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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
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Unsupervised Post-Nonlinear Unmixing of
Hyperspectral Images Using a Hamiltonian

Monte Carlo Algorithm
Yoann Altmann,Member, IEEE, Nicolas Dobigeon,Senior Member, IEEE, and Jean-Yves Tourneret

Abstract—This paper presents a nonlinear mixing model for
hyperspectral image unmixing. The proposed model assumes that
the pixel reflectances are post-nonlinear functions of unknown
pure spectral components contaminated by an additive white
Gaussian noise. These nonlinear functions are approximated
using second-order polynomials leading to a polynomial post-
nonlinear mixing model. A Bayesian algorithm is proposed
to estimate the parameters involved in the model yielding an
unsupervised nonlinear unmixing algorithm. Due to the large
number of parameters to be estimated, an efficient Hamiltonian
Monte Carlo algorithm is investigated. The classical leapfrog
steps of this algorithm are modified to handle the parameter
constraints. The performance of the unmixing strategy, including
convergence and parameter tuning, is first evaluated on synthetic
data. Simulations conducted with real data finally show the
accuracy of the proposed unmixing strategy for the analysis of
hyperspectral images.

Index Terms—Hyperspectral imagery, unsupervised spectral
unmixing, Hamiltonian Monte Carlo, post-nonlinear model.

I. I NTRODUCTION

I DENTIFYING macroscopic materials and quantifying the
proportions of these materials are major issues when ana-

lyzing hyperspectral images. This blind source separation
problem, also referred to as unsupervised spectral unmixing
(SU), has been widely studied for the applications where the
pixel reflectances are linear combinations of pure component
spectra [1]–[5]. However, as explained in [6] and [7], the
linear mixing model (LMM) can be inappropriate for some
hyperspectral images, such as those containing sand, trees or
vegetation. Nonlinear mixing models (NLMMs) provide an
interesting alternative for overcoming the inherent limitations
of the LMM. They have been proposed in the hyperspectral
image literature and cfan be divided into two main classes.

The first class of NLMMs consists of physical models
based on the nature of the environment. These models include
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the bidirectional reflectance based model proposed in [8] for
intimate mixtures associated with sand-like materials, com-
binations of LMM and intimate mixture models [9] and the
bilinear/polynomial models studied in [10]–[17] to account
for scattering effects mainly observed in vegetation and urban
areas. The second class of NLMMs contains more flexible
models allowing different kinds of nonlinearities to be approx-
imated. Precisely, these analytical models are not explicitly
based on the physical phenomena involved in the mixing
process but are able to model different deviations from the
classical LMM. Such deviations can result, for instance, from
the presence of relief or multi-layered materials, from illu-
mination heterogeneity, or from the spectral variability of the
scene components. These flexible models can be constructed
from neural networks [18], [19], kernels [20]–[22], or post-
nonlinear transformations [23]–[25] (The reader is invited to
consult [26] for a recent review). In particular, a polynomial
post-nonlinear mixing model (PPNMM) has recently shown
interesting properties for the SU of hyperspectral images
[27]. This model assumes that the observed pixels result
from nonlinear transformations applied to linear combina-
tions of endmembers. The nonlinearities are approximated by
second-order polynomials. It has been shown in [27] that the
PPNMM is a flexible model (in terms of pixel reconstruction)
that can provide accurate abundance estimates for nonlinear
unmixing.

Most nonlinear unmixing strategies available in the liter-
ature are supervised, i.e., the endmembers contained in the
image are assumed to be known (chosen from a spectral
library or extracted from the data by an endmember extraction
algorithm (EEA)). Moreover, most existing EEAs rely on the
LMM [28]–[30] and thus can be inaccurate for nonlinear mix-
tures. Recently, a nonlinear EEA based on the approximation
of geodesic distances has been proposed in [31] to extract
endmembers from the data. However, this algorithm can suffer
from the absence of pure pixels in the image (as most linear
EEAs). This paper presents a new fully unsupervised Bayesian
unmixing algorithm based on the PPNMM studied in [27]. The
proposed method allows a joint estimation of the endmembers
and abundances (mixing coefficients) and does not assume
the presence of pure pixels in the observed image. In the
Bayesian framework, appropriate prior distributions are chosen
for the unknown PPNMM parameters, i.e., the endmembers,
the abundances, the nonlinearity parameters and the noise
variances. The joint posterior distribution of these parameters
is then derived. Since the classical Bayesian estimators cannot



