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BOUNDS FOR THE HILBERT TRANSFORM WITH MATRIX A2

WEIGHTS

KELLY BICKEL, STEFANIE PETERMICHL⋆, AND BRETT D. WICK‡

Abstract. Let W denote a matrix A2 weight. In this paper we implement a scalar argument

using the square function to deduce related results for vector-valued functions on L2(R,Cd).

These results are then used to study the boundedness of the Hilbert transform and Haar

multipliers on L2(R,Cd). Our proof shortens the original argument by Treil and Volberg

and improves the dependence on the A2 characteristic. In particular, we prove that:

‖Tf‖L2(W ) . [W ]
3

2

A2
log [W ]A2

‖f‖L2(W ),

where T is either the Hilbert transform or a Haar multiplier.

1. Introduction

Write L2 ≡ L2(R,Cd), namely those functions such that

‖f‖2L2 ≡
∫

R

‖f(x)‖2
Cd dx < ∞.

For a d × d positive self-adjoint matrix-valued function W we set L2(W ) ≡ L2(R,W,Cd) to

be

‖f‖2L2(W ) ≡
∫

R

‖W 1

2 (x)f(x)‖2
Cd dx =

∫

R

〈W (x)f(x), f(x)〉
Cd dx < ∞.

We are in particular interested in those matrix weights W that satisfy the matrix A2 Muck-

enhoupt condition:
[
W

]
A2

:= sup
I

∥∥∥〈W 〉
1

2

I 〈W−1〉
1

2

I

∥∥∥
2

< ∞,

where ‖·‖ denotes the norm of the matrix acting on C
d, the supremum is taken over all

intervals and 〈W 〉I ≡ 1
|I|

∫
I
W. Now, if d = 1 and w ∈ A2, i.e. if w is a scalar-valued A2

weight, then it is well-known that the Hilbert transform H maps L2(R, w) → L2(R, w). The

question of sharp dependence was answered by Petermichl, who showed in [5] that

‖H‖L2(R,w)→L2(R,w) . [w]A2
.

In [6], Petermichl and Pott provide a simple proof establishing the boundedness of H on

L2(R, w) with constant [w]
3

2

A2
. Key tools in the proof include the linear bound for the dyadic

square function and the characterization of the Hilbert transform using dyadic shifts.
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2 K. BICKEL, S. PETERMICHL, AND B. D. WICK

Despite substantial complexities arising in the matrix valued case, Treil and Volberg showed

in [7] that if W ∈ A2, then the Hilbert transform H : L2(W ) → L2(W ) boundedly. Their

paper does not track the dependence on [W ]A2
and the question of the sharp constant remains

open.

In this paper, we study the dependence of ‖H‖L2(W )→L2(W ) on the A2 characteristic [W ]A2
.

Our arguments are strongly influenced by those in [6] and [7]. We first consider a matrix

analogue of the dyadic square function. In Theorem 3.1, we obtain bounds on this square

function-type object in terms of [W ]A2
. In Theorem 4.1, we establish that

‖H‖L2(W )→L2(W ) . [W ]
3

2

A2
log [W ]A2

.

Although these constants do not appear to be sharp, they are better than what has previ-

ously appeared in the literature. Related results for the Haar multipliers Tσ are obtained in

Theorem 5.2.

Further improvements of these estimates using the scalar proof strategy will likely require

a matrix version of the weighted Carleson Embedding Theorem and sharp bounds on related

testing conditions.

2. Basic Facts and Notation

Let D denote the standard dyadic grid. For α ∈ R and r > 0, let Dα,r denote the dyadic

grid {α + rI : I ∈ D} and let {hI}I∈Dα,r denote the Haar functions adapted to Dα,r and

normalized in L2. In much of what follows, we omit the α, r notation because the arguments

hold for all such dyadic grids. Given I ∈ D, let I+ denote its right half and I− denote its left

half. Throughout this paper, A . B indicates that A ≤ CB, for some constant C that may

depend on the dimension d.

