∇H|p + |∇H|2 = o

(

εN
)

.

Therefore integrating inequality (4.39) in B(0, R) \B(0, ρ) entails
∫

B(0,R)\B(0,ρ)
|∇κε|

p + |∇κε|
2 = o(εN ). (4.41)

(3) Lastly it holds κε = Hε in Ω \ B(0, R) and thus ∇κε = ∇Hε in Ω \ B(0, R). Since
∇H ∈ Lp(RN ) ∩ L2(RN ), it follows
∫

Ω\B(0,R)
|∇κε|

p + |∇κε|
2 ≤ εN

∫

RN\B(0,R/ε)
|∇H|p + |∇H|2 = o

(

εN
)

. (4.42)

Gathering (4.40), (4.41) and (4.42), one eventually obtains (4.38). �

We now prove Proposition 3.15.

(1) First we prove inequality (3.36). For all η ∈ V, define ηε ∈ V(RN ) by ηε(y) := ε−1η(εy)
for all y ∈ Ω/ε and ηε(y) := 0 for all y ∈ R

N \(Ω/ε). Applying variational formulation
(3.19) to ηε and making the change of scale backward, one obtains

∫

Ω
γε [T (U0 +∇Hε)− T (U0)] .∇η = − (γ1 − γ0)

∫

ωε

T (U0).∇η. (4.43)

Calculating the difference with variational form (3.18) yields
∫

Ω
γε [T (U0 +∇hε)− T (U0 +∇Hε)] .∇η = 0, ∀ η ∈ V. (4.44)

Recall function κε introduced in Lemma 4.2, such that Hε − κε ∈ V . Plugging
η = hε − (Hε − κε) ∈ V in (4.44) one obtains

∫

Ω
γε [T (U0 +∇hε)− T (U0 +∇Hε)] .(∇hε −∇Hε)

= −

∫

Ω
γε [T (U0 +∇hε)− T (U0 +∇Hε)] .∇κε. (4.45)

Using condition (5), it follows that the left hand side of (4.45) can be bounded from
below as

γc
(

‖∇hε −∇Hε‖
p
Lp(Ω) + ‖∇hε −∇Hε‖

2
L2(Ω)

)

≤

∫

Ω
γε [T (U0 +∇hε)− T (U0 +∇Hε)] .(∇hε −∇Hε). (4.46)



35

Looking now at the right hand side of (4.45), applying inequality (3.1) with M :=
|U0|+ ‖∇H‖L∞(RN ), one obtains

∣

∣

∣

∣

∫

Ω
[T (U0 +∇hε)− T (U0 +∇Hε)] .∇κε

∣

∣

∣

∣

≤

∫

Ω

[

b1 |∇hε −∇Hε|+ bp−1 |∇hε −∇Hε|
p−1
]

. |∇κε|

≤ b1 ‖∇hε −∇Hε‖L2(Ω) ‖∇κε‖L2(Ω) + bp−1 ‖∇hε −∇Hε‖
p

q

Lp(Ω) ‖∇κε‖Lp(Ω) . (4.47)

Gathering (4.45), (4.46) and (4.47) as well as estimates (4.12) and (4.38), it follows
that

γc
(

‖∇hε −∇Hε‖
p
Lp(Ω) + ‖∇hε −∇Hε‖

2
L2(Ω)

)

≤ γb1
(

O(εN )
)

1
2
(

o(εN )
)

1
2 + γbp−1

(

O(εN )
)

1
q
(

o(εN )
)

1
p = o(εN ),

which is the claimed estimate (3.36).
(2) We turn to the proof of inequality (3.37). Since ∇H ∈ L2(RN )∩Lp(RN ) and r−1 < 0

it holds
∫

Ω\B(0,αεr)
|∇Hε|

p + |∇Hε|
2 ≤ εN

∫

RN\B(0,αεr−1)
|∇H|p + |∇H|2 = o(εN ).

The latter estimate combined with estimate (3.36) entails by convexity that
∫

Ω\B(0,αεr)
|∇hε|

p + |∇hε|
2 = o(εN )

which is the claimed estimate (3.37).
(3) We now prove estimate (3.38). After Lemma 3.6, ∇u0 is β- Hölder continuous in a

neighborhood of x0 = 0 for some β > 0. Hence there exist δ > 0 and L > 0 such that

|∇u0(x)− U0| ≤ L |x|β , ∀x ∈ B(0, δ).

To apply estimate (3.37), we choose α := 1 and r = 1/2. For all ε ∈ (0, δ2), according
to estimates (3.24) and (3.37) it follows

∫

Ω
|∇u0 − U0|

(

|∇hε|
p + |∇hε|

2
)

≤

∫

B(0,αεr)
L |x|β

(

|∇hε|
p + |∇hε|

2
)

+ 2 ‖∇u0‖L∞(Ω)

∫

Ω\B(0,αεr)

(

|∇hε|
p + |∇hε|

2
)

≤ Lαβεrβ O(εN ) + o(εN ) = o(εN ),

which completes the proof of estimate (3.38).
(4) For all p ∈ (4,∞) and for all λ ∈ R+ it holds λp−2 ≤ λ2 + λp. Hence (3.39) follows

immediately from (3.38).
(5) Similarly, for all p ∈ (3,∞) and for all λ ∈ R+ it holds λp−1 ≤ λ2 + λp. Hence (3.40)

follows immediately from (3.38).
(6) Regarding estimate (3.41), the Cauchy-Schwarz inequality and estimates (3.36), (3.24)

and (3.25) result in
∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|)

≤ ‖∇hε −∇Hε‖L2(Ω)

[

‖∇hε‖L2(Ω) + ‖∇Hε‖L2(Ω)

]

= o(ε
N
2 ) O(ε

N
2 ) = o(εN )

which completes the proof of estimate (3.41).
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(7) Lastly let p ∈ (3,∞). For all λ ∈ R+ it holds λp−2 ≤ λ+λp−1. Hence due to estimates
(3.36), (3.24), (3.25), (3.41) and to Hölder’s inequality one obtains

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|)

p−2

≤

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|) +

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|)

p−1

≤ o(εN ) + ‖∇hε −∇Hε‖Lp(Ω) ‖|∇hε|+ |∇Hε|‖
p

q

Lp(Ω)

= o(εN ) + o(ε
N
p ) O(ε

N
q ) = o(εN )

which is the claimed estimate (3.42).

4.10. Proof of Proposition 3.16.

(1) Let us first prove inequality (3.43). For all η ∈ V, calculating the difference between
variational forms (3.17) and (3.18) yields after rearrangement

∫

Ω
γε [T (∇u0 +∇ũε)− T (∇u0 +∇hε)] .∇η = − (γ1 − γ0)

∫

ωε

(T (∇u0)− T (U0)).∇η

+

∫

Ω
γε [T (∇u0)− T (U0)] .∇η +

∫

Ω
γε [T (U0 +∇hε)− T (∇u0 +∇hε)] .∇η.