be easily computed from this joint posterior we investigate
a Markov chain Monte Carlo (MCMC) method to generate
samples according to this posterior. More precisely, following
the principles of the Gibbs sampler, samples are generated
according to the conditional distributions of the posterior. Due
to the large number of parameters to be estimated we propose
to use a Hamiltonian Monte Carlo (HMC) [32] method to
sample according to some of theconditional distributions.
HMCs are powerful simulation strategies based on Hamil-
tonian dynamics which can improve the convergence and
mixing properties of classical MCMC methods (such as the
Gibbs sampler and the Metropolis-Hastings algorithm) [33],
[34]. These methods have received growing interest in many
applications, especially when the number of parameters to be
estimated is large [35], [36]. The classical HMC can only
be used for unconstrained variables. However, new HMC
methods have been recently proposed to handle constrained
variables [33, Chap. 5] [37], [38] which allow HMCs to sample
according to the posterior of the Bayesian model proposed for
SU. Finally, as in any MCMC method, the generated samples
are used to compute Bayesian estimators as well as measures
of uncertainties such as confidence intervals.

The problem addressed in this paper is the unsupervised
nonlinear unmixing of hyperspectral images. The main contri-
bution of this paper is a Bayesian approach which consists of
estimating jointly the endmembers and the abundances using
the PPNMM. Appropriate prior distributions are assigned to
the unknown parameters. In particular, sparsity promoting pri-
ors are considered for the nonlinearity parameters. To handle
the large number of parameters to be sampled, an efficient
constrained HMC method is used, leading to an efficient
sampling procedure.

The paper is organized as follows. Section II introduces the
PPNMM for hyperspectral image analysis. Section III presents
the hierarchical Bayesian model associated with the proposed
PPNMM and its posterior distribution. The constrained HMC
(CHMC) algorithm used to sample some parameters of this
posterior is described in Section IV. The CHMC is coupled
with a standard Gibbs sampler presented in Section V. Some
simulation results conducted on synthetic and real data are
shown and discussed in Sections VI and VII. Conclusions are
finally reported in Section VIII.

II. PROBLEM FORMULATION

A. Polynomial Post-Nonlinear Mixing Model

This section recalls the nonlinear mixing model used in [27]
for supervised SU of hyperspectral images. We consider a set
of N observed spectrayn = [yn,1, . . . , yn,L ]T , n ∈ {1, . . . , N}

whereL is the number of spectral bands. Each of these spectra
is defined as a nonlinear transformationgn of a linear mixture
of R spectramr contaminated by additive noise

yn = gn

(

R
∑

r=1

ar,nmr

)

+ en = gn (M an) + en (1)

wheremr = [mr,1, . . . , mr,L ]T is the spectrum of ther th mate-
rial present in the scene,ar,n is its corresponding proportion in

thenth pixel, R is the number of endmembers contained in the
image andgn is a nonlinear function associated with thenth
pixel. Moreover,en is an additive independently distributed
zero-mean Gaussian noise sequence with diagonal covariance
matrix � = diag

(

σ
2
)

, denoted asen ∼ N (0L,�), where
σ

2 = [σ 2
1 , . . . , σ 2

L ]T is the vector of theL noise variances and
diag
(

σ
2
)

is anL × L diagonal matrix containing the elements
of the vector σ

2. Note that the usual matrix and vector
notationsM = [m1, . . . , mR] and an = [a1,n, . . . , aR,n]T

have been used in the right hand side of (1). As in [27], theN
nonlinear functionsgn are defined as second order polynomial
nonlinearities defined by

gn : [0, 1]L → R
L

s �→
[

s1 + bns2
1, . . . , sL + bns2

L

]T
(2)

with s = [s1, . . . , sL ]T andbn is a real parameter. Motivations
for considering polynomial nonlinearities have been discussed
in [27]. In particular, it has been shown that the PPNMM
involves bilinear and quadratic terms (with respect to the
endmembers) which have been considered to handle multiple
scattering effects [14], [15]. Thus, it is very flexible and can
approximate many different nonlinearities. Because the non-
linearity is characterized by a single nonlinearity parameter per
pixel, it is difficult to infer the sources of nonlinearities that
can occur in the image pixels using the PPNMM. However, it
allows linearly/nonlinearly mixed regions in the image to be
identified (as will be shown in Section VII). Straightforward
computations allow the PPNMM observation matrix to be
expressed as follows

Y = MA + [(MA ) ⊙ (MA )] diag(b) + E (3)

whereA = [a1, . . . , aN ] is anR×N matrix,Y = [y1, . . . , yN]

andE = [e1, . . . , eN ] are L × N matrices,b = [b1, . . . , bN ]T

is an N × 1 vector containing the nonlinearity parameters and
⊙ denotes the Hadamard (termwise) product.