Let f ∈ L2. To define f̂(I), let e1, . . . , ed be an orthonormal basis in C
d. Then,

f̂(I) =
d∑

j=1

〈f, hIej〉L2 ej,

where hI is the standard Haar function defined by

hI ≡ |I|− 1

2

(
1I+ − 1I

−

)
∀I ∈ D.

Similarly, define h1
I ≡ 1 1

|I|
for any I ∈ D. Notice that for non-cancellative Haar functions we

chose a different normalization. Now, let W be a matrix weight and for any interval I, set

W (I) ≡
∫
I
W. At a later point, we will require the use of disbalanced Haar functions adapted

to W . In the matrix setting, these are considered by Treil and Volberg in [7]. To define them,

fix I ∈ D and let e1I , . . . , e
d
I be a set of orthonormal eigenvectors of 〈W 〉I . Define

wk
I ≡

∥∥∥〈W 〉
1

2

I e
k
I

∥∥∥
−1

Cd
=

∥∥∥〈W 〉−
1

2

I ekI

∥∥∥
Cd

.
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Then, the vector-valued functions {wk
IhIe

k
I}I∈D,1≤k≤d are normalized in L2(W ). Define the

disbalanced Haar functions

g
W,k
I ≡ wk

IhIe
k
I + h1

I ẽ
k
I ,

where the vector ẽkI = A(W, I)ekI and

A(W, I) =
1

2
|I| 12 〈W 〉−1

I

(
〈W 〉I

−

− 〈W 〉I+
)
〈W 〉−

1

2

I .

Simple calculations, which appear in [7], show that

(1)
〈
g
W,k
I , g

W,j
J

〉
W

= 0 ∀ J 6= I, 1 ≤ j, k ≤ d,

and the functions satisfy ‖gW,k
I ‖L2(W ) ≤ 5. It is also clear that

(2) hIe
k
I =

(
wk

I

)−1
g
W,k
I −

(
wk

I

)−1
A(W, I)h1

Ie
k
I , ∀I ∈ D, k = 1, . . . , d.

3. Square Function Estimate

We first consider a generalization of the square function SW to this matrix setting. Namely

start with the simple Haar multiplier operator

Tσf =
∑

I∈D

σI f̂(I)hI .

where σI ∈ {−1; 1}. Take expectation is in the natural probability space of sequences in

{−1, 1} as follows:

E

∫

R

〈W (x)Tσf(x), Tσf(x)〉Cd dx =

∫

R

E

∑

I∈D

∑

J∈D

σIσJhI(x)hJ(x)
〈
W (x)f̂(I), f̂(J)

〉
Cd

dx

=
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

.

Therefore

SW : L2(R,Cd) → L2(R,R); SWf(x) :=
√

E 〈W (x)Tσf(x), Tσf(x)〉Cd ,

so that ‖SWf‖2
L2 =

∑
I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

.

In the scalar situation, the square function is bounded on L2(R, w) with linear dependence

on [w]A2
. For matrix A2 weights, we obtain a similar bound, which differs from the scalar

bound by a logarithm:

Theorem 3.1. Let W be a d× d matrix weight in A2. Then
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

. [W ]2A2
log [W ]A2

‖f‖2L2(W ) ∀f ∈ L2(W ).
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To prove Theorem 3.1, we initially proceed as in Petermichl and Pott’s proof of the scalar

case in [6]. Some arguments generalize easily, but to finish the proof, we also require the

following result of Treil and Volberg, which appears as Theorem 6.1 in [7]:

Theorem 3.2 (Treil and Volberg, [7]). Let W be a d× d matrix weight in A2. Then for all

f ∈ L2,

∑

I∈D

|I|
∥∥∥〈W 〉−

1

2

I

(
〈W 〉I

−

− 〈W 〉I+
)
〈W 〉−

1

2

I

∥∥∥
2 ∥∥∥〈W 〉−

1

2

I

〈
W

1

2f
〉
I

∥∥∥
2

. [W ]A2
log [W ]A2

‖f‖2L2 .