For all α > 0 and for all r ∈ (0, 1), splitting the domains of integration of the two
latter integrals into B(0, αεr) and Ω \ B(0, αεr), one may rewrite the latter equality
as

∫

Ω
γε [T (∇u0 +∇ũε)− T (∇u0 +∇hε)] .∇η = − (γ1 − γ0)

∫

ωε

(T (∇u0)− T (U0)).∇η

+

∫

B(0,αεr)
γε [T (∇u0)− T (U0)] .∇η +

∫

B(0,αεr)
γε [T (U0 +∇hε)− T (∇u0 +∇hε)] .∇η

+

∫

Ω\B(0,αεr)
γε [T (U0 +∇hε)− T (U0)] .∇η+

∫

Ω\B(0,αεr)
γε [T (∇u0)− T (∇u0 +∇hε)] .∇η.

Plugging the test function η = ũε − hε ∈ V and applying condition (5) it follows that

cγ
(

‖∇ũε −∇hε‖
p
Lp(Ω) + ‖∇ũε −∇hε‖

2
L2(Ω)

)

≤

5
∑

i=1

Ei(ε),

with

E1(ε) = − (γ1 − γ0)

∫

ωε

(T (∇u0)− T (U0)).(∇ũε −∇hε), (4.48)

E2(ε) =

∫

B(0,αεr)
γε [T (∇u0)− T (U0)] .(∇ũε −∇hε), (4.49)

E3(ε) =

∫

B(0,αεr)
γε [T (U0 +∇hε)− T (∇u0 +∇hε)] .(∇ũε −∇hε), (4.50)

E4(ε) =

∫

Ω\B(0,αεr)
γε [T (U0 +∇hε)− T (U0)] .(∇ũε −∇hε), (4.51)

E5(ε) =

∫

Ω\B(0,αεr)
γε [T (∇u0)− T (∇u0 +∇hε)] .(∇ũε −∇hε). (4.52)

Hence it suffices to prove that there exist α > 0 and r ∈ (0, 1) such that

Ei(ε) = o(εN ), ∀i, 1 ≤ i ≤ 5.
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After Lemma 3.6 there exists β > 0 such that ∇u0 is β-Hölder continuous in a
neighborhood of x0 = 0. To apply estimate (3.37), we choose α := ρ (see (3.4)) and

r :=
1

2

(

N

2β +N
+ 1

)

∈ (0, 1).

In particular after (3.4), it holds ω ⊂⊂ B(0, ρ) = B(0, α). In addition, after condition
(1), T is Lipschitz-continuous in a neighborhood of U0. Hence there exist δ > 0 and
L > 0 such that

max(|∇u0(x)− U0| , |T (∇u0(x))− T (U0)|) ≤ L |x|β ∀x ∈ Ω, |x| ≤ δ. (4.53)

In addition it holds

ωε ⊂ B(0, ρε) ⊂ B(0, ρεr) ⊂ B(0, δ) 0 < ε < min

(

1,

(

δ

ρ

)
1
r

)

.

(a) Applying Cauchy-Schwarz’s inequality, it follows from estimates (4.53) and (4.11)
that

|E1(ε)| ≤ 2γ

∫

ωε

|(T (∇u0)− T (U0))| |∇ũε −∇hε|

≤ 2γL×O
(

εβ+
N
2

)

×O
(

ε
N
2

)

= o(εN ).

(b) Similarly after estimate (4.11) and (4.53) and Cauchy-Schwarz’s inequality, it
holds

|E2(ε)| ≤ γL×O
(

εr(β+
N
2
)
)

×O
(

ε
N
2

)

= O
(

εN+β

2

)

= o(εN ).

(c) After condition (6), it holds

|E3(ε)| ≤ γC

∫

B(0,ρεr)
|U0 −∇u0|

[

1 + |∇u0 +∇hε|
p−2 + |U0 −∇u0|

p−2
]

|∇ũε −∇hε| .

(4.54)

Let us look for an upper bound for (4.54).
• First after estimates (4.11) and (4.53) and Cauchy-Schwarz’s inequality it
holds

∫

B(0,ρεr)
|U0 −∇u0|

[

1 + |U0 −∇u0|
p−2
]

|∇ũε −∇hε|

≤ Lρβεβr
[

1 +
(

Lδβ
)p−2

]
∫

B(0,ρεr)
|∇ũε −∇hε|

≤ εβrO
(

ε
rN
2

)

O
(

ε
N
2

)

= O
(

ε
r(2β+N)+N

2

)

= O
(

εN+β

2

)

= o(εN ).

• Then, since p ≥ 2,

∫

B(0,ρεr)
|U0 −∇u0| |∇u0 +∇hε|

p−2 |∇ũε −∇hε|

≤ 2p−2

∫

B(0,ρεr)
|U0 −∇u0| (|∇u0|

p−2 + |∇hε|
p−2) |∇ũε −∇hε| .
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On one hand, after estimates (4.11) and (4.53) and Cauchy-Schwarz’s
inequality, it holds

∫

B(0,ρεr)
|U0 −∇u0| |∇u0|

p−2 |∇ũε −∇hε|

≤ Lρβεβr
(

|U0|+ Lδβ
)p−2

O
(

ε
rN
2

)

O
(

ε
N
2

)

= O
(

ε
r(2β+N)+N

2

)

= o(εN ).

On the other hand, according to (4.53), (3.24) and (4.11) and Hölder’s
inequality

∫

B(0,ρεr)
|U0 −∇u0| |∇hε|

p−2 |∇ũε −∇hε|

≤

(

∫

B(0,ρεr)
|U0 −∇u0|

p

)
1
p
(

∫

B(0,ρεr)
|∇hε|

p

)
p−2
p
(

∫

B(0,ρεr)
|∇ũε −∇hε|

p

)
1
p

≤ O
(

εr(βp+N)
)

1
p
O(εN )

p−2
p O(εN )

1
p = O (εs) = o(εN ).

since

s = N +
r(βp+N)−N

p
= N +

1

p

[

1

2

(

N

2β +N
+ 1

)

(βp+N)−N

]

≥ N +
1

p

[

1

2

(

N

2β +N
+ 1

)

(2β +N)−N

]

= N +
β

p
.

Hence the upper bound of (4.54) is a o(εN ), and one concludes from (4.54) that

E3(ε) = o(εN ).

(d) After inequality (3.1) it holds

|E4(ε)| ≤ γ

∫

Ω\B(0,ρεr)

[

b1 |∇hε|+ bp−1 |∇hε|
p−1
]

|∇ũε −∇hε| .

