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Abstract. The efficiency of modern optimization methods, coupled with
increasing computational resources, has led to the possibility of real-time
optimization algorithms acting in safety critical roles. There is a consid-
erable body of mathematical proofs on on-line optimization programs
which can be leveraged to assist in the development and verification
of their implementation. In this paper, we demonstrate how theoreti-
cal proofs of real-time optimization algorithms can be used to describe
functional properties at the level of the code, thereby making it acces-
sible for the formal methods community. The running example used in
this paper is a generic semi-definite programming (SDP) solver. Semi-
definite programs can encode a wide variety of optimization problems
and can be solved in polynomial time at a given accuracy. We describe a
top-to-down approach that transforms a high-level analysis of the algo-
rithm into useful code annotations. We formulate some general remarks
about how such a task can be incorporated into a convex programming
autocoder. We then take a first step towards the automatic verification
of the optimization program by identifying key issues to be adressed in
future work.

Keywords: Control Theory, Autocoding, Lyapunov proofs, Formal Ver-
ification, Optimization, Interior-point Method, PVS, frama-C

1 Introduction

The applications of optimization algorithms are not only limited to large scale,
off-line problems on the desktop. They also can perform in a real-time setting as
part of safety-critical systems in control, guidance and navigation. For example,
modern aircrafts often have redundant control surface actuation, which allows
the possibility of reconfiguration and recovery in the case of emergency. The
precise re-allocation of the actuation resources can be posed, in the simplest
case, as a linear optimization problem that needs to be solved in real-time.

In contrast to off-line desktop optimization applications, real-time embedded
optimization code needs to satisfy a higher standard of quality, if it is to be used
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within a safety-critical system. Some important criteria in judging the quality of
an embedded code include the predictability of its behaviors and whether or not
its worst case computational time can be bounded. Several authors including
Richter [17], Feron and McGovern [10][9] have worked on the certification prob-
lem for on-line optimization algorithms used in control, in particular on worst-
case execution time issues. In those cases, the authors have chosen to tackle
the problem at a high-level of abstraction. For example, McGovern reexamined
the proofs of computational bounds on interior point methods for semi-definite
programming; however he stopped short of using the proofs to analyze the im-
plementations of interior point methods. In this paper, we extend McGovern’s
work further by demonstrating the expression of the proofs at the code level for
the certification of on-line optimization code. The utility of such demonstration
is twofolds. First, we are considering the reality that the verifications of safety-
critical systems are almost always done at the source code level. Second, this
effort provides an example output that is much closer to being an accessible
form for the formal methods community.

The most recent regulatory documents such as DO-178C [20] and, in par-
ticular, its addendum DO-333 [21], advocate the use of formal methods in the
verification and validation of safety critical software. However, complex computa-
tional cores in domain specific software such as control or optimization software
make their automatic analysis difficult in the absence of input from domain ex-
perts. It is the authors’ belief that communication between the communities of
formal software analysis and domain-specific communities, such as the optimiza-
tion community, are key to successfully express the semantics of these complex
algorithms in a language compatible with the application of formal methods.

The main contribution of this paper is to present the expression, formaliza-
tion, and translation of high-level functional properties of a convex optimization
algorithm along with their proofs down to the code level for the purpose of for-
mal program verification. Due to the complexity of the proofs, we cannot yet
as of this moment, reason about them soundly on the implementation itself.
Instead we choose an intermediate level of abstraction of the implementation
where floating-point operations are replaced by real number algebra.

The algorithm chosen for this paper is based on a class of optimization meth-
ods known collectively as interior point methods. The theoretical foundation be-
hind modern interior point methods can be found in Nemrovskii et. al [13][14].
The key result is the self-concordance of certain barrier functions that guaran-
tees the convergence of a Newton iteration to an ǫ-optimal solution in polynomial
time. For more details on polynomial-time interior point methods, readers can
refer to [15].

Interior-point algorithms vary in the Newton search direction used, the step
length, the initialization process, and whether or not the algorithm can return
infeasible answers in the intermediate iterations. Some example search directions
are the Alizadeh-Haeberly-Overton (AHO) direction [1], the Monteiro-Zhang
(MZ) directions [12], the Nesterov-Todd (NT) direction [16], and the Helmberg-
Kojima-Monteiro (HKM) direction [4]. It was later determined in [11] that all
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of these search directions can be captured by a particular scaling matrix in the
linear transformation introduced by Sturm and Zhang in [25]. An accessible
introduction to semi-definite programming using interior-point method can be
found in the works of Boyd and Vandenberghe [3].

Autocoding is the computerized process of translating the specifications of
an algorithm, that is initially expressed in a high-level modeling language such
as Simulink, into source code that can be transformed further into an embedded
executable binary. An example of an autocoder for optimization programs can
be found in the work of Boyd [8]. One of the main ideas behind this paper, is that
by combining the efficiency of the autocoding process with the rigorous proofs
obtained from a formal analysis of the optimization algorithm, we can create
a credible autocoding process [24] that can rapidly generate formally verifiable
optimization code.

For this paper, we selected an interior point algorithm with the Monteiro-
Zhang (MZ) Newton search direction as the running example. The step length
is fixed to be one and the input problem is a generic semi-definite programming
problem obtained from system and control. The paper is organized as follows:
first we introduce the basics of semi-definite programming and program ver-
ification. We then introduce a specific interior point algorithm and recall its
properties. After that, we discuss some general principles in how optimization
algorithms can be included as part of the credible autocoding framework in gen-
erating domain-specific properties and their proofs expressed in the language of
the generated optimization source code. We then give an example of a code im-
plementation annotated with the semantics of the optimization algorithm using
the Floyd-Hoare method [5]. Finally, we discuss how such autocoding environ-
ment can be used as part of the certification process and discuss some future
directions of research.

2 Credible Autocoding: General Principles

In this paper, we introduce a credible autocoding framework for convex op-
timization algorithms. Credible autocoding, analogous to credible compilation
from [18], is a process by which the autocoding process generates formally verifi-
able evidence that the output source code correctly implements the input model.
An overall view of a credible autocoding framework is given in figure 1. Existing
work already provides for the automatic generation of embedded convex opti-
mization code [8]. Given that proofs of high-level functional properties of interior
point algorithms do exist, we want to generate the same proof that is sound for
the implementation, and expressed in a formal specification language embedded
in the code as comments. One of the key ingredients that made credible au-
tocoding applicable for control systems [23] is that the ellipsoid sets generated
by synthesizing quadratic Lyapunov functions are relatively easy to reason about
even on the code level. The semantics of interior point algorithms, however, do
not rely on simple quadratic invariants. The invariant obtained from the proof of
good behavior of interior point algorithms is generated by a logarithmic function.
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Fig. 1. Visualization of autocoding and verification process For Optimization Algo-
rithms

This same logarithmic function can also be used in showing the optimization al-
gorithm terminates in within a specified time. This function, is not provided,
is perhaps impossible to synthesize from using existing code analysis techniques
on the optimization source code. In fact nearly all existing code analyzers only
handle linear properties with the notable exception in [19]

3 Semi-Definite Programming and the Interior Point

Method

In this section, we give an overview of the Semi-Definite Programming (SDP)
problem. The readers who are already familiar with interior point method and
convex optimization should skip ahead to the next section. The notations used
in this section are as follows: let A = (ai,j)1≤i,j≤n, B ∈ R

n×n be two matrices

and a, b ∈ R
n be two column vectors. Tr (A) =

n
∑

i=1

ai,i denotes the trace of

matrix A. 〈·, ·〉 denotes an inner product, defined in R
n×n × R

n×n as 〈A,B〉 :=
Tr
(

BTA
)

and in R
n × R

n as 〈a, b〉 := aTb. The Frobenius norm of A is defined

as ‖A‖F =
√

〈A,A〉. The symbol Sn denotes the space of symmetric matrices of
size n × n. The space of n × n symmetric positive-definite matrices is denoted
as Sn+ =

{

S ∈ S
n|∀x ∈ R

n \ {0}, xTSx > 0
}

. If A and B are symmetric, A ≺ B
(respectively A ≻ B) denotes the positive (respectively negative)-definiteness of
matrix B−A. The symbol I denotes an identity matrix of appropriate dimension.
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For X,Z ∈ S
n+, some basic properties of matrix derivative are

∂ Tr (XZ)

∂X
=

ZT = Z and
∂ det (X)

∂X
= det (X)

−1
(

X−1
)T

= det (X)
−1

X−1.