The constant [W ]A2
log [W ]A2

is not specified in Treil-Volberg’s statement of the theorem.

However, a careful reading of the proofs of their Lemma 3.1, Lemma 3.6, Theorem 4.1, and

Theorem 6.1 reveal the above constant. A proof of the square function-type bound using

only the arguments from [6] requires a matrix version of the weighted Carleson Embedding

Theorem and testing conditions on a particular dyadic sum. We conjecture that such tools

exist and given such tools, would have a proof of Conjecture 6.1.

3.1. Proof of Theorem 3.1. The argument in [6] requires a lower bound on the square

function. Our matrix analogue is Theorem 3.3 and the proof utilizes both arguments from

[6] and Theorem 3.2.

Theorem 3.3. Let W be a d× d matrix weight in A2. Then

‖f‖2L2(W ) . [W ]A2
log [W ]A2

∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

∀f ∈ L2(W ).

Proof. As in [6], we can assume without loss of generality that W and W−1 are bounded. For

more details, see Remark 3.4. Then L2(W ) and L2 are equal as sets. For ease of notation,

define the constant

CW ≡ [W ]A2
log [W ]A2

.

Let e1, . . . , ed be the standard orthonormal basis in C
d. Define the discrete multiplication

operator DW : L2 → L2 by

DW : hIek 7→ 〈W 〉IhIek ∀I ∈ D, k = 1, . . . , d,

and let MW denote multiplication by W . Observe that

〈DWf, f〉L2
=

∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

.

We can rewrite the desired inequality as:

(3) 〈MWf, f〉L2 . CW 〈DWf, f〉L2 , ∀f ∈ L2.
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As in [6], we convert this to an inverse inequality. Since W and W−1 are bounded, DW and

MW are bounded and invertible with M−1
W = MW−1 and D−1

W defined by

D−1
W : hIek 7→ 〈W 〉−1

I hIek ∀I ∈ D, k = 1, . . . , d.

Since MW and DW and their inverses are positive, it is easy to show that (3) is equivalent to

(4) 〈D−1
W f, f〉L2 . CW 〈M−1

W f, f〉L2 , ∀f ∈ L2.

So to prove Theorem 3.3, we need to establish:
∑

I∈D

〈
〈W 〉−1

I f̂(I), f̂(I)
〉
Cd

. CW‖f‖2L2(W−1) ∀f ∈ L2.

We will rewrite the sum using Haar functions adapted to W . First, for I ∈ D, let e1I , . . . , e
d
I

be a set of orthonormal eigenvectors of 〈W 〉I . Recall that

wk
I ≡

∥∥∥〈W 〉
1

2

I e
k
I

∥∥∥
−1

Cd
=

∥∥∥〈W 〉−
1

2

I ekI

∥∥∥
Cd

.

Using these definitions, expand the sum as follows:

∑

I∈D

〈
〈W 〉−1

I f̂(I), f̂(I)
〉
Cd

=
∑

I∈D

d∑

j,k=1

〈
〈W 〉−1

I 〈f, hIe
k
I 〉L2ekI , 〈f, hIe

j
I〉L2e

j
I

〉
Cd

=
∑

I∈D

d∑

j,k=1

〈f, hIe
k
I 〉L2〈f, hIe

j
I〉L2

〈
〈W 〉−1

I ekI , e
j
I

〉
Cd

=
∑

I∈D

d∑

k=1

∣∣〈f, hIe
k
I 〉L2

∣∣2 〈〈W 〉−1
I ekI , e

k
I

〉
Cd

=
∑

I∈D

d∑

k=1

(
wk

I

)2 ∣∣〈f, hIe
k
I 〉L2

∣∣2 .

Now, we can expand the hIe
k
I using the disbalanced Haar functions adapted to W as in (2).