Applying Hölder’s inequality and estimates (4.11) and (3.37), it follows

|E4(ε)| ≤ γb1

(

∫

Ω\B(0,ρεr)
|∇hε|

2

)
1
2

‖∇ũε −∇hε‖L2(Ω)

+γbp−1

(

∫

Ω\B(0,ρεr)
|∇hε|

p

)
1
q

‖∇ũε −∇hε‖Lp(Ω)

≤ o(ε
N
2 ) O(ε

N
2 ) + o(ε

N
q ) O(ε

N
p ) = o(εN ).

(e) After Lemma 3.6 it holds ∇u0 ∈ L∞(Ω). Thus one can apply again inequality
(3.1) and proves exactly as for E4(ε) that E5(ε) = o(εN ).

(2) Regarding estimate (3.44), Cauchy-Schwarz’s inequality and estimates (3.43), (3.23)
and (3.24) entail that

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|)

≤ ‖∇ũε −∇hε‖L2(Ω)

(

‖∇ũε‖L2(Ω) + ‖∇hε‖L2(Ω)

)

= o(ε
N
2 ) O(ε

N
2 ) = o(εN ),

which proves estimate (3.44).
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(3) Let p ∈ (3,∞). For all λ ∈ R+ it holds λp−2 ≤ λ + λp−1. Hence due to estimates
(3.44), (3.43), (3.23), (3.24) and to Hölder’s inequality one obtains

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|)

p−2

≤

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|) +

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|)

p−1

≤ o(εN ) + ‖∇ũε −∇hε‖Lp(Ω) ‖|∇ũε|+ |∇hε|‖
p

q

Lp(Ω) ,= o(εN ) + o(ε
N
p ) O(ε

N
q ) = o(εN )

which is the claimed estimate (3.45).
(4) Eventually estimate (3.46) immediately follows by convexity from estimates (3.37)

and (3.43).

4.11. Proof of Lemma 3.17. As Jε is assumed to be the compliance, it holds G = f ∈
C0,α(Ω). The unperturbed adjoint state v0 ∈ H is weak solution of the Dirichlet problem

{

− div (γ0DT (∇u0)∇v0)) = −f in Ω,

v0 = 0 on ∂Ω.
(4.55)

According to condition (1) it holds DT ∈ C0,α(RN ,R), and by Lemma 3.6 it holds ∇u0 ∈
C0,β(Ω). Hence DT (∇u0) ∈ C0,αβ(Ω). In addition, DT (∇u0) is uniformly strictly 2-elliptic
according to the lower bound of condition (4), and we have f ∈ C0,α(Ω). Therefore according

to [34] Thm 8.34, problem (4.55) admits a unique strong solution w0 ∈ C1,β̃(Ω) with β̃ =
min(α, αβ) > 0. According to the weak maximum principle, [34] Cor 8.2, one has v0 = w0.
As Ω is bounded and as by definition v0 ∈ H, it follows that v0 ∈ L∞(Ω), ∇v0 ∈ L∞(Ω) and
v0 ∈ V.

4.12. Proof of Lemma 3.19.

(1) We first prove estimate (3.52). After Lemma 3.6, it holds u0 ∈ C1,β(Ω), hence
∇u0 ∈ L∞(Ω) and DT (∇u0) ∈ L∞(Ω). Moreover we assumed ∇v0 ∈ L∞(Ω). Due
to the ellipticity of DT stated in condition (4), applying test function η = ṽε in the
variational form (3.48) defining ṽε, it holds:

γ c

∫

Ω
|∇ṽε|

2 ≤

∫

Ω
γεDT (∇u0)∇ṽε.∇ṽε = − (γ1 − γ0)

∫

ωε

DT (∇u0)∇v0.∇ṽε

≤ |γ1 − γ0| ‖DT (∇u0)‖L∞‖∇v0‖L∞

∫

ωε

|∇ṽε|

≤ |γ1 − γ0| ‖DT (∇u0)‖L∞‖∇v0‖L∞ |ω|
1
2 ε

N
2 ‖∇ṽε‖L2(Ω) .

This provides estimate (3.52).

(2) The upper bound (3.53) to ‖∇kε‖
2
L2(Ω) is obtained in the same way.

(3) After a change of scale and since by definition ∇K ∈ L2(RN ) it holds

‖∇Kε‖
2
L2(Ω) = εN

∫

Ω/ε
|∇K|2 ≤ εN

∫

RN

|∇K|2 = O(εN ),

which is estimate (3.54).

4.13. Proof of Proposition 3.20.

(1) We first study the asymptotic behavior of K and ∇K. The variational form (3.50)
can be rewritten

∫

RN

DT (U0)∇K.∇η =

(

1−
γ1
γ0

)
∫

ω
DT (U0)(V0 +∇K).∇η, ∀ η ∈ H(RN ). (4.56)
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As matrix DT (U0) is positive definite, up to a linear change of coordinates in R
N ,

one can asume that DT (U0) = IN .
The proof of the asymptotic behavior of K is standard (e.g. [8], §3.1.2). We denote

by E the fundamental solution of the Laplace operator in R
N , given for all y ∈ R

N ,
y 6= 0 by

E(y) :=

{

1
2π log |y| , if N = 2,

1
(2−N)AN

|y|2−N , if N ≥ 3,
(4.57)

with AN the area of the unit sphere of RN . In particular it holds

∀N ≥ 2, ∃CN > 0, ∀y ∈ R
N , y 6= 0, |∇E(y)| ≤ CN |y|1−N . (4.58)

Denote by T the distribution in R
N defined by

〈T , η〉 :=

(

γ1
γ0

− 1

)
∫

ω
(V0 +∇K).∇η, ∀η ∈ C∞

0 (RN ).

It follows from (4.56) that
∆K = T .

Hence consider the element K̃ of the class K given by

K̃ = T ∗ E. (4.59)

Let ρ > 0 such that ω ⊂ B(0, ρ). To study the behavior of K̃ at infinity, let y ∈ R
N ,

|y| ≥ 2ρ. The convolution (4.59) reads

K̃(y) =

(

γ1
γ0

− 1

)
∫

ω
(V0 +∇K(z)).∇E(y − z) dz. (4.60)

Since V0 +∇K ∈ L2(ω), the Cauchy-Schwarz’s inequality yields

∣

∣

∣
K̃(y)

∣

∣

∣
≤ C

(
∫

ω
|∇E(y − z)|2 dz

)
1
2

,

with C :=
∣

∣

∣

γ1
γ0

− 1
∣

∣

∣
‖V0 +∇K‖L2(ω). In addition, (4.58) yields

∫

ω
|∇E(y − z)|2 dz ≤ C2

N

∫

ω
|y − z|2−2N ≤ C2

N

∫

ω
(|y| − |z|)2−2N

≤ C2
N |ω|

(

1

2

)2−2N

|y|2−2N .