3.1 SDP Problem

Let n,m ∈ N, F0 ∈ S
n+, F1, F2, . . . , Fm ∈ S

n, and b =
[

b1 b2 . . . bm
]T ∈

R
m. Consider a SDP problem of the form in (1). The linear objective function
〈F0, Z〉 is to be maximized over the intersection of positive semi-definite cone
{Z ∈ S

n|Z � 0} and a convex region defined by m affine equality constraints.

sup
Z

〈F0, Z〉,

subject to 〈Fi, Z〉+ bi = 0, i = 1, . . . ,m

Z � 0.

(1)

Note that a SDP problem can be considered as a generalization of a linear
programming (LP) problem. To see this, let Z = Diag (z) where z is the standard
LP variable.

We denote the SDP problem in (1) as the dual form. Closely related to the
dual form, is another SDP problem as shown in (2), called the primal form. In
the primal formulation, the linear objective function 〈b, p〉 is minimized over all

vectors p =
[

p1 . . . pm
]T ∈ R

m under the semi-definite constraint F0+

m
∑

i=1

piFi �

0. Note the introduction in (2) of a variable X = −F0 −
m
∑

i=1

piFi such that

X � 0, which is not strictly needed to express the problem, but is used in later
developments.

inf
p,X

〈b, p〉

subject to F0 +

m
∑

i=1

piFi +X = 0

X � 0.

(2)

We assume the primal and dual feasible sets defined as

Fp =

{

X|X = −F0 −
m
∑

i=1

piFi � 0, p ∈ R
m

}

,

Fd = {Z|〈Fi, Z〉+ bi = 0, Z � 0}
(3)

are not empty. Under this condition, for any primal-dual pair (X,Z) that belongs
to the feasible sets in (3), the primal cost 〈b, p〉 is always greater than or equal
to the dual cost 〈F0, Z〉. The difference between the primal and dual costs for a
feasible pair (X,Z) is called the duality gap. The duality gap is a measure of the



6

optimality of a primal-dual pair. The smaller the duality gap, the more optimal
the solution pair (X,Z) is. For (2) and (1), the duality gap is the function

G(X,Z) = Tr (XZ) . (4)

Indeed,

Tr (XZ) = Tr

((

−F0 −
m
∑

i=1

piFi

)

Z

)

= −Tr (F0Z)−
m
∑

i=1

pi Tr (FiZ)

= 〈b, p〉 − 〈F0, Z〉.

Finally, if we assume that both problems are strictly feasible i.e. the sets

Fp′

=

{

X|X = −F0 −
m
∑

i=1

piFi ≻ 0, p ∈ R
m

}

,

Fd′

= {Z|〈Fi, Z〉+ bi = 0, Z ≻ 0}
(5)

are not empty, then there exists an optimal primal-dual pair (X∗, Z∗) such that

Tr (X∗Z∗) = 0. (6)

Moreover, the primal and dual optimal costs are guaranteed to be finite. The con-
dition in (6) implies that for strictly feasible problems, the primal and dual costs
are equal at their respective optimal points X∗ and Z∗. Note that in the strictly
feasible problem, the semi-definite constraints become definite constraints.

The canonical way of dealing with constrained optimization is by first adding
to the cost function a term that increases significantly if the constraints are not
met, and then solve the unconstrained problem by minimizing the new cost func-
tion. This technique is commonly referred to as the relaxation of the constraints.
For example, lets assume that the problems in (2) and (1) are strictly feasible.
The positive-definite constraints X ≻ 0 and Z ≻ 0, which defines the interior of
a pair of semi-definite cones, can be relaxed using an indicator function I(X,Z)
such that

I : (X,Z)→
{

0, X ≻ 0, Z ≻ 0
+∞, otherwise

(7)

The intuition behind relaxation using an indicator function is as follows. If the
primal-dual pair (X,Z) approaches the boundary of the interior region, then the
indicator function I(X,Z) approaches infinity, thus incurring a large penalty on
the cost function.

The indicator function in (7) is not useful for optimization because it is not
differentiable. Instead, the indicator function can be replaced by a family of
smooth, convex functions B(X,Z) that not only approximate the behavior of
the indicator function but are also self-concordant. We refer to these functions
as barrier functions. A scalar function F : R→ R, is said to be self-concordant
if it is at least three times differentiable and satisfies the inequality

|F ′′′(x)| ≤ 2F ′′(x)
3
2 . (8)
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The concept of self-concordance has been generalized to vector and matrix func-
tions, thus we can also find such functions for the positive-definite variables X
and Z. Here we state, without proof, the key property of self-concordant func-
tions.

Property 1. Functions that are self-concordant can be minimized in polynomial
time to a given non-zero accuracy using a Newton type iteration [14].

Examples of self-concordant functions include linear functions, quadratic func-
tions, and logarithmic functions. A valid barrier function for the semi-definite
constraints from (2) and (1) is

B(X,Z) = − log det (X)− log det (Z). (9)

4 Introduction to Program Verification

In this section, we introduce some concepts from program verification that we
use later in the paper. The readers who are already familiar with Hoare logic
and axiomatic semantics should skip ahead to the next section.

4.1 Axiomatic Semantics

One of the classic paradigms in formal verification of programs is the usage
of axiomatic semantics. In axiomatic semantics, the semantics or mathematical
meanings of a program is based on the relations between the logic predicates
that hold true before and after a piece of code is executed. The program is said
to be partially correct if the logic predicates holds throughout the execution of
the program. For example, given the simple while loop program in figure 2, if we

1 while (x*x >0.5)

2 x=0.9*x;

3 end

Fig. 2. A while loop Program

assume the value of variable x belongs to the set [−1, 1] before the execution of
the while loop, then the logic predicate x*x<=1 holds before, during and after
the execution of the while loop. The predicate that holds before the execution of
a block of code is referred to as the pre-condition. The predicate that holds after
the execution of a block of code is referred to as the post-condition. Whether a
predicate is a pre or post-condition is contextual since its dependent on the block
of code that its mentioned in conduction with. A pre-condition for one line of
code can be the post-condition for the previous line of the code. A predicate that
remains constant i.e. holds throughout the execution of the program is called an
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invariant. For example, the predicate x*x<=1 is an invariant for the while loop.
However the predicate x*x>=0.9 is not an invariant since it only holds during
a subset of the total execution steps of the loop.

The invariants can be inserted into the code as comments. We refer to these
comments as code specifications or annotations. For example, inserting the predi-
cate x*x<=1 into the program in figure 2 results in the annotated program in fig-
ure 3. The pseudo Matlab specification language used to express the annotations
in figure 3 is modelled after ANSI/ISO C Specification Language (ACSL [2]),
which is an existing formal specification language for C programs. The pre and
post-conditions are denoted respectively using ACSL keywords requires and en-
sures. The annotations are captured within comments denoted by the Matlab
comment symbol %%. Throughout the rest of the paper, we use this pseudo

1 %% requ i r e s x∗x<=1;
2 %% ensures x∗x<=1;
3 while (x*x >0.5)

4 x=0.9*x;

5 end

Fig. 3. Axiomatic Semantics for a while loop Program

Matlab specification language in the annotations of the example convex opti-
mization program. Other logic keywords from ACSL, such as exists, forall and
assumes are also transferred over and they have their usual meanings.

4.2 Hoare Logic

We now introduce a formal system of reasoning about the correctness of pro-
grams, that follows the axiomatic semantics paradigm, called Hoare Logic [5].
The main structure within Hoare logic is the Hoare triple. Let P be a pre-
condition for the block of code C and let Q be the post-condition for C. We can
express the annotated program in 3 as a Hoare triple denoted by {P}C {Q}, in
which both P and Q represent the invariant x*x<=1 and C is the while loop.
The Hoare triples is partially correct if P hold true for some initial state σ, and
Q holds for the new state σ′ after the execution of C. For total correctness, we
also need prove termination of the execution of C.

Hoare logic includes a set of axioms and inference rules for reasoning about
the correctness of Hoare triples for various program structures of a generic
imperative programming language. Example program structures include loops,
branches, jumps, etc. In this paper, we only consider while loops. For example,
a Hoare logic axiom for the while loop is

{P ∧B}C; {P}
{P}while B do C done {¬B ∧ P} . (10)
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Informally speaking, the axioms and inference rules should be interpreted as
follows: the formula above the horizontal line implies the formula below that
line. From (10), note that the predicate P holds before and after the while loop.
We typically refer to this type of predicate as an inductive invariant. Inductive
invariants require proofs as they are properties that the producer of the code is
claiming to be true. For the while loop, according the axiom in (10), we need
to show that the predicate P holds in every iteration of the loop. In contrast,
axiomatic semantics also allows predicates that are essentially assumptions about
the state of the program. This is especially useful in specifying properties about
the inputs. For example, the variable x in figure 3 is assumed to have an value
between −1 and 1. The validity of such property cannot be proven since it is an
assumption. This type of invariant is referred to as an assertion. In our example,
the assertion x<=1 && x>=-1 is necessary for proving that x*x<=1 is an
inductive invariant of the loop.