This transforms our sum as follows:

∑

I∈D

d∑

k=1

(
wk

I

)2 ∣∣〈f, hIe
k
I 〉L2

∣∣2 =
∑

I∈D

d∑

k=1

(
wk

I

)2 ∣∣∣〈f,
(
wk

I

)−1
g
W,k
I −

(
wk

I

)−1
A(W, I)h1

Ie
k
I 〉L2

∣∣∣
2

≤
∑

I∈D

d∑

k=1

∣∣∣〈f, gW,k
I 〉L2

∣∣∣
2

+ 2
∑

I∈D

d∑

k=1

∣∣∣〈f, gW,k
I 〉L2〈f, A(W, I)h1

Ie
k
I 〉L2

∣∣∣

+
∑

I∈D

d∑

k=1

∣∣〈f, A(W, I)h1
Ie

k
I 〉L2

∣∣2

= S1 + S2 + S3.
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It is clear that

S1 =
∑

I∈D

d∑

k=1

∣∣∣〈f, gW,k
I 〉L2

∣∣∣
2

=
∑

I∈D

d∑

k=1

∣∣∣〈W−1f, g
W,k
I 〉L2(W )

∣∣∣
2

. ‖f‖2L2(W−1),

since the g
W,k
I satisfy (1) and are uniformly bounded in L2(W ). Since S2 . S

1

2

1 S
1

2

3 , the main

term to understand is S3. It can be written as

S3 =
∑

I∈D

d∑

k=1

〈
f,

1

2
|I| 12 〈W 〉−1

I

(
〈W 〉I+ − 〈W 〉I

−

)
〈W 〉−

1

2

I h1
Ie

k
I

〉2

L2

(5)

=
∑

I∈D

d∑

k=1

〈
f, 〈W 〉−1

I Ŵ (I)〈W 〉−
1

2

I h1
Ie

k
I

〉2

L2

=
∑

I∈D

d∑

k=1

〈
〈f〉I , 〈W 〉−1

I Ŵ (I)〈W 〉−
1

2

I ekI

〉2

Cd

=
∑

I∈D

d∑

k=1

〈
〈W 〉−

1

2

I 〈f〉I , 〈W 〉−
1

2

I Ŵ (I)〈W 〉−
1

2

I ekI

〉2

Cd
.(6)

Now, we can bound S3 as follows:

S3 ≤
∑

I∈D

d∑

k=1

∥∥∥〈W 〉−
1

2

I 〈f〉I
∥∥∥
2

Cd

∥∥∥〈W 〉−
1

2

I Ŵ (I)〈W 〉−
1

2

I ekI

∥∥∥
2

Cd

.
∑

I∈D

∥∥∥〈W 〉−
1

2

I 〈f〉I
∥∥∥
2

Cd

∥∥∥〈W 〉−
1

2

I Ŵ (I)〈W 〉−
1

2

I

∥∥∥
2

. [W ]A2
log [W ]A2

‖f‖2L2(W−1),

where we used Theorem 3.2 applied to g = W− 1

2f. This also implies a similar bound for S2,

and combining our estimates for S1, S2, S3 completes the proof of Theorem 3.3. �

Using Theorem 3.3, we can easily prove Theorem 3.1:

Proof. Again, assume without loss of generality that W and W−1 are bounded and define

the constant BW by

BW = [W ]2A2
log [W ]A2

.

Using our previous notation, Theorem 3.1 is equivalent to the inequality

〈DWf, f〉L2 . BW 〈MWf, f〉L2 , ∀f ∈ L2.

We require the following operator inequality

DW ≤ [W ]A2
(DW−1)−1

.
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The A2 condition implies that for every I ∈ D and vector eI ∈ C
d,

〈
〈W 〉

1

2

I 〈W−1〉
1

2

I eI , 〈W 〉
1

2

I 〈W−1〉
1

2

I eI

〉
Cd

≤ [W ]A2
‖eI‖2Cd .