Hence
∣

∣

∣
K̃(y)

∣

∣

∣
≤ C ′ |y|1−N ,

with C ′ = C CN 2N−1 |ω|
1
2 . This proves (3.55).

The calculations proving the asymptotic behavior (3.56) of ∇K are similar, based
on ∇K = T ∗ ∇E.

(2) As by definition it holds ∇K ∈ L2(RN ), the claimed regularity K ∈ V(RN ) is equiv-

alent to wpK̃ ∈ Lp(RN ) and ∇K ∈ Lp(RN ). If ω ⊂⊂ B(0,M), the fact that

wpK̃ ∈ Lp(RN \ B(0,M)) and ∇K ∈ Lp(RN \ B(0,M)) is a straightforward con-
sequence of the estimates (3.55) and (3.56). The variational form (3.50) defining K
can be rewritten in the strong form

{

− div(DT (U0)K) = 0 in R
N \ ∂ω,

γ0 (DT (U0)∇K.n)ext − γ1 (DT (U0)∇K.n)int = (γ1 − γ0)(DT (U0)V0).n on ∂ω.

(4.61)
Such transmission problems, with a source of zero mean value on ∂ω, have been
studied e.g. [6], §2.4. The solution is a single layer potential. As ∂ω is C2 and the
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source is continuous, the regularity of the density entails that K ∈ L∞(B(0,M))

and ∇K ∈ L∞(B(0,M)). Hence wpK̃ ∈ Lp(B(0,M)) and ∇K ∈ Lp(B(0,M)). One

concludes that wpK̃ ∈ Lp(RN ) and ∇K ∈ Lp(RN ), i.e., K ∈ V(RN ).

4.14. Proof of Lemma 3.21. We start proving a technical lemma. Consider a smooth
function θ : RN → R such that

θ(x) = 0, ∀x ∈ B(0, ρ) and θ(x) = 1, ∀x ∈ R
N \B(0, R)

where 0 < ρ < R were defined in (3.4), that is ω ⊂⊂ B(0, ρ) ⊂ B(0, R) ⊂⊂ Ω \ spt(f).
Denote

Cθ := sup
{

max(|θ(x)| , |∇θ(x)| ;x ∈ R
N
}

<∞.

Recall function Kε is defined by (3.51), and set

Kθ,ε(x) = θ(x)Kε(x).

According to the Leibniz formula, for a.e. x ∈ Ω it holds

|∇Kθ,ε(x)|
2 ≤ 2C2

θ

(

|Kε(x)|
2 + |∇Kε(x)|

2
)

.

Since Kε ∈ H1(Ω), it follows Kθ,ε ∈ H1(Ω).

Lemma 4.3. It holds

‖∇Kθ,ε‖
2
L2(Ω) = o(εN ). (4.62)

Proof. As θ = 0 in B(0, ρ), we have of course
∫

B(0,ρ)
|∇Kθ,ε|

2 = 0. (4.63)

Integrating in B(0, R) \ B(0, ρ), according to the asymptotic behavior of K given by (3.55)
and since ∇K ∈ L2(RN ) one obtains

1

2C2
θ

∫

B(0,R)\B(0,ρ)
|∇Kθ,ε|

2 ≤

∫

B(0,R)\B(0,ρ)
|Kε|

2 +

∫

B(0,R)\B(0,ρ)
|∇Kε|

2

≤ ε2+N
∫

B(0,R/ε)\B(0,ρ/ε)

∣

∣

∣
K̃
∣

∣

∣

2
+ εN

∫

B(0,R/ε)\B(0,ρ/ε)
|∇K|2

≤ εN+2 O

(

(ρ

ε

)2−2N
(

R

ε

)N
)

+ εNo(1) = o(εN ). (4.64)

Lastly it holds Kθ,ε = Kε in Ω \B(0, R). Again ∇K ∈ L2(RN ) and thus
∫

Ω\B(0,R)
|∇Kθ,ε|

2 ≤ εN
∫

RN\B(0,R/ε)
|∇K|2 = o

(

εN
)

. (4.65)

Gathering (4.63), (4.64) and (4.65), one obtains the claimed estimate (4.62). �

We now prove Lemma 3.21.

(1) We begin proving estimate (3.58). For all η ∈ H, we define η1 ∈ H(RN ) by

η1(y) :=
1

ε
η(εy), ∀y ∈ Ω/ε and η1(y) := 0, ∀y ∈ R

N \ (Ω/ε).

Applying the variational form (3.50) to η1 ∈ H(RN ) and making the change of scale
backward, one obtains

∫

Ω
γεDT (U0)∇Kε.∇η = − (γ1 − γ0)

∫

ωε

DT (U0)V0.∇η, ∀η ∈ H.
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Then calculating the difference with the variational form (3.49) yields
∫

Ω
γεDT (U0)(∇kε −∇Kε).∇η = 0, ∀η ∈ H. (4.66)

Using that Kθ,ε ∈ H1(Ω) and Kε −Kθ,ε ∈ H, choosing η = kε − (Kε −Kθ,ε) ∈ H in
(4.66), we arrive at
∫

Ω
γεDT (U0)(∇kε −∇Kε).(∇kε −∇Kε) = −

∫

Ω
γεDT (U0)(∇kε −∇Kε).∇Kθ,ε.

Then applying condition (4) one obtains

γ c

∫

Ω
|∇kε −∇Kε|

2 ≤

∣

∣

∣

∣

∫

Ω
γεDT (U0)(∇kε −∇Kε).∇Kθε

∣

∣

∣

∣

≤ γ |DT (U0)|

(
∫

Ω
|∇kε −∇Kε|

2

)
1
2
(
∫

Ω
|∇Kθ,ε|

2

)
1
2

.

This implies

‖∇kε −∇Kε‖
2
L2(Ω) ≤

(

γ |DT (U0)| /γ c
)2

‖∇Kθ,ε‖
2
L2(Ω) .

Using (4.62) completes the proof of (3.58).
(2) Let us now prove (3.59). Let α > 0 and r ∈ (0, 1). By convexity we have

|∇kε|
2 ≤ 2 |∇kε −∇Kε|

2 + 2 |∇Kε|
2 .

After a change of scale one obtains
∫

Ω\B(0,αεr)
|∇kε|

2 ≤ 2

∫

Ω\B(0,αεr)
|∇kε −∇Kε|

2 + 2 εN
∫

RN\B(0,αεr−1)
|∇K|2 . (4.67)

After (3.58) it holds
∫

Ω\B(0,αεr)
|∇kε −∇Kε|

2 ≤

∫

Ω
|∇kε −∇Kε|

2 = o(εN ).