For this paper, we also use some basic inferences rules from Hoare logic.
They are listed in Table 1. The consequence rule in (11) is useful whenever

{P1 ⇒ P2}C {Q1 ⇒ Q2}

{P1}C {Q2}
(11)

{P}C1 {Q} ; {Q}C2 {W}

{P}C1;C2 {W}
(12)

{P}SKIP {P}
(13)

{P [e/x]}x := expr {P}
(14)

{P}x := expr {∃x0 (x = expr [x0/x]) ∧ P [x0/x] }
(15)

Table 1. Axiomatic Semantics Inference Rules for a Imperative Language

a stronger pre-condition or weaker post-condition is needed. By stronger, we
meant the set defined by the predicate is smaller. By weaker, we mean precisely
the opposite. The substitution rules in (14) and (15) are used when the code is
an assignment statement. The weakest pre-condition P [x/expr] in (14) means
P with all instances of the expression expr replaced by x. For example, given
a line of code y=x+1 and a known weakest pre-condition x+1<=1, we can
deduct that y<=1 is a correct post-condition using the backward substitution
rule. Although usually (14) is used to compute the weakest pre-condition from
the known post-condition. Alternatively the forward propagation rule in (15) is
used to compute the strongest post-condition. The skip rule in (13) is used when
executing the piece of code does not change any variables in the pre-condition
P .
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4.3 Proof Checking

The utility of having the invariants in the code is that finding the invariants
is in general more difficult than checking that given invariants are correct. By
expressing and translating the high-level functional properties and their proofs
onto the code level in the form of invariants, we can verify the correctness of the
optimization program with respect to its high-level functional properties using
a proof-checking procedure i.e. by verifying each use of a Hoare logic rule.

5 An Interior Point Algorithm and Its Properties

We now describe an example primal-dual interior point algorithm. We focus
on the key property of convergence. We show its usefulness in constructing the
inductive invariants to be applied towards documenting the software implemen-
tation. The algorithm is displayed in Table 2 and is based on the work in [12].

5.1 Details of the Algorithm

The algorithm in Table 2 is consisted of an initialization routine and a while

loop. The operator length is used to compute the size of the input problem
data. The operator ˆ−1 represents an algorithm such as QR decomposition that
returns the inverse of the matrix. The operator ˆ0.5 represents an algorithm such
as Cholesky decomposition that computes the square root of the input matrix.
The operator lsqr represents a least-square QR factorization algorithm that is
used to solve linear systems of equation of the form Ax = b. With the assumption
of real algebra, all of these operators return exact solutions.

In the initialization part, the states X, Z and p are initialized to feasible
values, and the input problem data are assigned to constants Fi, i = 1, . . . ,m.
The term feasible here means that X, Z, and p satisfies the equality constraints
of the primal and dual problems. We discuss more about the efficiency of the
initialization process later on.

The while loop is a Newton iteration that computes the zero of the derivative
of the potential function

φ(X,Z) =
(

n+ ν
√
n
)

log Tr (XZ)− log det (XZ)− n log n, (16)

in which ν is a positive weighting factor. Note that the potential function is a
weighted sum of the primal-dual cost gap and the barrier function potential.
The weighting factor ν is used in computing the duality gap reduction factor

σ ≡ n

n+ ν
√
n
. A larger ν implies a smaller σ, which then implies a shorter

convergence time. For our algorithm, since we use a fix-step size of 1, a small
enough σ combined with the newton step could result in a pair of X and Z that
no longer belong to the interior of the positive-semidefinite cone. In the running
example, we have ν = 0.4714. While this choice of ν doubled the number of
iterations of the running example compared to the typical choice of ν = 1,
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Algorithm 1. MZ Short-Path Primal-Dual Interior Point Algorithm

Input: F0 ≻ 0, Fi ∈ S
n, i = 1, . . . ,m, b ∈ R

m

ǫ: Optimality desired

1. Initialize:
Compute Z such that 〈Fi, Z〉 = −bi, i = 1, . . . ,m;

Let X ← X̂; // X̂ is some positive-definite matrix

Compute p such that

m∑

i

piFi = −X0 − F0;

Let µ←
〈X,Z〉

n
;

Let σ ← 0.75;
Let n← lengthFi, m← length bi;

2. while nµ > ǫ {
3. Let φ

−
← 〈X,Z〉;

4. Let Tinv ← Z0.5;

5. Let T ← T−1

inv;
6. Compute (∆Z,∆X,∆p) that satisfies (17);
7. Let Z ← Z +∆Z, X ← X +∆X, p← p+∆p;
8. Let φ← 〈X,Z〉;

9. Let µ←
〈X,Z〉

n
;

10. if (φ− φ
−
> 0) {

11. return ;
}

}

Table 2. Primal-Dual Short Path Interior Point Algorithm
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however it is critical in satisfying the inductive invariants of the while loop that
are introduced later this paper.

Let symbol T = Z−0.5 and Tinv denotes the inverse of T . The while loop
solves the set of matrix equations

〈Fi, ∆Z〉 = 0
m
∑

i

∆piFi +∆X = 0

1

2
(T (Z∆X +∆ZX)Tinv + Tinv (∆XZ +X∆Z)T ) = σµI − TinvXTinv.

(17)
for the Newton-search directions ∆Z, ∆X and ∆p. The first two equations in
(17) are obtained from a Taylor expansion of the equality constraints from the
primal and dual problems. These two constraints formulates the feasibility sets
as defined in Eq (3). The last equation in (17) is obtained by setting the Taylor
expansion of the derivative of (16) equal to 0, and then applying the symmetriz-
ing transformation

HT : M → 1

2

(

TMT−1 +
(

TMT−1
)T
)

, T = Z−0.5 (18)

to the result. To see this, note that derivative of (16) is

[

XZ − n

n+ ν
√
n

Tr (XZ)

n
I

ZX − n

n+ ν
√
n

Tr (XZ)

n
I

]

.

The transformation in (18) is necessary to guarantee the solution ∆X is
symmetric. The parameter σ, as mentioned before, can be interpreted as a duality
gap reduction factor. To see this, note that the 3rd equation in (17) is the result
of applying Newton iteration to solve the equation XZ = σµI. With σ ∈ (0, 1),
the duality gap Tr (XZ) = nσµ is reduced after every iteration. The choice of T
in (18) is taken from [11] and is called the Monteiro-Zhang (MZ) direction. Many
of the Newton search directions from the interior-point method literature can
be derived from an appropriate choice of T . The M-Z direction also guarantees
an unique solution ∆X to (17). The while loop then updates the states X,Z, p
with the computed search directions and computes the new normalized duality
gap. The aforementioned steps are repeated until the duality gap nµ is less than
the desired accuracy ǫ.

5.2 High-level Functional Property of the Algorithm

The key high-level functional property of the interior point algorithm in 2 is
an upper bound on the worst case computational time to reach the specified
duality gap ǫ > 0. The convergence rate is derived from a constant reduction in
the potential function in (16) [9] after each iteration of the while loop.

Given the potential function in (16), the following result gives us a tight
upper bound on the convergence time of our running example.
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Theorem 1. Let X−, Z−, and p− denote the values of X, Z, and p in the
previous iteration. If there exist a constant δ > 0 such that

φ(X−, Z−)− φ(X,Z) ≥ δ, (19)

then Algorithm 2 will take at most O
(√

n log ǫ−1 Tr (X0Z0)
)

iterations to con-
verge to a duality gap of ǫ,

For safety-critical applications, it is important for the optimization program im-
plementation to have a rigorous guarantee of convergence within a specified time.
Assuming that the required precision ǫ and the problem data size n are known
a priori, we can guarantee a tight upper bound on the optimization algorithm
if the function φ satisfies (19). For the running example, this is indeed true. We
have the following result.

Theorem 2. There exists a constant δ > 0 such that theorem 1 holds.

The proof of theorem 2 is not shown here for the sake of brevity but it is based on
proofs already available in the interior point method literature (see [6] and [16]).