Fixing g ∈ L2 and setting eI = 〈W−1〉−
1

2

I ĝ(I), we can conclude
〈
〈W 〉

1

2

I ĝ(I), 〈W 〉
1

2

I ĝ(I)
〉
Cd

≤ [W ]A2

〈
〈W−1〉−

1

2

I ĝ(I), 〈W−1〉−
1

2

I ĝ(I)
〉
Cd

.

Then

〈DWg, g〉L2 =
∑

I∈D

〈
〈W 〉

1

2

I ĝ(I), 〈W 〉
1

2

I ĝ(I)
〉
Cd

≤ [W ]A2

∑

I∈D

〈
〈W−1〉−

1

2

I ĝ(I), 〈W−1〉−
1

2

I ĝ(I)
〉
Cd

= [W ]A2
〈(DW−1)−1

g, g〉L2 .

Combining that estimate with (4) from Theorem 3.3 applied to W−1 gives:

〈DWg, g〉L2 . [W ]A2
〈(DW−1)−1

g, g〉L2 . [W ]A2
CW 〈M−1

W−1g, g〉L2 = BW‖g‖L2(W ) ∀g ∈ L2,

which completes the proof. �

Remark 3.4 (Reducing to Bounded Weights). The proof of Theorems 3.1 and 3.3 only

handles weights W with both W and W−1 bounded. To reduce to this case, fix W ∈ A2 and

write

W (x) =
d∑

j=1

λj(x)PEj
(x) for x ∈ R,

where the λj(x) are eigenvalues of W (x), the Ej(x) are the associated orthogonal eigenspaces,

and the PEj(x) are the orthogonal projections onto the Ej(x). Define

En
1 (x) ≡ Eigenspaces of W (x) corresponding to eigenvalues λj(x) ≤ 1

n
;

En
2 (x) ≡ Eigenspaces of W (x) corresponding to eigenvalues 1

n
< λj(x) < n;

En
3 (x) ≡ Eigenspaces of W (x) corresponding to eigenvalues λj(x) ≥ n.

Using these spaces, truncate W (x) as follows:

Wn(x) =
1
n
PEn

1
(x) + PEn

2
(x)W (x)PEn

2
(x) + nPEn

3
(x).

It is easy to see that Wn,W
−1
n ≤ nId×d. Each Wn is also an A2 weight with

(7) [Wn]A2
≡ sup

I

∥∥∥〈Wn〉
1

2

I 〈W−1
n 〉

1

2

I

∥∥∥
2

. [W ]A2
,
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where the constant depends on the dimension d. This is not hard to show, but relies on the

following two facts about positive self-adjoint matrices:

Fact 1: If A1, A2 > 0, then
∥∥∥A

1

2

1A
1

2

2

∥∥∥
2

≈ Tr(A1A2).

Fact 2: If A1, A2, B1, B2 ≥ 0 and each Aj ≤ Bj, then Tr(A1A2) ≤ Tr(B1B2).

Here, the implied constants again depend on d. Fact 1 allows us to equate
∥∥∥〈Wn〉

1

2

I 〈W−1
n 〉

1

2

I

∥∥∥
2

≈
Tr(〈Wn〉I 〈W−1

n 〉I). Then, using Fact 2 and the matrix inequalities

〈Wn〉I ≤ nId×d

〈
PEn

2
(x)W (x)PEn

2
(x) + nPEn

3
(x)

〉
I
≤ 〈W 〉I

for Wn and similar ones for W−1
n , one can easily deduce (7). Then, Theorem 3.3 gives:

(8) ‖f‖2L2(Wn)
. [Wn]A2

log [Wn]A2

∑

I∈D

〈
〈Wn〉I f̂(I), f̂(I)

〉
Cd

∀f ∈ L2(Wn).