B. Abundance Reparametrization

Due to physical considerations, the abundance vectorsan

satisfy the following positivity and sum-to-one constraints

R
∑

r=1

ar,n = 1, ar,n > 0,∀r ∈ {1, . . . , R}. (4)

To handle these constraints, we propose to reparameterize the
abundance vectors belonging to the following set

S =

{

a = [a1, . . . , aR]T

∣

∣

∣

∣

∣

ar > 0,

R
∑

r=1

ar = 1

}

(5)

using the following transformation

ar,n =

(

r−1
∏

k=1

zk,n

)

×

{

1 − zr,n if r < R
1 if r = R.

(6)

This transformation has beenrecently suggested in [39]. One
motivation for using the latent variableszr,n instead ofar,n is



the fact that the constraints (4) for thenth abundance vector
an express as

0 < zr,n < 1, ∀r ∈ {1, . . . , R − 1} (7)

for the nth coefficient vectorzn = [z1,n, . . . , zR−1,n]T . As a
consequence, the constraints (7) are much easier to handle
for the sampling procedure than (4) (as will be shown in
Sections IV and V). It is interesting to note that the abundance
reparametrization considered in this paper depends on the
endmember order. This point will be discussed in Section V-A.
The next section presents the Bayesian model associated with
the PPNMM (1) for SU.

III. B AYESIAN MODEL

This section generalizes the hierarchical Bayesian model
introduced in [27] in order to jointly estimate the abundances
and endmembers, leading to a fully unsupervised hyperspectral
unmixing algorithm. The unknown parameter vector associated
with the PPNMM contains the reparameterized abundances
Z = [z1, . . . , zN ] (satisfying the constraints (7)), the end-
member matrixM , the nonlinearity parameter vectorb and
the additive noise varianceσ 2. This section summarizes the
likelihood and the parameter priors (associated with the pro-
posed hierarchical Bayesian PPNMM) introduced to perform
nonlinear unsupervised hyperspectral unmixing.

A. Likelihood

Equation (3) shows thatyn|M , zn, bn, σ 2 is distributed
according to a Gaussiandistribution with meangn (M an)

and covariance matrix�, denoted asyn|M , zn, bn, σ 2 ∼

N
(

gn (M an) ,�
)

. Note that the abundance vectoran should
be denoted asan(zn). However, the argumentzn has been
omitted for brevity. Assuming independence between the
observed pixels, the joint likelihood of the observation matrix
Y can be expressed as

f (Y|M , Z, b, σ 2) ∝ |�|−N/2etr

[

−
(Y − X)T

�
−1(Y − X)

2

]

(8)

where∝ means “proportional to”, etr(·) denotes the exponen-
tial trace andX = MA +[(MA ) ⊙ (MA )] diag(b) is anL×N
matrix.

B. Parameter Priors

1) Coefficient MatrixZ: To reflect the lack of prior knowl-
edge about the abundances, we propose to assign prior dis-
tributions for the coefficient vectorzn that correspond to
noninformative prior distributions foran. More precisely,
assigning the following beta priors

zn,r ∼ Be(R− r, 1) r ∈ {1, . . . , R − 1} (9)

and assuming prior independence between the elements ofzn

yield an abundance vectoran uniformly distributed in the set

defined in (5) (see [39] for details). Assuming prior indepen-
dence between the coefficient vectors{zn}n=1,...,N leads to

f (Z) =

R−1
∏

r=1

{

1

B(R − r, 1)N

N
∏

n=1

zR−r−1
n,r

}

(10)

whereB(·, ·) is the Beta function.
2) Endmembers:Each endmembermr = [mr,1, . . . , mr,L ]T

is a reflectance vector satisfying the following constraints

0 ≤ mr,ℓ ≤ 1,∀r ∈ {1, . . . , R} ,∀ℓ ∈ {1, . . . , L} . (11)

For each endmembermr , we propose to use a Gaussian prior

mr ∼ N[0,1]L (m̄r , s2I L), (12)

truncated on[0, 1]L to satisfy the constraints (11). In this
paper, we propose to select the mean vectorsm̄r as the pure
components previously identified by the nonlinear EEA stud-
ied in [31] and referred to as “Heylen”. The variances2 reflects
the degree of confidence given to this prior information. When
no additional knowledge is available, this variance is fixed to
a large value (s2 = 0.5 in our simulations). Note that any EEA
could be used to define theL × R matrixM = [m̄1, . . . , m̄R].