Again ∇K ∈ L2(RN ) and r − 1 < 0 entail that
∫

RN\B(0,αεr−1)
|∇K|2 = o(1).

Hence (4.67) yields (3.59).

4.15. Proof of Lemma 3.22. Recall that, after Lemma 3.6, ∇u0 is β-Hölder continuous in
Ω̄ for some β > 0. Also, after condition (1), DT is α̃-Hölder continuous on every compact set

for some α̃ > 0, and by assumption ∇v0 is β̃-Hölder continuous in a neighborhood of point
x0 = 0 for some β̃ > 0. Let τ̃ := min(α̃β, β̃) > 0. Hence there exist δ ∈ (0, 1) and L > 0 such
that for all x ∈ B(0, δ) it holds

|DT (∇u0(x))−DT (U0)|+ |DT (∇u0(x))∇v0(x)−DT (U0)V0| ≤ L |x|τ̃ . (4.68)

Let ρ > 0 be such that ω ⊂ B(0, ρ), see (3.4). So as to apply estimate (3.59), we choose
α := ρ and r := 1/2. Lastly, for all ε < min(1, (δ/ρ)2) it holds

ωε ⊂ B(0, ρε) ⊂ B(0, ρεr) ⊂ B(0, δ).

We can now start our estimations. According to condition (4), it holds

‖∇ṽε −∇kε‖
2
L2(Ω) ≤

1

γc

∫

Ω
γεDT (∇u0) (∇ṽε −∇kε)

2 . (4.69)
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Calculating the difference between the variational forms (3.48) and (3.49) and choosing η =
ṽε − kε ∈ H, one obtains:
∫

Ω
γεDT (∇u0) (∇ṽε −∇kε)

2

= − (γ1 − γ0)

∫

ωε

(DT (∇u0)∇v0 −DT (U0)V0) . (∇ṽε −∇kε)

−

∫

Ω
(γεDT (∇u0)− γεDT (U0))∇kε. (∇ṽε −∇kε) . (4.70)

(1) Regarding the first term on the right-hand side of (4.70), it follows from (4.68) and
from Cauchy-Schwarz’s inequality that

∣

∣

∣

∣

∫

ωε

(DT (∇u0)∇v0 −DT (U0)V0) . (∇ṽε −∇kε)

∣

∣

∣

∣

≤ Lρτ̃ετ̃ |ω|
1
2 ε

N
2 ‖∇ṽε −∇kε‖L2(Ω) = C1ε

τ̃+N
2 ‖∇ṽε −∇kε‖L2(Ω) (4.71)

where C1 is a positive constant.
(2) Then consider the second term on the right side of (4.70). We split the domain of

integration into B(0, αεr) and Ω \ B(0, αεr). Applying (4.68), the Cauchy-Schwarz
inequality and estimate (3.53), we arrive at

∣

∣

∣

∣

∣

∫

B(0,αεr)
(γεDT (∇u0)− γεDT (U0))∇kε. (∇ṽε −∇kε)

∣

∣

∣

∣

∣

≤ γLατ̃εrτ̃C
1

2 ε
N
2 ‖∇ṽε −∇kε‖L2(Ω) = C2ε

rτ̃+N
2 ‖∇ṽε −∇kε‖L2(Ω) (4.72)

with C2 a positive constant. Regarding the integral in Ω \ B(0, αεr), the term

γεDT (∇u0) − γεDT (U0) is bounded by C̃ := 2γ ‖DT (∇u0)‖L∞(Ω). After Cauchy-

Schwarz’s inequality and estimate (3.59) one obtains
∣

∣

∣

∣

∣

∫

Ω\B(0,αεr)
(γεDT (∇u0)− γεDT (U0))∇kε (∇ṽε −∇kε)

∣

∣

∣

∣

∣

≤ C̃

(

∫

Ω\B(0,αεr)
|∇kε|

2

)
1
2

. ‖∇ṽε −∇kε‖L2(Ω) = o(ε
N
2 ) ‖∇ṽε −∇kε‖L2(Ω) . (4.73)

Therefore, gathering (4.69), (4.70), (4.71), (4.72) and (4.73) and dividing by ‖∇ṽε −∇kε‖L2(Ω),

it follows that

γc ‖∇ṽε −∇kε‖L2(Ω) = o(ε
N
2 ),

and (3.60) is proven.

4.16. Proof of Lemma 3.23. It follows from definitions (3.68) and (3.71) that

j̃1(ε)− εNJ1 = (γ1 − γ0)

[
∫

ωε

T (U0).(V0 +∇kε)− εN
∫

ω
T (U0).(V0 +∇K)

]

= (γ1 − γ0) T (U0).

∫

ωε

(∇kε −∇Kε).

Using (3.58) and Cauchy-Schwarz’s inequality, we obtain
∣

∣j̃1(ε)− εNJ1
∣

∣ ≤ 2γ |T (U0)| |ω|
1
2 ε

N
2 ‖∇kε −∇Kε‖L2(Ω) ≤ O(ε

N
2 ) o(ε

N
2 ) = o(εN ),

which proves Lemma 3.23.
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4.17. Proof of Lemma 3.24. It follows from definitions (3.66) and (3.68) that

j1(ε)− j̃1(ε) = (γ1 − γ0)

∫

ωε

[T (∇u0).∇vε − T (U0).(V0 +∇kε)]

= (γ1 − γ0)

∫

ωε

T (∇u0).∇v0 − T (U0).V0

+(γ1 − γ0)

∫

ωε

T (∇u0).∇ṽε − T (U0).∇kε.

Since x ∈ Ω 7→ T (∇u0(x)).∇v0(x) is continuous at point x0 = 0, it holds
∫

ωε

T (∇u0).∇v0 − T (U0).V0 = |ωε| o(1) = o(εN ).

Moreover, since x ∈ Ω 7→ T (∇u0(x)) is continuous at point x0 = 0, after Cauchy-Schwarz’s
inequality and estimates (3.60) and (3.53), it holds

∫

ωε

|T (∇u0).∇ṽε − T (U0).∇kε|

≤

∫

ωε

|T (∇u0)| |∇ṽε −∇kε|+

∫

ωε

|T (∇u0)− T (U0)| |∇kε|

≤ |ω|
1
2 ε

N
2

(

O(1) ‖∇ṽε −∇kε‖L2(Ω) + o(1) ‖∇kε‖L2(Ω)

)

= o(εN ).

This completes the proof of Lemma 3.24.

4.18. Proof of Lemma 3.26. By change of scale from (3.76), we get

εNJ2 = εN
∫

RN\(Ω/ε)
γSU0(∇H).V0 +

∫

Ω
γεSU0(∇Hε).V0

+(γ1 − γ0)

∫

ωε

[DT (U0)V0.∇Hε − T (U0).∇Kε] .