Using basic convergence theorems, one can show that both

lim
n→∞

‖f‖2L2(Wn)
= ‖f‖2L2(W ) and lim

n→∞

∑

I∈D

〈
〈Wn〉I f̂(I), f̂(I)

〉
Cd

=
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

,

for f ∈ L2 ∩ L2(W ). Combining this with (7) and (8) gives Theorem 3.3 for general W .

Theorem 3.1 follows similarly.

4. The Hilbert Transform

The bounds given in Theorems 3.1 and 3.3 imply similar bounds for the Hilbert transform

on L2(W ). First, fix α ∈ R and r > 0. The densely-defined shift operator X
α,r on L2(R) is

given by

X
α,rf ≡ 1√

2

∑

I∈Dα,r

f̂(I)
(
hI

−

− hI+

)
,

where I− is the left half of I and I+ is the right half of I. In [4], S. Petermichl showed that

the Hilbert transform H on L2(R) is basically an average of these dyadic shifts. Specifically,

there is a constant c and L∞(R) function b such that H = cT +Mb, where T is in the weak

operator closure of the convex hull of the set {Xα,r}α,r in L(L2(R)) and Mb is multiplication

by b. The Hilbert transform on L2(R,Cd), also denoted H, is the scalar Hilbert transform

applied component-wise. The dyadic shift operators Xα,r on L2(R,Cd) are similarly defined

by

X
α,rf ≡ 1√

2

∑

I∈Dα,r

f̂(I)
(
hI

−

− hI+

)
,

which is the same as applying the scalar X
α,r shifts component-wise. Using the scalar-

result, the Hilbert transform H on L2(R,Cd) satisfies H = cT̃ + Mb where T̃ is T applied
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component-wise and so, is in the weak operator closure of the convex hull of the set {Xα,r}α,r
in L(L2(R,Cd)).

In [7], Treil and Volberg show that for A2 weights W , the Hilbert transform is bounded on

L2(W ), but do not track the dependence on the A2 characteristic [W ]A2
. In contrast, using

our square function estimates, we are able to establish the following:

Theorem 4.1. Let W be a d× d matrix weight in A2. Then

‖Hf‖L2(W ) . [W ]
3

2

A2
log [W ]A2

‖f‖L2(W ) ∀ f ∈ L2(W ).

Proof. As before, we omit the α, r notation. Observe that the square-function object in

Theorems 3.1 and 3.3 does not “see” dyadic shifts. Specifically, let Ĩ denote the parent of I

in the dyadic grid. Then

∑

I∈D

〈
〈W 〉IX̂f(I),X̂f(I)

〉
Cd

=
1

2

∑

I∈D

〈
〈W 〉I f̂(Ĩ), f̂(Ĩ)

〉
Cd

=
∑

I∈D

〈
1

2

(
〈W 〉I

−

+ 〈W 〉I+
)
f̂(I), f̂(I)

〉

Cd

=
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

.

Now, using Theorems 3.1 and 3.3, we have

‖Xf‖2L2(W ) . [W ]A2
log [W ]A2

∑

I∈D

〈
〈W 〉IX̂f(I),X̂f(I)

〉
Cd

= [W ]A2
log [W ]A2

∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

. [W ]3A2
(log [W ]A2

)2‖f‖2L2(W ).

The formula for H in terms of dyadic shifts implies that

‖Hf‖2L2(W ) . sup
α,r

‖Xα,rf‖2L2(W ) + ‖b‖2∞‖f‖2L2(W ) . [W ]3A2
(log [W ]A2

)2‖f‖2L2(W ),

as desired. �

5. Haar Multipliers

The arguments above extend easily to Haar multipliers. To begin, let σ = {σI}I∈D be a

sequence of matrices and define the Haar multiplier Tσ by

Tσf ≡
∑

I∈D

σI f̂(I)hI .
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To obtain boundedness on L2(W ), it is crucial that the matrices σI interact well with W . To

be precise, fix a weight W ∈ A2 and define

‖σ‖∞ ≡ inf
{
C : 〈W 〉−

1

2

I σ∗
I 〈W 〉I σI 〈W 〉−

1

2

I ≤ C2Id×d ∀I ∈ D
}
.