3) Nonlinearity Parameters:The PPNMM reduces to the
LMM for bn = 0. Since the LMM is relevant for most
observed pixels, it makes sense to assign prior distributions
to the nonlinearity parameters that enforce sparsity for the
vector b. To detect linear and nonlinear mixtures of the
pure spectral signatures in the image, the following conjugate
Bernoulli-Gaussian prior is assigned tobn

f (bn|w, σ 2
b ) = (1 − w)δ(bn) + wN

(

0, σ 2
b

)

(13)

whereδ(·) denotes the Dirac delta function. Note that the prior
distributions for the nonlinearity parameters{bn}n=1,...,N share
the same hyperparametersw ∈ [0, 1] and σ 2

b ∈ R
+. More

precisely, the weightw is the prior probability of having a
nonlinearly mixed pixel in the image. Assuming prior indepen-
dence between the nonlinearity parameters{bn}n=1,...,N , the
joint prior distribution of the nonlinearity parameter vectorb
can be expressed as follows

f (b|w, σ 2
b ) =

N
∏

n=1

f (bn|w, σ 2
b ) (14)

4) Noise Variances:A Jeffreys’ prior is chosen for the noise
variance of each spectral bandσ 2

ℓ

f (σ 2
ℓ ) ∝

1

σ 2
ℓ

1R+

(

σ 2
ℓ

)

(15)

which reflects the absence ofknowledge for this parame-
ter (see [40] for motivations). Assuming prior independence
between the noise variances, we obtain

f (σ 2) =

L
∏

ℓ=1

f
(

σ 2
ℓ

)

. (16)



Fig. 1. DAG for the parameter andhyperparameter priors (the fixed
parameters appear in boxes).

C. Hyperparameter Priors

The performance of the proposed Bayesian model for spec-
tral unmixing depends on the values of the hyperparameters
σ 2

b and w. When the hyperparameters are difficult to adjust,
it is classical to include them in the unknown parameter
vector, resulting in a hierarchical Bayesian model [27], [41].
This strategy requires to define prior distributions for the
hyperparameters.

A conjugate inverse-Gamma prior is assigned toσ 2
b

σ 2
b ∼ IG (γ, ν) (17)

where (γ, ν) are real parameters fixed to obtain a flat prior,
reflecting the absence of knowledge about the varianceσ 2

b
((γ, ν) will be set to(10−1, 10−1) in the simulation section).
A uniform prior distribution is assigned tow

w ∼ U[0,1](w) (18)

since there is no a priori information regarding the proportions
of linearly and nonlinearly mixed pixels in the image. The
resulting directed acyclic graph (DAG) associated with the
proposed Bayesian model is depicted in Fig. 1.

As mentioned in Section II, the PPNMM is an analyti-
cal model which could not systematically provide physically
meaningful endmember estimates. Even when assuming the
classical LMM, geometric considerations (such as volume con-
straints) and positivity constraints are used to favor reasonable
endmember estimates. The problem becomes more difficult
when considering possible nonlinearities. In this paper, range
constraints are first considered for the endmembers to ensure
that the estimated spectral signatures belong to the reflectance
domain [0, 1]. Second, the prior distribution assigned to the
nonlinearity parameters favors weak/null nonlinearities for
pixels that can be accurately modeled by the LMM. Conse-
quently, the estimated endmembers are implicitly enforced to
be close to those that would be estimated using LMM-based
endmember extraction algorithms. Moreover, similarly to the
Bayesian algorithm studied in [41] for linear unsupervised
unmixing, the prior distribution assigned to the abundance
vectors promotes small volumes for the simplex defined by
the endmembers, i.e, promotes endmembers close to the data
and thus physically meaningful (as illustrated in Sections VI
and VII).