Using theorems 1 and 2, we can conclude that the algorithm in Table 2, at
worst, converges to the ǫ-optimal solution linearly. For documenting the while

loop portion of the implementation, however we need to construct an inductive
invariant of the form

0 ≤ φ(X,Z) ≤ c, (20)

in which c is a positive scalar. While the potential function in (16) is useful for the
construction of the algorithm in Table 2, but it is not non-negative. To construct
an inductive invariant in the form of (20), instead of using (16), consider

φ(X,Z) = logTr (XZ), (21)

which is simply the log of the duality gap function.

Theorem 3. The function in (21) satisfies theorems 1 and 2.

An immediate implication of theorem 3 is that Tr (XZ) converges to 0 linearly
i.e. ∃κ ∈ (0, 1) such that Tr (XZ) ≤ κTr (X−Z−), in which X− and Z− are
values of X and Z at the previous iteration. Using Tr (XZ), we can construct
the inductive invariant from (20) and to express the convergence property from
theorem 1.

Additionally, there are two other inductive invariants to be documented for
the while loop. The first one is the positive-definiteness of the states X and Z.
We need to show that the initial X and Z belongs to a positive-definite cone. We
also need to show that they are guaranteed to remain in that cone throughout
the execution of the while loop. This inductive property is directly obtained
from the constraints on the variables X and Z. It is also important in showing
the non-negativeness of the potential function Tr (XZ). The second inductive
invariant is a constraint on the distance of XZ from the central path defined by
µI. This inductive property is expressed by the formula

‖XZ − µI‖F ≤ 0.3105µ. (22)
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The value 0.3105 in (22) is selected to guarantee that inductive invariant in (32)
holds. Its method of selection is explained later in this paper.

6 Running Example

The Matlab implementation of the algorithm from Table 2 can be found in figure
4.

6.1 Input Problem

The input data is obtained from a generic optimization problem taken from
systems and control. The details of the original problem is skipped here as it has
no bearing on the main contribution of this article. We do like to mention that
the matrices Fi, i = 0, . . . , 3 are computed from the original problem using the
tool Yalmip [7].

6.2 Autocoding of Convex Optimization Algorithms

In this paragraph, we describe some general ideas towards the credible autocod-
ing of convex optimization algorithms. We also want to refer the readers to an
existing work by Boyd [8] on the autocoding of convex optimizatino algorithm.
first interior point algorithm can be modelled within synchronous language en-
vironment. For example, the dynamics of the Newton iteration can be modelled
using delays and a feedback loop. The scaling matrix T for the Newton direction
or the duality gap reduction parameter σ can be captured by the appropriate
choice of gains and sums. For the more complex interior point implementations
such as those with heuristics in the predictor, it is far less likely that one can eas-
ily construct the model in a synchronous programming language. The variations
of the interior point method discussed in this paper is relatively simple with
changes in one of the parameters such as the symmetrizing scaling matrix T , the
step size α which is defaulted to 1 in the algorithm description, the duality gap
reduction parameter σ, etc. If we can have standard templates of optimization
models that are parameterized by those values, then we can easily plug in the
values and then auto-generate the code. This can be applied to the proof as well,
as we can construct proof templates for each major variations of interior point
algorithms and then plug-in the appropriate values into the auto-generated proof
templates. In the next section, we give an example proof template on the code
level in the Hoare-triple style for the Matlab implementation.

6.3 Matlab Implementation

The Matlab implementation has one main difference from the algorithm de-
scription. The first is that, in the Matlab implementation, the current values
of X, Z, p are assigned to the variables X−, Z−, and p− at the beginning of
the while loop. Note that the variables X−, Z−, and p− are denoted by Xm,
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Zm and pm respectively in the Matlab code. Because of that, steps 3 to 6 of
algorithm in Table 2 are executed with the variables X−, Z−, and p− instead of
X, Z, and p. Accordingly, step 7 becomes Z ← Z− +∆Z−, X ← X− +∆X−,
p ← p− + ∆p−. This difference is the result of the need to have the invariant
of the form φ (X,Z) ≤ κφ (X−, Z−) for κ ∈ (0, 1), which is important since it
expresses the fast convergence property from theorem 1.

7 Annotated Matlab Implementation

Now we want to express the inductive invariants and their proofs as Hoare
triples [22] on the Matlab implementation. For the reason of compactness, we
have chosen to annotate a Matlab implementation of the algorithm.

7.1 Preliminaries

The annotations are expressed using a pseudo Matlab specification language
that is analogous to the ANSI/ISO C Specification Language (ACSL) for C
programs. We use overloaded operators in the annotations such as > to denote
≻ as well as its regular meaning with scalars. Variables are referenced using
either their mathematical symbols such as φ, φ−, X, and X− or their corre-
sponding Matlab names phi, phim, X, and Xm Likewise code and invariants
are expressed using the Matlab language i.e. phim=trace(Xm*Zm)/n or their

equivalent mathematical representation φ− =
Tr (X−Z−)

n
. The implementation

calls three functions vecs, mats and krons. These functions are used to convert
the matrix equations from (17) into matrix vector equations in the form Ax = b.
This type of transformation is commonly used in algorithms in which solutions
to matrix equations are needed. For more details, please refer to the appendix.

7.2 Annotations For the Initialization

The implementation is consisted of two parts. The first part is the initialization
routine. This part defines all the constants required for the formulation of the
problem, and initializes the states. The constants are F0, F1,F2,F3,b which
corresponds to the symbols F0, Fi, i = 1, 2, 3 from the algorithm. The states are
X, Z, and p corresponds to the variables X,Z,p in the Matlab code. The second
part of the implementation is a while loop, in which its execution generates a
trace (X(k), Z(k), p(k)) , k ∈ N until Tr (X(k)Z(k)) ≤ nǫ. We first discuss the
annotations in the initialization portion. The annotations of high-level functional
properties, namely the convergence property from theorems 1 and 2 is discussed
in the ensuing section on the while loop.

In the first part of the initialization process, the constants of the input prob-
lem are defined. These constants need to satisfy certain regularity conditions
such as symmetry or positive-definiteness. For example, in line 2, after we assign

the matrix

[

1.0 0
0.0 0.1

]

to F0, a correct post-condition is that F0 is positive-definite.
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1 %% Example SDP Code : Primal−Dual Short−Step Algorithm
2 F0=[1, 0; 0, 0.1];

3 F1 =[ -0.750999 0.00499; 0.00499 0.0001];

4 F2 =[0.03992 -0.999101; -0.999101 0.00002];

5 F3 =[0.0016 0.00004; 0.00004 -0.999999];

6 b=[0.4; -0.2; 0.2];

7 n=length(F0);

8 m=length(b);

9 Alpha1t =[vecs(F1), vecs(F2), vecs(F3)];

10 Alpha1=Alpha1t ’;

11 Z=mats(lsqr(Alpha1 ,-b),n);

12 X=[0.3409 0.2407; 0.2407 0.9021];

13 P=mats(lsqr(Alpha1t ,vecs(-X-F0)),n);

14 p=vecs(P);

15 epsilon =1e-8;

16 sigma =0.75;

17 phi=trace(X*Z);

18 mu=trace(X*Z)/n;

19 while (phi >epsilon)

20 Xm=X;

21 Zm=Z;

22 pm=p;

23 phim=trace(Xm*Zm);

24 mu=trace(Xm*Zm)/n;

25 Zh=Zm ^(0.5);

26 Zhi=Zh^(-1);

27 Alpha2=krons(Zhi ,Zh ’*Xm,n,m);

28 Alpha3=krons(Zhi*Zm,Zh’,n,m);

29 rz=zeros(m,1);

30 rp=zeros(m,1);

31 rh=sigma*mu*eye(n,n)-Zh*Xm*Zh;

32 dZm=lsqr(Alpha1 ,rz);

33 dXm=lsqr(Alpha3 , vecs(rh)-Alpha2*dZm);

34 dpm=lsqr(Alpha1t ,rp -dXm);

35 p=pm+dpm;

36 X=Xm+mats(dXm ,n);

37 Z=Zm+mats(dZm ,n);

38 phi=trace(X*Z);

39 mu=trace(X*Z)/n;

40 if (phi -phim >0)

41 break;

42 end

43 end

Fig. 4. Matlab Implementation
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The symmetry of a matrix is expressed using the Matlab transpose function. This
function has its usual meaning. We do not explicitly define it here in this paper.
The function smat used in the annotation on line 9 of figure 5 is the inverse of the
function svec, where svec is similar in every aspect to the function vecs but with
the factor