Equivalently, we could define ‖σ‖∞ = supI∈D

∥∥∥〈W 〉
1

2

I σI 〈W 〉−
1

2

I

∥∥∥. Then, a variant of the

following result is established by Isralowitz, Kwon and Pott in [2]:

Theorem 5.1. Let W ∈ A2 and σ = {σI}I∈D a sequence of matrices. Then the Haar

multiplier Tσ is bounded on L2(W ) if and only if ‖σ‖∞ < ∞.

Here, we have translated their result to the notation of this paper. It should also be noted

that their paper handles the entire range 1 < p < ∞. Now, we provide a new and simpler

proof of this boundedness result for p = 2. Using our previous arguments, we are also able

to track the dependence on [W ]A2
.

Theorem 5.2. Let W be a d× d matrix weight in A2 and let σ = {σI}I∈D be a sequence of

matrices. Then Tσ is bounded on L2(W ) if and only if ‖σ‖∞ < ∞. Moreover,

‖Tσf‖L2(W ) . [W ]
3

2

A2
log [W ]A2

‖σ‖∞ ‖f‖L2(W ).

Proof. Necessity is almost immediate. Fix I ∈ D and e ∈ C
d and simply set f ≡ 〈W 〉−

1

2

I hIe.

Then simple computations prove that Tσf = σI〈W 〉−
1

2

I hIe and the following norm equalities:

‖f‖2L2(W ) = ‖〈W 〉−
1

2

I hIe‖2L2(W ) = ‖e‖2
Cd

‖Tσf‖2L2(W ) =
∥∥∥σI〈W 〉−

1

2

I hIe

∥∥∥
2

L2(W )
=

〈
〈W 〉−

1

2

I σ∗
I 〈W 〉I σI 〈W 〉−

1

2

I e, e
〉
Cd

.

Assuming Tσ is bounded on L2(W ), we can then conclude:
〈
〈W 〉−

1

2

I σ∗
I 〈W 〉I σI 〈W 〉−

1

2

I e, e
〉
Cd

= ‖Tσf‖2L2(W ) ≤ ‖Tσ‖2L2(W )→L2(W ) ‖e‖
2
Cd .

Since e ∈ C
d and I ∈ D was arbitrary we have that ‖σ‖∞ < ∞.

The proof of sufficiency, with the desired constant, is largely a repetition of computations

from earlier in the paper. Again, observe that the square function in Theorems 3.1 and 3.3

does not “see” martingale transforms. Specifically,
∑

I∈D

〈
〈W 〉I T̂σf(I), T̂σf(I)

〉
Cd

=
∑

I∈D

〈
〈W 〉IσI f̂(I), σI f̂(I)

〉
Cd

=
∑

I∈D

〈
〈W 〉IσI〈W 〉−

1

2

I 〈W 〉
1

2

I f̂(I), σI〈W 〉−
1

2

I 〈W 〉
1

2

I f̂(I)
〉
Cd

≤ ‖σ‖2∞
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

.
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Simple applications of Theorems 3.1 and 3.3 then yield

‖Tσf‖2L2(W ) . [W ]A2
log [W ]A2

∑

I∈D

〈
〈W 〉I T̂σf(I), T̂σf(I)

〉
Cd

≤ [W ]A2
log [W ]A2

‖σ‖2∞
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

. [W ]3A2
(log [W ]A2

)2 ‖σ‖2∞ ‖f‖2L2(W ),

which gives the desired bound. �

6. Open Questions

6.1. Square Function Estimates. If w is a scalar-valued A2 weight, then Theorem 3.1 is

true with [w]2A2
replacing [w]2A2

log[w]A2
. This motivates the following conjecture:

Conjecture 6.1. Let W be a d× d matrix weight in A2. Then
∑

I∈D

〈
〈W 〉I f̂(I), f̂(I)

〉
Cd

. [W ]2A2
‖f‖2L2(W ) ∀f ∈ L2(W ).