D. Joint Posterior Distribution

The joint posterior distribution of the unknown parame-
ter/hyperparameter vector{θ,�} where θ =

{

Z, M , b, σ 2
}

and � =
{

σ 2
b , w
}

can be computed using the following
hierarchical structure

f (θ ,�|Y) ∝ f (Y|θ,�) f (θ ,�) (19)

where f (Y|θ) has been defined in (8). By assuminga priori
independence between the parametersZ, M , b and σ

2 and
between the hyperparametersσb and w, the joint prior dis-
tribution of the unknown parameter vector can be expressed
as

f (θ ,�) = f (θ |�) f (�)

= f (Z) f (M ) f (σ 2) f (b|σ 2
b , w) f (σ 2

b ) f (w). (20)

The joint posterior distributionf (θ ,�|Y) can then be com-
puted up to a multiplicative constant after replacing (20) and
(8) in (19). Unfortunately, it is difficult to obtain closed form
expressions for the standard Bayesian estimators (including
the maximum a posteriori (MAP) and the minimum mean
square error (MMSE) estimators)associated with (19). In this
paper, we propose to use efficient Markov Chain Monte Carlo
(MCMC) methods to generate samples asymptotically distrib-
uted according to (19). Due to the large number of parameters
to be sampled, we use an HMC algorithm which allows the
number of sampling steps to be reduced and which improves
the mixing properties of the sampler. The generated samples
are then used to compute the MMSE estimator of the unknown
parameter vector(θ ,�). The next section summarizes the
basic principles of the HMC methods that will be used to
sample asymptotically from (19).

IV. CONSTRAINED HAMILTONIAN

MONTE CARLO METHOD

HMCs are powerful methods for sampling from many
continuous distributions by introducing fictitious momentum
variables. Letq ∈ R

D be the parameter of interest and
π(q) its corresponding distribution to be sampled from. From
statistical mechanics, the distributionπ(q) can be related to a
potential energy functionU(q) = − log

[

π(q)
]

+ c wherec is
a positive constant such that

∫

exp(−U(q) + c) dq = 1. The
Hamiltonian ofπ(q) is a function of the energyU(q) and of
an additional momentum vectorp ∈ R

D defined as

H (q, p) = U(q) + K ( p) (21)

where K ( p) is an arbitrary kinetic energy function. Usu-
ally, a quadratic kinetic energy is chosen and we pro-
pose to useK ( p) = pT p/2 in this paper (for reasons
explained later). The Hamiltonian (21) defines the following
distribution

f (q, p) ∝ exp
[

−H (q, p)
]

∝ π(q) exp

(

−
1

2
pT p
)

(22)

for (q, p) which shows thatq and p are independent and that
the marginal distribution ofp is a N (0D, I D) distribution.



The HMC algorithm allows samples to be asymptotically
generated according to (22). Thei th HMC iteration starts
with an initial pair of vectors(q(i ), p(i )) and consists of
two steps. The first step resamples the initial momentump̃(i )

according to the standard multivariate Gaussian distribution.
The new notationp̃(i ) is introduced here to highlight the
fact that initial momentum used in thei th frepfrog scheme
differs from the final momentum of the(i − 1)th iteration, as
shown in Algo. 1. The second step uses Hamiltonian dynamics
to propose a candidate(q∗, p∗) which is accepted with the
following probability

ρ = min
{

exp
[

−H (q∗, p∗) + H (q(i ), p̃(i ))
]

, 1
}

. (23)

A. Generation of the Candidate(q∗, p∗)

Hamiltonian dynamics are usually simulated by discretiza-
tion methods such as Euler or leapfrog methods. The classical
leapfrog method is a discretization scheme composed ofNLF
steps with a discretization stepsizeǫ. The nth leapfrog step
can be expressed as

p(i,nǫ+ǫ/2) = p(i,nǫ) −
ǫ

2

∂U

∂qT

(

q(i,nǫ)
)

(24a)

q(i,(n+1)ǫ) = q(i,nǫ) + ǫ p(i,nǫ+ǫ/2) (24b)

p(i,(n+1)ǫ) = p(i,nǫ+ǫ/2) −
ǫ

2

∂U

∂qT

[

q(i,(n+1)ǫ)
]

. (24c)

The leapfrog method starts with(q(i,0), p̃(i )) = (q(i ), p̃(i ))

and the candidate is set afterNLF steps to (q∗, p∗) =

(q(i,ǫNLF ), p̃(i,ǫNLF )).
However, if q is subject to constraints, more sophisticated

discretization methods must be used. Assume that the vector of
interestq = [q1, . . . , qD]T satisfies the following constraints

ql < qd < qu, d ∈ {1, . . . , D} (25)