In view of (3.2) and H ∈ V(RN ), the first integral on the right-hand side is the remainder of
a converging integral. Thus

∫

RN\(Ω/ε)
γSU0(∇H).V0 = o(1).

It follows

εNJ2 − o(εN ) =
∫

Ω
γεSU0(∇Hε).V0 + (γ1 − γ0)

∫

ωε

[DT (U0)V0.∇Hε − T (U0).∇Kε] . (4.74)

Therefore gathering (3.75 ) and (4.74) yields

j̃2(ε)− εNJ2 − o(εN ) :=

∫

Ω
γε [SU0(∇hε)− SU0(∇Hε)] .V0

+(γ1 − γ0)

∫

ωε

DT (U0)V0.(∇hε −∇Hε) (4.75)

−(γ1 − γ0)

∫

ωε

T (U0).(∇kε −∇Kε). (4.76)
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Regarding the term (4.75), Hölder’s inequality and estimate (3.36) imply
∫

ωε

DT (U0)V0.(∇hε −∇Hε) ≤ |DT (U0)V0| |ω|
1
q ε

N
q ‖∇hε −∇Hε‖Lp(Ω)

= O(ε
N
q ) o(ε

N
p ) = o(εN ).

Similarly for(4.76), Cauchy-Schwarz’s inequality and estimate (3.58) entail
∫

ωε

T (U0).(∇kε −∇Kε) ≤ |T (U0)| |ω|
1
2 ε

N
2 ‖∇kε −∇Kε‖L2(Ω)

= O(ε
N
2 ) o(ε

N
2 ) = o(εN ).

It follows

j̃2(ε)− εNJ2 :=

∫

Ω
γε [SU0(∇hε)− SU0(∇Hε)] .V0 + o(εN ). (4.77)

Condition (7) provides
∫

Ω
|SU0(∇hε)− SU0(∇Hε)|

≤

∫

Ω
|∇hε −∇Hε| (|∇hε|+ |∇Hε|)

[

c0 + cp−3 (|∇hε|+ |∇Hε|)
p−3
]

,

with cp−3 = 0 if p ∈ [2, 3]. Hence it follows from estimates (3.41) and (3.42) that
∫

Ω
|SU0(∇hε)− SU0(∇Hε)| = o(εN ).

Using (4.77) completes the proof of Lemma 3.26.

4.19. Proof of Lemma 3.27.

(1) We first prove estimate (3.79). Since ∇v0 is β̃-Hölder continuous in a neighborhood

of x0 = 0 for some β̃ > 0, there exist δ > 0 and L > 0 such that

|∇v0(x)− V0| ≤ L |x|β̃ , ∀x ∈ B(0, δ).

To apply estimate (3.37), we choose α := δ and r := 1/2. Hence for all ε ∈ (0, 1),
according to estimates (3.24) and (3.37) it follows

∫

Ω
|∇v0 − V0|

(

|∇hε|
p + |∇hε|

2
)

≤

∫

B(0,αεr)
L |x|β̃

(

|∇hε|
p + |∇hε|

2
)

+ 2 ‖∇v0‖L∞(Ω)

∫

Ω\B(0,αεr)

(

|∇hε|
p + |∇hε|

2
)

≤ Lαβ̃εrβ̃ O(εN ) + o(εN ) = o(εN ),

which proves (3.79).
(2) For all p ∈ (3,∞) and for all λ ∈ R+ it holds λp−1 ≤ λ2 + λp. Hence (3.80) follows

immediately from estimate (3.79).

4.20. Proof of Lemma 3.28. Calculating the difference between (3.67) and (3.75) yields

j2(ε)− j̃2(ε) =

∫

Ω
γε [S∇u0(∇ũε).∇v0 − SU0(∇hε).V0] (4.78)

+(γ1 − γ0)

∫

ωε

[DT (∇u0)∇v0.∇ũε −DT (U0)V0.∇hε]

−(γ1 − γ0)

∫

ωε

[T (∇u0).∇ṽε − T (U0).∇kε] .
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Let δ > 0. Due to the continuity of ∇u0 and ∇v0 at point x0 = 0 and to the continuity of
DT , for ε > 0 small enough it holds

max(|DT (∇u0)∇v0 −DT (U0)V0| , |T (∇u0)− T (U0)|) ≤ δ in ωε.

Hence after Cauchy-Schwarz’s inequality and estimates (3.43) and (3.24)

∫

ωε

|DT (∇u0)∇v0.∇ũε −DT (U0)V0.∇hε|

≤

∫

ωε

|DT (∇u0)∇v0| |∇ũε −∇hε|+

∫

ωε

|DT (∇u0)∇v0 −DT (U0)V0| |∇hε|

≤ |ω|
1
2 ε

N
2

[

‖DT (∇u0)∇v0‖L∞(ωε)
‖∇ũε −∇hε‖L2(Ω) + δ ‖∇hε‖L2(Ω)

]

≤ O(ε
N
2 ) o(ε

N
2 ) + O(ε

N
2 ) δ O(ε

N
2 ) = o(εN ).

Similarly after Cauchy-Schwarz’s inequality and estimates (3.60) and (3.53)

∫

ωε

|T (∇u0).∇ṽε − T (U0).∇kε|

≤

∫

ωε

|T (∇u0)| |∇ṽε −∇kε|+

∫

ωε

|T (∇u0)− T (U0)| |∇kε|

≤ |ω|
1
2 ε

N
2

[

‖T (∇u0)‖L∞(Ω) ‖∇ṽε −∇kε‖L2(Ω) + δ ‖∇kε‖L2(Ω)

]

≤ O(ε
N
2 ) o(ε

N
2 ) + O(ε

N
2 ) δ O(ε

N
2 ) = o(εN ).

Thus (4.78) yields

j2(ε)− j̃2(ε)− o(εN ) =

∫

Ω
γε [S∇u0(∇ũε).∇v0 − SU0(∇hε).V0] , (4.79)

which we split into three terms as
∫

Ω
γε [S∇u0(∇ũε).∇v0 − SU0(∇hε).V0]

=

∫

Ω
γε [S∇u0(∇ũε)− S∇u0(∇hε)] .∇v0 +

∫

Ω
γε [S∇u0(∇hε)− SU0(∇hε)] .∇v0

+

∫

Ω
γεSU0(∇hε). (∇v0 − V0) . (4.80)

(1) Regarding the first term on the right-hand side of (4.80), as ∇u0 ∈ L∞(Ω), it follows
from condition (7) that

∫

Ω
|S∇u0(∇ũε)− S∇u0(∇hε)|

≤

∫

Ω
|∇ũε −∇hε| (|∇ũε|+ |∇hε|)

[

c0 + cp−3 (|∇ũε|+ |∇hε|)
p−3
]

with cp−3 = 0 for all p ∈ [2, 3]. Thus estimates (3.44) and (3.45) entail
∫

Ω
|S∇u0(∇ũε)− S∇u0(∇hε)| = o(εN ).