√
2 replaced by 2. For example the code smat(b) returns the matrix

[

0.4 −0.1
−0.1 0.2

]

. (23)

The correctness of the Hoare triples at lines 1, 3, 5, 7, 9 from figure 5 need to

1 % ensures F0>0;
2 F0=[1, 0; 0, 0.1];

3 % ensures t ranspose (F1 )==F1 ;
4 F1 =[ -0.750999 0.00499; 0.00499 0.0001];

5 % ensures t ranspose (F2 )==F2 ;
6 F2 =[0.03992 -0.999101; -0.999101 0.00002];

7 % ensures t ranspose (F3 )==F3 ;
8 F3 =[0.0016 0.00004; 0.00004 -0.999999];

9 % ensures smat (b ) >0;
10 b=[0.4; -0.2; 0.2];

Fig. 5. Input Problem Data

proven as the validity of each of the post-conditions are needed to ensure that
the input optimization problem is well-posed. For example, if one of the Fi is not
symmetrical, then the solution∆Z to the third equation of (17) is not necessarily
symmetrical. The next part of the initialization process computes the sizes of
the problem. In our example, m denotes the number of equality constraints in
the dual formulation and n denotes the dimensions of the semi-definite variables
X and Z. In figure 6, the post-conditions are the requirement that the problem

1 % ensures n>=1;
2 n=length(F0);

3 % ensures m>=1;
4 m=length(b);

Fig. 6. Input Problem Sizes

sizes should be at least one.

The next section of the initialization process computes feasible initial condi-
tions for the states Z, X, and p. A feasible Z is computed from solving a system
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of linear equations formulated using the m affine constraints from the dual prob-
lem. The variable X on the other hand can be initialized to any positive-definite
matrix. In our running example, the variable is initialized to a value that satisfies
the property

‖XZ − µI‖F ≤ 0.3105µ. (24)

This property is one of the inductive invariants discussed later in this paper.

Remark 1. The property in (24) is a constraint on the set of points belonging
to the interior of the positive semi-definite cone in which X can be initialized
to. Essentially, it guarantees that X is initialized to within a neighborhood of
the central path i.e. not initialized too close to the boundary of the semi-definite
cone, which for some optimization problems, means a large enough convergence
time to present trouble in a real-time optimization setting. Efficient methods
exist in the interior point method literature (see [10]) to guarantee initialization
within a certain small neighborhood of the central path. For the sake of brevity,
the details are skipped here.

Using this initial X, we can compute an initial p that satisfies the feasible set

defined by the matrix equality constraint F0+
m
∑

i

piFi+X = 0 from the primal

problem. An important property of the variables X and Z is their positive-

1 Alpha1t =[vecs(F1), vecs(F2), vecs(F3)];

2 Alpha1=Alpha1t ’;

3 % ensures Z>0;
4 Z=mats(lsqr(Alpha1 ,-b),n);

5 % ensures X>0;
6 X=[0.3409 0.2407; 0.2407 0.9021];

7 P=mats(lsqr(Alpha1t ,vecs(-X-F0)),n);

8 p=vecs(P);

Fig. 7. Initialization of the Optimization Variables

definiteness, which is expressed by the post-conditions shown in lines 3 and 5 of
figure 7.

The last portion of the initialization code is shown in figure 8. The code
assigns the desired optimality 1×10−8 to the variable epsilon, and computes the
initial normalized duality gap mu and the initial potential phi. By using the skip
rule from (13), we can propagate forward the invariants X ≻ 0 and X ≻ 0 from
figure 7 to the end of the code in figure 8. By using the consequent rule from (11),
and the fact thatX ≻ 0∧Z ≻ 0 =⇒ Tr (XZ) ≥ 0 =⇒ ∃c > 0,Tr (XZ) ≤ c, we
get the pre-conditions in line 3 of figure 8. Since line 5 is a statement that assigns
the expression Tr (XZ) to the variable φ, we can apply the backward substitution
rule from (14) here. We get the post-conditions phi<=c and phi>=0, which are
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1 epsilon =1e-8;

2 sigma =0.75;

3 % requ i r e s e x i s t s c>0 && tra c e (XZ)<=c && tra c e (XZ)>=0;
4 % ensures phi<=c && phi >=0;
5 phi=trace(X*Z);

Fig. 8. Duality Gap and the Initial Potential

displayed in line 4 of figure 8. The positive constant c remains symbolic in our
annotated example. In a more realistically annotated code, a numerical value
maybe assigned to c. Now we are ready to examine the while loop portion of
the optimization code.

7.3 Annotations for the while loop

The post-condition

0 ≤ φ ≤ c (25)

in line 4 of figure 8 is precisely the inductive invariant from (20) obtained using
theorem 3. Invoking the while axiom from Hoare logic, we insert phi<=c and
phi>=0 as both a pre and post-conditions for the while loop. They are displayed
in figure 9.

We also have the pre-conditions X ≻ 0 and Z ≻ 0 that is propagated, using
the skip rule, from the annotated code in figure 7. We claim that these two are
also inductive invariants for the while loop, which is to be proven later. They
appear in figure 9 as both pre and post-conditions of the while loop. For now we
assume that X ≻ 0 and Z ≻ 0 are true, which implies that phi>=0 is true. This
ends the proof for the inductive invariant phi>=0. Now we move on to provide

1 % requ i r e s phi<=c && c>0 && phi>=0 && X>0 && Z>0;
2 % ensures phi<=c && c>0 && phi>=0 && X>0 && Z>0;
3 while (phi >epsilon) {

4 .

5 .

6 .

7 .

8 }

Fig. 9. Invariants for the Main Loop

a proof of the inductive invariant phi<=c in the form of Hoare triples.
We begin the proof by propagating forward the invariant Tr (XZ) ≤ c

from line 3 of figure 8 using the skip rule. This results in the pre-condition
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trace(X*Z)<=c in line 1 of figure 10. Using the backward substitution rules
through lines 2 to 5, we obtain the pre-condition trace(Xm*Zm)<=c on line 5 of
figure 10. The next line of code assigns the expression Tr (X−Z−) to the variable
φ−. Apply the substitution rule again, we obtain the post-condition phim<=c

displayed in line 6 of figure 10. Since the variable phim is not changed by any
line of code after line 5, by applying the skip rule, we obtain the post-condition
phim<= c in line 11 of 10. Now to show that phi<=c is also valid post-condition
for the while loop, we insert a predicate

φ− φ− < 0 (26)

for the code in line 15 of figure 10. This is displayed in line 13 of figure 10. It is
clear that phim<=c and phi-phim<0 implies phi<=c. If the predicate in (26) holds
true, then by consequent rule from (11), the post-condition phi<=c is correct.
Note that the condition in (26) is equivalent to the condition in (19). Now it is
only necessary to show that phi - phim < 0 holds true.

1 % requ i r e s t r a c e (X∗Z)<=c ;
2 Xm=X;

3 Zm=Z;

4 pm=p;

5 % requ i r e s t r a c e (Xm∗Zm)<=c ;
6 % ensures phim<=c ;
7 phim=trace(Xm*Zm);

8 .

9 .

10 .

11 .

12 % ensures phim<=c ;
13 % ensures phi−phim<0;
14 % ensures phi<=c ;
15 phi=trace(X*Z);

Fig. 10. Loop Body

Reduction in the Duality Gap To prove that the quantity Tr (XZ) is de-
creasing i.e. phi-phim<0, we start with the simple fact that if 〈X,Z〉−σ〈X−, Z−〉 =
0, with σ ∈ (0, 1), then 〈X,Z〉 − 〈X−, Z−〉 < 0.