To prove Conjecture 6.1, we would need to control the term S3 from (5) in a more optimal

way. Our current method of using Theorem 3.2 introduces the troublesome log [W ]A2
term.

An alternate method of controlling S3 would use a matrix version of the weighted Carleson

Embedding Theorem. One would first control S3 by

S3 =
∑

I∈D

d∑

k=1

〈
〈W 〉−

1

2

I Ŵ (I)〈W 〉−1
I 〈f〉I , ekI

〉2

Cd

.
∑

I∈D

∥∥∥〈W 〉−
1

2

I Ŵ (I)〈W 〉−1
I 〈f〉I

∥∥∥
2

Cd

=
∑

I∈D

〈
〈W 〉−1

I Ŵ (I)〈W 〉−1
I Ŵ (I)〈W 〉−1

I 〈f〉I , 〈f〉I
〉
Cd

.

To control this estimate for S3, we need two things:

6.1.1. A matrix version of the weighted Carleson Embedding Theorem. Suppose that AI is a

sequence of non-negative operators on C
d. We would like to prove that

∑

I∈D

〈AI 〈f〉I , 〈f〉I〉Cd . C ‖f‖2L2(W−1)

if and only if (in the sense of positive operators)

1

|J |
∑

I⊂J

〈W 〉I AI 〈W 〉I ≤ C 〈W 〉J ∀ J ∈ D.

By fixing e ∈ C
d and J ∈ D and setting f(x) = 1JW (x)e, one can show that the embedding

implies that the testing condition holds. We need to prove the converse. In the unweighted
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case, the scalar-valued Carleson Embedding Theorem can be used to obtain the unweighted

version of this matrix embedding theorem. The analogous arguments do not immediately

work for weights. However, similar results have been established by Nazarov, Pisier, Treil,

and Volberg in [3] in the unweighted setting. Additionally, a recent result of Isralowitz,

Kwon, and Pott, see [2], provides a proof of an estimate as above, but does not explicitly

track the constants (and a reading of their proof shows that the method used will introduce

some additional characteristic of W into the estimates).

6.1.2. Bounds on a related dyadic sum. The AI that appear in S3 are the operators

〈W 〉−1
I Ŵ (I)〈W 〉−1

I Ŵ (I)〈W 〉−1
I .

Given the matrix weighted Carleson Embedding Theorem conjectured above, we will need

the appropriate sum estimate to apply it to S3. Indeed, we require

1

|J |
∑

I⊂J

Ŵ (I)〈W 〉−1
I Ŵ (I) . [W ]A2

〈W 〉J , ∀J ∈ D.

In the scalar case, this is proved by Wittwer in [8] using estimates from Buckley [1]. Currently,

it is not clear how to obtain the matrix analogue of this estimate.

6.2. The Hilbert Transform and Haar Multipliers. If w is a scalar-valued A2 weight,

then Theorems 4.1 and 5.2 are true with [w]A2
replacing [w]

3

2

A2
log[w]A2

. This motivates the

following conjecture:

Conjecture 6.2. Let W be a d×d matrix weight in A2 and let {σI} be a sequence of matrices

satisfying ‖σ‖∞ < ∞. Then

‖H‖L2(W )→L2(W ) . [W ]A2
;

‖Tσ‖L2(W )→L2(W ) . [W ]A2
‖σ‖∞ .

Given our current tools, those estimates seem out of reach. However, if we could prove

Conjecture 6.1 by establishing a bound of [W ]A2
in Theorem 3.3, then the arguments from

the proof of Theorems 4.1 and 5.2 would immediately imply that

‖H‖L2(W )→L2(W ) . [W ]
3

2

A2
;

‖Tσ‖L2(W )→L2(W ) . [W ]
3

2

A2
‖σ‖∞ .
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