As ∇v0 ∈ L∞(Ω), it follows
∫

Ω
γε [S∇u0(∇ũε)− S∇u0(∇hε)] .∇v0 = o(εN ).
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(2) Regarding the second term on the right-hand side of (4.80), as ∇u0 ∈ L∞(Ω), accord-
ing to condition (8)
∫

Ω
|S∇u0(∇hε)− SU0(∇hε)| ≤

∫

Ω
|∇u0 − U0|

[

d0 |∇hε|
2 + dp−4 |∇hε|

p−2
]

with dp−4 = 0 for all p ∈ [2, 4]. Thus estimates (3.38) and (3.39) entail
∫

Ω
|S∇u0(∇hε)− SU0(∇hε)| = o(εN ).

As ∇v0 ∈ L∞(Ω), it follows
∫

Ω
γε [S∇u0(∇hε)− SU0(∇hε)] .∇v0 = o(εN ).

(3) Regarding the third term on the right-hand side of (4.80), according to (3.2), it holds
∫

Ω
|SU0(∇hε)| |∇v0 − V0| ≤

∫

Ω
|∇v0 − V0|

[

c0 |∇hε|
2 + cp−3 |∇hε|

p−1
]

with cp−3 = 0 for all p ∈ [2, 3]. Hence it follows from estimates (3.79) and (3.80) that
∫

Ω
|SU0(∇hε)| |∇u0 − U0| = o(εN ).

Gathering the above estimates, (4.80) and (4.79) completes the proof of Lemma 3.28.

5. Conclusion

In this article, we first analyzed specific issues arising in the process of obtaining a topolo-
gical asymptotic expansion for a second order quasilinear elliptic equation, by comparison
with a linear elliptic equation. When trying to define the variation of the direct state at
scale 1 in R

N , it turns out that this variation can be defined by applying the Minty-Browder
theorem to a specific nonlinear operator, which is derived from the considered quasilinear
equation. The requirements of the Minty-Browder theorem bring into light a two-norms
discrepancy involving the Lp and the L2 norms of the gradient. They require to consider at
the same time

• a functional space which is equipped with a norm giving control on both the Lp and
the L2 norms of the gradient and which enjoys in addition a Poincaré inequality;

• a quasilinear elliptic equation whose operator enjoys both p- and 2- ellipticity prop-
erties.

The first condition justifies that we built the quotient weighted Sobolev space V(Rn) and the
quotient weighted Hilbert space H(RN ) in appendix A. The second condition explains why
in section 3 we restricted ourselves to a specific class of quasilinear equations.

Several other key features of the linear method had to be adapted to the nonlinear case.
In particular, implementing the method required to:

(1) ensure duality between the variation of the direct state and the corresponding varia-
tion of the adjoint state at each stage of approximation;

(2) determine the spatial decay of the variation of the direct state at scale 1;
(3) determine with respect to the variation of the direct state, what does mean ‘far away

from the perturbation’ by opposition to ‘close to the perturbation’.

As a result, our main contribution is Theorem 3.5 which provides the topological asymptotic
expansion for quasilinear elliptic equations of the considered class.

Our belief is that the doorway of topological asymptotic expansions for quasilinear ellip-
tic equations is now opened. As topological asymptotic expansions will gradually become
available for larger classes of nonlinear equations and of functionals, the scope of attainable
applicative tasks should significantly broaden, in particular in shape optimization and in
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imaging. Further research can be pursued in several directions, like for instance to obtain
similar topological asymptotic expansions for larger classes of quasilinear elliptic equations,
including degenerate equations such as the p-Laplace equation, or to tackle models of non-
linear elasticity.

Appendix A. Weighted and quotient Sobolev spaces

The purpose of this appendix is to build an appropriate reflexive Banach space so as to
define the variation of the direct state at scale 1 in R

N . In such a space, the variational form
defining this variation has to comply with the requirements of the Minty-Browder theorem.
The main result of this section is Proposition A.5, which ensures the required coercivity
property involving both the Lp and the L2 norms of the gradient. Similarly, we build an
appropriate Hilbert space so as to define the variation of the adjoint state at scale 1 in R

N .
The building scheme of such spaces is classical. We follow the approach of [9], which

directly provides Poincaré inequalities in the preliminary space W(RN ) as well as in the
Hilbert space H(RN ). We shall take one more step to obtain a similar result in our main
working space V(RN ).

A.1. Weighted Sobolev spaces. We define the weight function wp : RN → R as follows:
for all x ∈ R

N ,

wp(x) :=











(

1 + |x|2
)− 1

2
if p 6= N,

(

1 + |x|2
)− 1

2
(

log(2 + |x|2)
)−1

if p = N.

For all open subset O ⊂ R
N , recall we denote D′(O) the space of distributions in O. Let

the space

Vw(O) :=
{

u ∈ D′(O) ; wpu ∈ Lp(O),∇u ∈ Lp(O) ∩ L2(O)
}

endowed with the norm defined by

‖u‖Vw(O) := ‖wpu‖Lp(O) + ‖∇u‖Lp(O) + ‖∇u‖L2(O) , ∀u ∈ Vw(O).

For technical purposes it is useful to define the larger space

Ww(O) :=
{

u ∈ D′(O) ; wpu ∈ Lp(O),∇u ∈ Lp(O)
}

endowed with the norm defined by

‖u‖Ww(O) := ‖wpu‖Lp(O) + ‖∇u‖Lp(O) , ∀u ∈ Ww(O).

Then we define the space

Hw(O) :=
{

u ∈ D′(O) ; w2u ∈ L2(O),∇u ∈ L2(O)
}

endowed the inner product defined by

〈u, v〉Hw(O) := 〈w2u,w2v〉L2(O) + 〈∇u,∇v〉L2(O) , ∀u, v ∈ Hw(O).

Obviously, the three normed spaces Vw(O), Ww(O) and Hw(O) coincide when p = 2.
The following Lemma A.1 can be proved by standard arguments, see e.g. [1, 28].

Lemma A.1. The spaces Ww(O) and Vw(O) endowed with the norms ‖.‖Ww(O) and ‖.‖Vw(O),

respectively, are reflexive separable Banach spaces. The space Hw(O) endowed with the inner
product 〈., .〉Hw(O) is a separable Hilbert space.
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A.2. Quotient weighted Sobolev spaces. It is straightforwardly checked that the cons-
tant functions belong to Ww(RN ) if and only if p > N . Therefore we set

Pp =

{

{0} if p ≤ N,
R if p > N,

and define the quotient space

W(RN ) := Ww(RN )/Pp.