We also assume for now that Tr (XZ)− 0.75Tr (X−Z−) = 0 holds as a post-
condition for line 20 of figure 11. We also have Tr (X−Z−) = φ−, which holds true
because of line 7 of figure 10. This means we have Tr (XZ)− 0.75Tr (X−Z−) =
0 ∧ Tr (X−Z−) = φ− =⇒ Tr (XZ) − φ− < 0. By the consequent rule, we
obtain the pre-condition trace(X*Z)-phim<0, which is displayed in line 21 of figure
11. We move forward to the next line of code, which is Line 25 figure 11. It
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1 % requ i r e phim<=c ;
2 % ensures n∗mu==tra c e (Xm∗Zm) ;
3 mu=trace(Xm*Zm)/n;

4 Zh=Zm ^(0.5);

5 Zhi=Zh^(-1);

6 Alpha2=krons(Zhi ,Zh ’*Xm,n,m);

7 Alpha3=krons(Zhi*Zm,Zh’,n,m);

8 rz=zeros(m,1);

9 rp=zeros(m,1);

10 rh=sigma*mu*eye(n,n)-Zh*Xm*Zh;

11 dZm=lsqr(Alpha1 ,rz);

12 dXm=lsqr(Alpha3 , vecs(rh)-Alpha2*dZm);

13 % ensures t r a c e ( mats (dXm, n ) ∗mats (dZm, n ) )==0;
14 % ensures t r a c e (Xm∗mats (dZm, n ) )+t ra c e ( mats (dXm, n ) ∗Zm)==

sigma ∗n∗mu−t r a c e (Xm∗Zm) ;
15 dpm=lsqr(Alpha1t ,rp -dXm);

16 % requ i r e t r a c e ( (Xm+mats (dXm, n ) ) ∗(Zm+mats (dZm, n ) ) ) −0.75∗
t r a c e (Xm∗Zm)==0;

17 p=pm+dpm;

18 X=Xm+mats(dXm ,n);

19 % ensures t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0;
20 Z=Zm+mats(dZm ,n);

21 % requ i r e s t r a c e (X∗Z)−phim<0;
22 % requ i r e s t r a c e (X∗Z) < 0 .76∗ phim
23 % ensures phi−phim<0;
24 % ensures phi <0.76∗phim ;
25 phi=trace(X*Z);

26 mu=trace(X*Z)/n;

Fig. 11. Proof of Decreasing Duality-Gap
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is the assignment statement and by applying the backward substitution rule
on the inserted post-condition phi-phim<0, we get exactly the pre-condition
trace(X*Z)-phim<0. However this does not complete the proof, since we still
need to show that the post-condition in line 20 of figure 11 is true. For that we
start at the first line of code of figure 11, which is an statement that assigns the

quantity
1

n
〈X−, Z−〉 to the variable µ. We insert an appropriate post-condition

nµ = Tr (X−Z−). This corresponds to the annotation n*mu==trace(Xm*Zm)

shown in line 2 of figure 11. This post-condition remains true for the rest of the
loop body.

We move on to the next block of the code in figure 11. By examining the lines
4 to 15 of the code, we can determine that this part of the program compute the
search directions ∆X−, ∆Z− and ∆p− by solving the linear equations listed in
17. We have the post-conditions

〈∆X−, ∆Z−〉 = 0 (27)

and
Tr (X−∆Z−) + Tr (Z−∆X−) = σnµ− Tr (X−Z−) (28)

that holds true for the block of code from lines 4 and 15. They are displayed
as annotations in lines 13 and 14 of figure 11. To show that the post-condition
〈∆X−, ∆Z−〉 = 0 is true, we have the following theorem.

Lemma 1. If ∆Z− satisfies the equation 〈Fi, ∆Z−〉 = 0, and ∆X− satisfies the

equation

m
∑

i

∆p−iFi +∆X− = 0, then 〈∆X−, ∆Z−〉 is also zero.

To see that lemma 1 holds, note that 〈∆X−, ∆Z−〉=〈−
m
∑

i

pi−Fi, ∆Z−〉=−
m
∑

i

∆pi−〈Fi, ∆Z−〉 =

0.
Now we show the post-condition from (28) is also true. We already know

lines 11 and 12 figure 11 computes ∆Z− and ∆X− that satisfies the equation

1

2
(T (Z−∆X− +∆Z−X−)Tinv + Tinv (∆X−Z− +X−∆Z−)T )

= σµI − TinvX−Tinv.
(29)

Taking the trace of both sides of (29), we obtain the following equation

〈X−, ∆Z−〉+ 〈Z−, ∆X−〉 = Tr
(

σµI − Z
1
2
−X−Z

1
2
−

)

(30)

With (30), we can state that Tr (X−∆Z−)+Tr (Z−∆X−) is equivalent to Tr
(

σµI − Z
1
2
−X−Z

1
2
−

)

=σnµ− 〈X−, Z−〉.
We now move forward to lines 17 to 20 of the annotated code in figure 11.

This next block of code updates the states X,Z, p with the computed Newton
steps. For this block of code, we start with the pre-condition

〈X−, Z−〉+ 〈X−, ∆Z−〉+ 〈Z−, ∆X−〉+ 〈∆X−, ∆Z−〉 = σnµ, (31)
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which is obtained from summing the post-conditions in (27) and (28) with the
term 〈X−, Z−〉. Note that the post-condition nµ = Tr (X−Z−) from line 2 of
figure 11 still holds true at line 17, so we have 〈X− + ∆X−, Z− + ∆Z−〉 =
σnµ =⇒ 〈X− + ∆X−, Z− + ∆Z−〉 − σ〈X−, Z−〉 = 0. By the consequent
rule and since σ = 0.75 by line 2 of figure 8, we get the post-condition 〈X− +
∆X−, Z− + ∆Z−〉 − 0.75 < X−, Z− >= 0, which is displayed as pre-condition
for line 16 of figure 11. Next we apply the backward substitution rule on the
post-condition 〈X,Z〉 − 0.75 < X−, Z− >= 0 in line 19 of figure 11, we get
the desired pre-condition from line 16. We now have finished the analysis of the
inductive invariant phi<=c.

Before we move on to the next section, note that the post-condition 〈X,Z〉−
0.75 < X−, Z− >= 0 also implies that Tr (XZ) < 0.76φ−, which is another valid
pre-condition for line 25 of figure 11. Using the substitution rule on Tr (XZ) <
0.76φ−, we get the post-condition φ < 0.76φ−, which is displayed in line 24
of figure 11. This invariant, in conjunction with the while loop’s termination
condition φ <= ǫ, can be used to prove termination of the while loop within
the bounded time specified in theorem 1.

Positive-Definiteness of X and Z To show that X ≻ 0 and Z ≻ 0 are
valid inductive invariants, we use some results from [12]. Note that some of
these results are posted throughout this section without proof for the sake of
brevity. First, we have a norm bound on the distance of XZ from the central
path expressed using the invariant

‖XZ − µI‖F ≤ 0.3105µ, (32)

As discussed in the previous section, the variable X is initialized to a value such
that the condition in (32) is satisfied. Assume that (32) is true, we have the pre
and post-condition norm(X*Z-mu*eye(2,2),’fro’)<=0.3105*mu for the while loop.
They are displayed respectively on line 1 and 2 of figure 12. We also of course

1 % requ i r e s norm(X∗Z−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu && X>0 && Z
>0;

2 % ensures norm(X∗Z−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu && X>0 && Z
>0;

3 while (phi >epsilon) {

4 .

5 .

6 .

7 .

8 }

Fig. 12. Positive-Definiteness of X and Z as Inductive Invariants

have X ≻ 0 and Z ≻ 0 as the other inductive invariants of the while loop.
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To prove the inductive invariants in figure 12, we examine the body of the
while loop which is displayed in figure 13. We first insert the post-conditions
X− ≻ 0 and Z− ≻ 0 respectively for lines 2 and 4 of figure 13. Note that by
using the backward substitution rule twice, those post-conditions becomes the
pre-conditions X ≻ 0 and Z ≻ 0, which precisely match with the ones inserted
at the beginning of the while loop. Additionally, the invariant from (32) is also
transformed into the post-condition

‖X−Z− − µI‖F ≤ 0.3105µ, (33)

which is displayed in line 7 of figure 13. The post-condition in (33) is important
as it implies several more conditions that are vital to proving the correctness of
Z ≻ 0 and X ≻ 0.

The next part of the code computes the Newton directions. For the code in
line 17 of figure 13, we insert the post-condition

‖Z−0.5
− ∆Z−Z

−0.5
− ‖F ≤ 0.7. (34)

The post-condition in (34) is generated from the post-condition in (33). The value

0.7 is obtained from an over-approximation of the expression

√

n (1− σ)
2
+ 0.31052

1− 0.3105
.

The proof for this result is skipped here and can be found in [12]. We move on to
the next line of code, which computes the Newton search direction ∆X−. Here
we insert the post-condition

‖Z−0.5
− ∆X−∆Z−Z

0.5
− ‖F ≤ 0.3105σµ, (35)

which is also generated from the post-condition in (33). Next we insert the post-
condition

Z−0.5
− (∆Z−X− + Z−∆X−)Z

0.5
− + Z0.5

− (X−∆Z− +∆X−Z−)Z
−0.5
−

= 2
(

σµI − Z0.5
− X−Z

0.5
−

)

.
(36)

for line 21 of figure 13, which is displayed in line 20. Note that for the invariants
in (34), (35), and (36), we have implicitly assumed that the variable Zh is equal
to Z0.5

− and the variable Zhi is equal to Z−0.5
− . This is true because of the

assignment statements in lines 9 and 10 figure 13. As discussed before, ∆X−

and ∆Z− is assumed to exactly satisfy the equation in (29). The correctness of
post-condition in (36) is verified by multiplying (29) by 2.

The next line of code, which is line 24 of figure 13, updates the state X
with the computed Newton step ∆X−. Using consequent rule, we can insert the
pre-condition

1

2
‖Z−0.5

− ((Z− +∆Z−) (X− +∆X−)− σµI)Z0.5
− +

Z0.5
− ((X− +∆X−) (Z− +∆Z−)− σµI)Z−0.5

− ‖F
≤ 0.3105σµ,

(37)
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which is generated from the post-condition in (36), for line 24 of 13. The proof
for this is as follows. First note that

Z−0.5
− ((Z− +∆Z−) (X− +∆X−)− σµI)Z0.5

− +

Z0.5
− ((X− +∆X−) (Z− +∆Z−)− σµI)Z−0.5

− =

Z−0.5
− (∆Z−X− + Z−∆X−)Z

0.5
− + Z0.5

− (X−∆Z− +∆X−Z−)Z
−0.5
− +

2
(

Z0.5
− X−Z

0.5
− − σµI

)

+ Z−0.5
− (∆Z−∆X−)Z

0.5
− + Z0.5

− (∆X−∆Z−)Z
−0.5
− .

(38)

Second, by using the post-condition in (36), we can simplify (38) further to

Z−0.5
− (∆Z−∆X−)Z

0.5
− + Z0.5

− (∆X−∆Z−)Z
−0.5
− . (39)

Taking the Frobenius norm of (39) and using the post-condition in (35), we get
the pre-condition in (37). This ends the proof to show that (36) implies (37).

Lines 24 and 28 updates the states X and Z. We now apply the substitution
rule to the weakest pre-condition in (37), and obtain the post-condition

1

2
‖Z−0.5

− (ZX − σµI)Z0.5
− + Z0.5

− (XZ − σµI)Z−0.5
− ‖F ≤ 0.3105σµ, (40)

which is displayed in line 26 of figure 13.
For the code in line 28 of figure 13, we insert a pre-condition

Z− +∆Z− ≻ 0, (41)

which is generated from the post-condition in (34). To see that (41) is a cor-
rect pre-condition, we use the post-condition from (34), which implies that
‖Z−0.5

− ∆Z−Z
−0.5
− ‖F < 1, and

‖Z−0.5
− ∆Z−Z

−0.5
− ‖F < 1 =⇒ I + Z−0.5

− ∆Z−Z
−0.5
− ≻ 0. (42)

Finally, we also have the fact that

I + Z−0.5
− ∆Z−Z

−0.5
− = Z−0.5

− (Z− +∆Z−)Z
−0.5
− , (43)

which combined with (42) implies Z− + ∆Z− ≻ 0. By backward substitution,
we can obtain the weakest pre-condition in (41) from the post-condition Z ≻ 0.
This completes the proof for Z ≻ 0 being an inductive invariant. Next we show
that X ≻ 0 is also a valid post-condition for the loop body. For line 30 of figure
13, we introduce the invariant

‖Z0.5XZ0.5 − σµI‖F ≤
1

2
‖Z−0.5

− (ZX − σµI)Z0.5
− +

Z0.5
− (XZ − σµI)Z−0.5

− ‖F ,
(44)

that holds true for any Z ≻ 0, Z− ≻ 0, and symmetric X.
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1 % ensures Xm>0;
2 Xm=X

3 % ensures Zm>0;
4 Zm=Z;

5 pm=p;

6 phim=trace(Xm*Zm);

7 % ensures norm(Xm∗Zm−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu;
8 mu=trace(Xm*Zm)/n;

9 Zh=Zm ^(0.5);

10 Zhi=Zh^(-1);

11 Alpha2=krons(Zhi ,Zh ’*Xm,n,m);

12 Alpha3=krons(Zhi*Zm,Zh’,n,m);

13 rz=zeros(m,1);

14 rp=zeros(m,1);

15 rh=sigma*mu*eye(n,n)-Zh*Xm*Zh;

16 % ensures norm( Zhi ∗mats (dZm, n ) ∗Zhi , ’ f ro ’ ) <=0.7;
17 dZm=lsqr(Alpha1 ,rz);

18 % ensures norm( Zhi ∗mats (dZm, n ) ∗mats (dXm, n ) ∗Zh , ’ f ro ’ )
<=0.3105∗ sigma ∗mu;

19 dXm=lsqr(Alpha3 , vecs(rh)-Alpha2*dZm);

20 % ensures Zhi ∗(dZm∗Xm+Zm∗dXm) ∗Zh+Zh ’ ∗ (Xm∗dZm+dXm∗Zm) ∗Zhi
’==2∗( sigma ∗mu∗ I−Zh∗Xm∗Zh) ;

21 dpm=lsqr(Alpha1t ,rp -dXm);

22 p=pm+dpm;

23 % requ i r e s 0 . 5∗norm( Zhi ∗ ( (Zm+mats (dZm, n ) ∗(Xm+mats (dXm, n )−
sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( (Xm+mats (dXm, n ) ∗(Zm+mats (dZm, n )−
sigma ∗mu∗ I ) ∗Zhi ’ , ’ f ro ’ ) <=0.3105∗ sigma ∗mu;

24 X=Xm+mats(dXm ,n);

25 % requ i r e s Zm+mats (dZm, n ) >0;
26 % ensures 0 . 5∗norm( Zhi ∗(X∗Z−sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( Z∗X−sigma

∗mu∗ I ) ∗Zhi ’ , ’ f ro ’ ) <=0.3105∗ sigma ∗mu;
27 % ensures Z>0;
28 Z=Zm+mats(dZm ,n);

29 % requ i r e s norm(Z^0.5∗X∗Z^0.5− sigma ∗mu∗ I , ’ f ro ’ ) <=0.5∗norm
( Zhi ∗(X∗Z−sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( Z∗X−sigma ∗mu∗ I ) ∗Zhi ’ , ’
f ro ’ ) ;

30 phi=trace(X*Z);

31 % requ i r e Z>0;
32 % requ i r e s t r a c e (X∗Z) /n=sigma ∗mu;
33 % ensures norm(Z^(0 . 5 ) ∗X∗Z^(0 . 5 )−mu∗ I , ’ f ro ’ ) <=0.3105∗mu;
34 % ensures Z^0.5∗X∗Z^0.5 >0;
35 % ensures X>0;
36 mu=trace(X*Z)/n;

Fig. 13. Annotated Loop Body: X ≻ 0 and Z ≻ 0
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Finally we move to examine the code in line 36, we see that the variable mu

is updated with the expression
Tr (XZ)

n
. From the previous section, we know

〈X,Z〉 − σ〈X−, Z−〉 = 0 is an invariant. This combined with the fact that the
condition nµ = Tr (X−Z−) still holds true before the execution of line 36 implies
that

〈X,Z〉 = nσµ (45)

is a valid pre-condition for line 36 of 13. Using the invariants from (40), (44),
the pre-condition in (45), and apply the backward substitution rule, we deduct
a necessary post-condition of

‖Z0.5XZ0.5 − µI‖F ≤ 0.3105µ (46)

for lines 36 of figure 13. The post-condition in (46) implies both ‖XZ −µI‖F ≤
0.3105µ and Z0.5XZ0.5 ≻ 0. The former concludes the proof for the inductive
invariant ‖XZ − µI‖F ≤ 0.3105µ. The latter in conjunction with Z ≻ 0, which
is already proven, implies that X ≻ 0. This concludes the proof for the inductive
invariant X ≻ 0. These post-conditions are displayed in lines 34 and 35 of figure
13.

8 Future Work

In this paper, we introduce an approach to communicate high-level functional
properties of convex optimization algorithms and their proofs down to the code
level. Now we want to discuss several possible directions of interest that one
can explore in the future. On the more theoretical front, we can look at the
possibility that there might exist linear approximations to the potential function
used in the construction of the invariant. Having linear approximations would
possibly allow us to construct efficient automatic decision procedures to verify
the annotations on the code level. On the more practical front, we also need to
demonstrate the expression of the interior point semantics on an implementation-
level language like C rather than the high-level computational language used in
this paper. Related to that is the construction of a prototype tool that is capable
of autocoding a variety of convex optimization programs along with their proofs
down to the code level. There is also a need to explore the verification of those
proof annotations on the code level. It is clear that none of the Hoare triple
annotations shown in the previous section, even expressed in a more realistic
annotation language, can be handled by existing verification tools. Finally, we
also need to be able to reason about the invariants introduced in this paper in
the presence of the numerical errors due to floating-point computations.