Note that, should we have considered a Sobolev space Ww(RN ) of higher order, the set Pp
would have contained higher order polynomials, see [9, 17]. The space W(RN ) is equipped
with its natural quotient norm

‖[u]‖W(RN ) := inf
m∈Pp

‖u+m‖Ww(RN ) , ∀ [u] ∈ W(RN ) (A.1)

where u ∈ Ww(RN ) is an arbitrary representative of the class [u].
Since Ww(RN ) is a reflexive Banach space and Pp is a closed subspace then W(RN ) is still

a reflexive Banach space (see e.g. [28], chapter XI, §11.2).
Similarly constant functions belong to Vw(RN ) if and only if they belong to Ww(RN ).

Thus we define likewise
V(RN ) := Vw(RN )/Pp,

equipped with the norm

‖[u]‖V(RN ) := inf
m∈Pp

‖u+m‖Vw(RN ) , ∀ [u] ∈ V(RN ). (A.2)

In a similar way we construct the Hilbert space

H(RN ) := Hw(RN )/P2.

A.3. Poincaré inequality in W(RN ). The following key result is proven in [9].

Theorem A.2. There exists c > 0 such that

‖[u]‖W(RN ) ≤ c ‖∇u‖Lp(RN ) , ∀ [u] ∈ W(RN ),

where u ∈ Ww(RN ) is any representative of the class [u].

For all [u] ∈ W(RN ), let u ∈ Ww(RN ) be an arbitrary element in the class [u]. Endow
W(RN ) with the semi-norm

|[u]|W(RN ) := ‖∇u‖Lp(RN ) . (A.3)

Theorem A.2 can be rephrased as follows.

Corollary A.3. The semi-norm | . |W(RN ) and the norm ‖ . ‖W(RN ) are equivalent in W(RN ).

A.4. Poincaré inequality and coercivity in V(RN ). Let [u] ∈ V(RN ) and u ∈ Vw(RN )
be any element of the class [u]. Endow V(RN ) with the semi-norm given by

|[u]|V(RN ) := ‖∇u‖Lp(RN ) + ‖∇u‖L2(RN ) . (A.4)

Theorem A.2 also implies the following, whose straightforward proof is left to the reader.

Corollary A.4. The semi-norm | . |V(RN ) and the norm ‖ . ‖V(RN ) are equivalent in V(RN ).

We can now state the main result of this appendix, which enables to prove the combined
p- and 2- coercivity property.

Proposition A.5. For all [u] ∈ V(RN ), denote by u ∈ Vw(RN ) any element in the class [u].
Then it holds

lim
‖[u]‖

V(RN )
→∞

‖∇u‖p
Lp(RN )

+ ‖∇u‖2L2(RN )

‖[u]‖V(RN )

= +∞.
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Proof. To study the limit at infinity, given the equivalence stated in Corollary A.4, one can
assume that

|[u]|V(RN ) = ‖∇u‖Lp(RN ) + ‖∇u‖L2(RN ) ≥ 1.

(1) If ‖∇u‖Lp(RN ) ≤ 1, then it holds

‖∇u‖p
Lp(RN )

+ ‖∇u‖2L2(RN )

|[u]|V(RN )

≥
‖∇u‖2L2(RN )

|[u]|V(RN )

≥
(|[u]|V(RN ) − 1)2

|[u]|V(RN )

.

(2) If ‖∇u‖Lp(RN ) > 1, since 2 ≤ p <∞, then it holds

‖∇u‖p
Lp(RN )

+ ‖∇u‖2L2(RN )

|[u]|V(RN )

≥
‖∇u‖2Lp(RN ) + ‖∇u‖2L2(RN )

|[u]|V(RN )

≥
1

2
|[u]|V(RN ) .

Thus we have

‖∇u‖p
Lp(RN )

+ ‖∇u‖2L2(RN )

|[u]|V(RN )

≥ min

(

(|[u]|V(RN ) − 1)2

|[u]|V(RN )

,
|[u]|V(RN )

2

)

.

Hence

lim
|[u]|

V(RN )
→∞

‖∇u‖p
Lp(RN )

+ ‖∇u‖2L2(RN )

|[u]|V(RN )

= +∞.

In view of the equivalence stated in Corollary A.4, we obtain the claimed limit. �

A.5. Poincaré inequality and coercivity in H(RN ). For all [u] ∈ H(RN ), denote by
u ∈ Hw(RN ) any element in the class [u]. Endow H(RN ) with the semi-norm

|[u]|H(RN ) := ‖∇u‖L2(RN ) .

Applying Corollary A.4 in the case p = 2 straightforwardly yields:

Corollary A.6. The semi-norm | . |H(RN ) and the norm ‖ . ‖H(RN ) are equivalent in H(RN ).
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[14] S. Amstutz, H. Andrä, A new algorithm for topology optimization using a level-set method, J. Comput.
Phys. 216(2):573 –588, 2006.



51

[15] S. Amstutz, N. Dominguez, Topological sensitivity analysis in the context of ultrasonic non-destructive

testing, Engineering Analysis with Boundary Elements 32, 936 –947, 2008.
[16] S. Amstutz, A.A. Novotny, N. Van Goethem, Minimal partitions and image classification using a gradient-

free perimeter approximation, Inverse Problems and Imaging, To appear.
[17] S. Amstutz, A.A. Novotny, N. Van Goethem, Topological sensitivity analysis for high order elliptic oper-

ators, J. Differential Equations 256:1735-1770, 2014.
[18] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV Spaces, MPS-SIAM Series

on Optimization, 2006.
[19] D. Auroux, M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis,

Comput. Appl. Math. vol.25 no.2-3 Petropolis, 2006.
[20] D. Auroux, L. Jaafar Belaid, M. Masmoudi, A topological asymptotic analysis for the regularized grey-

level image classification problem, Math. Model. Numer. Anal., 41(3):607-625, 2007.
[21] D. Auroux, From restoration by topological gradient to medical image segmentation via an asymptotic

expansion, Math. Comput. Model., 2009.
[22] D. Auroux, M. Masmoudi, Image processing by topological asymptotic analysis, ESAIM, Proc. Mathe-

matical methods for imaging and inverse problems, 26:24 –44, 2009.
[23] D. Auroux, L. Jaafar Belaid, and B. Rjaibi. Application of the topological gradient method to tomography.

In ARIMA Proc. TamTam’09, 2010.
[24] L. J. Belaid, M. Jaoua, M. Masmoudi, L. Siala, Image restoration and edge detection by topological

asymptotic expansion, C. R. Math. Acad. Sci. Paris, 342(5):313-318, 2006.
[25] L. J. Belaid, M. Jaoua, M. Masmoudi, L. Siala, Application of the topological gradient to image restoration

and edge detection, Engineering Analysis with Boundary Elements, 32(11):891-899, 2008.
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