9 Conclusions

This paper proposes the transformation of high-level functional properties of
interior point method algorithms down to implementation level for certification
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purpose. The approach is taken from a previous work done for control systems.
We give an example of a primal-dual interior point algorithms and its conver-
gence property. We show that the high-level proofs can be used as annotations
for the verification of an online optimization program.
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11 Appendix

11.1 Vectorization Functions

The function vecs is similar to the standard vectorization function but special-
ized for symmetric matrices. It is defined as, for 1 ≤ i < j ≤ n and M ∈ S

n,

vecsM =
[

M11, . . . ,
√
2Mij , . . . , Mnn

]T
. (47)

The factor
√
2 ensures the function vecs preserves the distance defined by the

respective inner products of Sn and R
n(n+1)

2 . The function mats is the inverse
of vecs. The function krons, denoted by the symbol ⊗sym, is similar to the
standard Kronecker product but specialized for symmetric matrix equations. It
has the property

(Q1 ⊗sym Q2) vecs (M) = vecs

(

1

2

(

Q1MQT
2 +Q2MQT

1

)

)

. (48)
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Let Q1 = TZ and Q2 = Tinv and M = ∆X, we get

(TZ ⊗sym Tinv) vecs (∆X) = vecs

(

1

2
(TZ∆XTinv + Tinv∆XZT )

)

. (49)

Additionally, let Q1 = T , Q2 = XTinv, and M = ∆Z, we get

(T ⊗sym XTinv) vecs (∆Z) = vecs

(

1

2
(T∆ZXTinv + TinvX∆ZT )

)

. (50)

Combining (49) and (50), we get exactly the left hand side of the third equation
in (17). Given a ∆Z, we can compute ∆X by solving Ax = b for x where

A = (TZ ⊗sym Tinv)
∆X = mats (x)

b = vecs (σµI − TinvXTinv)− (T ⊗sym XTinv) vecs (∆Z).
(51)

11.2 Annotated Code

1 %% Example SDP Code : Primal−Dual Short−Step Algorithm
2 % ensures F0>0;
3 F0=[1, 0; 0, 0.1];

4 % ensures t ranspose (F1 )==F1 ;
5 F1 =[ -0.750999 0.00499; 0.00499 0.0001];

6 % ensures t ranspose (F2 )==F2 ;
7 F2 =[0.03992 -0.999101; -0.999101 0.00002];

8 % ensures t ranspose (F3 )==F3 ;
9 F3 =[0.0016 0.00004; 0.00004 -0.999999];

10 % ensures smat (b ) >0;
11 b=[0.4; -0.2; 0.2];

12 % ensures n>=1;
13 n=length(F0);

14 % ensures m>=1;
15 m=length(b);

16 Alpha1t =[vecs(F1), vecs(F2), vecs(F3)];

17 Alpha1=Alpha1t ’;

18 % ensures Z>0;
19 Z=mats(lsqr(Alpha1 ,-b),n);

20 % ensures X>0;
21 % ensures norm(X∗Z−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu;
22 X=[0.3409 0.2407; 0.2407 0.9021];

23 P=mats(lsqr(Alpha1t ,vecs(-X-F0)),n);

24 p=vecs(P);

25 epsilon =1e-8;

26 sigma =0.75;

27 % requ i r e e x i s t s c>0 && tra c e (X∗Z)<=c ;
28 % ensures e x i s t s c>0 && phi<=c ;
29 phi=trace(X*Z);

30 % ensures n∗mu=tra c e (X∗Z) ;
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31 mu=trace(X*Z)/n;

32 %% requ i r e s phi<=c && norm(X∗Z−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu
&& X>0 && Z>0;

33 %% ensures phi<=c && norm(X∗Z−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu
&& X>0 && Z>0;

34 while (phi >epsilon)

35 % requ i r e s t r a c e (X∗Z)<=c ;
36 % requ i r e s n∗mu==tra c e (X∗Z) ;
37 % requ i r e s X>0;
38 % ensures Xm>0;
39 Xm=X;

40 % requ i r e s Z>0;
41 % ensures Zm>0;
42 % ensures t r a c e (Xm∗Zm)<=c ;
43 % ensures n∗mu==tra c e (Xm∗Zm) ;
44 Zm=Z;

45 pm=p;

46 % ensures phim<=c ;
47 phim=trace(Xm*Zm);

48 % ensures norm(Xm∗Zm−mu∗ eye ( 2 , 2 ) , ’ f ro ’ ) <=0.3105∗mu;
49 mu=trace(Xm*Zm)/n;

50 Zh=Zm ^(0.5);

51 Zhi=Zh^(-1);

52 Alpha2=krons(Zhi ,Zh ’*Xm,n,m);

53 Alpha3=krons(Zhi*Zm,Zh’,n,m);

54 rz=zeros(m,1);

55 rp=zeros(m,1);

56 rh=sigma*mu*eye(n,n)-Zh*Xm*Zh;

57 % ensures norm( Zhi ∗mats (dZm, n ) ∗Zhi , ’ f ro ’ ) <=0.7;
58 dZm=lsqr(Alpha1 ,rz);

59 % ensures norm( Zhi ∗mats (dZm, n ) ∗mats (dXm, n ) ∗Zh , ’ f ro ’ )
<=0.3105∗ sigma ∗mu;

60 dXm=lsqr(Alpha3 , vecs(rh)-Alpha2*dZm);

61 % ensures t r a c e ( mats (dXm, n ) ∗mats (dZm, n ) )==0;
62 % ensures t r a c e (Xm∗mats (dZm, n ) )+t ra c e ( mats (dXm, n ) ∗Zm)

==0.75∗n∗mu−t r a c e (Xm∗Zm) ;
63 % ensures Zhi ∗(dZm∗Xm+Zm∗dXm) ∗Zh+Zh ’ ∗ (Xm∗dZm+dXm∗Zm) ∗Zhi

’==2∗( sigma ∗mu∗ I−Zh∗Xm∗Zh) ;
64 dpm=lsqr(Alpha1t ,rp -dXm);

65 % requ i r e t r a c e ( (Xm+mats (dXm, n ) ) ∗(Zm+mats (dZm, n ) ) ) −0.75∗
t r a c e (Xm∗Zm) =0;

66 p=pm+dpm;

67 % requ i r e s 0 . 5∗norm( Zhi ∗ ( (Zm+mats (dZm, n ) ∗(Xm+mats (dXm, n )−
sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( (Xm+mats (dXm, n ) ∗(Zm+mats (dZm, n )−
sigma ∗mu∗ I ) ∗Zhi ’ , ’ f ro ’ ) <=0.3105∗ sigma ∗mu;

68 X=Xm+mats(dXm ,n);

69 % ensures t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0;
70 % requ i r e s Zm+mats (dZm, n ) >0;
71 % ensures 0 . 5∗norm( Zhi ∗(X∗Z−sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( Z∗X−sigma

∗mu∗ I ) ∗Zhi ’ , ’ f ro ’ ) <=0.3105∗ sigma ∗mu;
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72 % ensures Z>0;
73 Z=Zm+mats(dZm ,n);

74 % requ i r e s t r a c e (X∗Z)−phim<0;
75 % requ i r e s t r a c e (X∗Z) <0.76∗phim ;
76 % requ i r e s phim<=c ;
77 % ensures phi−phim<0;
78 % ensures phi <0.76∗phim ;
79 % ensures phi<=c ;
80 phi=trace(X*Z);

81 % requ i r e s Z>0;
82 % requ i r e s norm(Z^0.5∗X∗Z^0.5− sigma ∗mu∗ I , ’ f ro ’ ) <=0.5∗norm

( Zhi ∗(X∗Z−sigma ∗mu∗ I ) ∗Zh+Zh ’ ∗ ( Z∗X−sigma ∗mu∗ I ) ∗Zhi ’ , ’
f ro ’ ) ;

83 % ensures norm(Z^(0 . 5 ) ∗X∗Z^(0 . 5 )−mu∗ I , ’ f ro ’ ) <=0.3105∗mu;
84 % ensures Z^0.5∗X∗Z^0.5 >0;
85 % ensures X>0;
86 mu=trace(X*Z)/n;

87 if (phi -phim >0)

88 break;

89 end

90 end
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