where ql (resp.qu) is the lower (resp. upper) bound forqd

(such kind of constraints need to be satisfied by the elements
of Z and the endmembers inM ). In this paper we propose to
use the constrained leapfrog scheme studied in [33, Chap. 5],
consisting ofNLF steps, with a discretization stepsizeǫq. Each
CHMC iteration starts in a similar way to the classical leapfrog
method, with the sequential sampling of the momentump
(24a) and the vectorq (24b). However, if the generated vector
q violates the constraints (25), it is modified depending on
the violated constraints and the momentum is negated (see
[33, Chap. 5] for more details). This step is repeated until
each component of the generatedq satisfies the contraints. The
CHMC ends with the update of the momentump (24c). One
iteration of the resulting constrained HMC algorithm (CHMC)
is summarized in Algo. 1. As mentioned above, one might
think of using a more sophisticated kinetic energy forp to
improve the performance of the HMC algorithm. However,
the kinetic energyK ( p) = pT p/2 allows the discretization
method handling the constraints to be simple and will provide
good performance for our application (as will be shown in
Section VI). The performance of the HMC mainly relies on
the values of the parametersNLF and ǫq. Fortunately, the
choice ofǫq is almost independent ofNLF such that these two

Algorithm 1 Constrained Hamiltonian Monte Carlo Iteration

parameters can be tuned sequentially. The procedures used
in this paper to adjustNLF and ǫq are detailed in the next
paragraphs.

B. Tuning the Stepsizeǫq

The step sizeǫq is related to the accuracy of the leapfrog
method to approximate the Hamiltonian dynamics. Whenǫq

is “small”, the approximation of the Hamiltonian dynamic is
accurate and the acceptance rate (23) is high. However, the
exploration of the distribution support is slow (for a given
NLF). In this paper, we propose to tune the stepsize during the
burn-in period of the sampler. More precisely, the stepsize is
decreased (resp. increased) by 25% if the average acceptance
rate over the last 50 iterations is smaller than 0.5 (resp. higher
than 0.8). Note that the stepsize update only happens during
the burn-in period to ensure the Markov chain is homogeneous
after the burn-in period.

C. Tuning the Number of Leapfrog Steps NLF

Assumeǫq has been correctly adjusted. Too small values
of NLF lead to a slow exploration of the distribution (random



walk behavior) whereas too high values ofNLF require high
computational time. Similarly to the stepsizeǫq, the optimal
choice of NLF depends on the distribution to be sampled.
The sampling procedure proposed in this paper consists of
several HMC updates included in a Gibbs sampler (as will
be shown in the next section). The number of leapfrog steps
required for each of these CHMC updates has been adjusted
by cross-validation. From preliminary runs, we have observed
that setting the number of leapfrog steps for each HMC
update close toNLF = 50 provides a reasonable tradeoff
ensuring a good exploration of the target distribution and
a reasonable computational complexity. To avoid possible
periodic trajectories, it is recommended to letNLF random
[33, Chap. 5]. In this paper, we have assumed thatNLF is
uniformly drawn in the interval [45], [55] at each iteration of
the Gibbs sampler.

Convergence isues associated with HMCs have been dis-
cussed in details in [33, Chap. 5]. In particular, it has been
shown that a sampling scheme combining HMC updates
within a classical Gibbs sampler (as will be used in the next
section) converges to the target distribution. Although the
performance improvement thatcan be obtained by replacing
random walk procedures by HMC updates can be evaluated in
closed form for simple problems, the gain obtained when using
HMCs within a Gibbs sampler is more difficult to evaluate.
The reader in invited to consult [42] for additional simulations
illustrating the convergence of the proposed HMC-based sam-
pler. The next section presents the Gibbs sampler (including
CHMC steps) which is proposed to sample according to (19).

V. GIBBS SAMPLER

The principle of the Gibbs sampler is to sample according
to the conditional distributions of the posterior of interest
[34, Chap. 10]. Due to the large number of parameters to
be estimated, it makes sense to use a block Gibbs sampler
to improve the convergence of the sampling procedure. More
precisely, we propose to sample sequentiallyM , Z, b, σ 2, σ 2

b
andw using six moves that are detailed in the next sections.

A. Sampling the Coefficient MatrixZ

Sampling from f (Z|Y, M , b, σ 2, σ 2
b , w) is difficult due to

the complexity of this distribution. In this case, it is classical
to use an accept/reject procedure to update the coefficient
matrix Z (leading to a hybrid Metropolis-Within-Gibbs sam-
pler). Since the elements ofZ satisfy the constraints (7), the
CHMC studied in Section IV could be used to sample accord-
ing to the conditional distributionf (Z|Y, M , b, σ2, σb, w).
However, as for Metropolis-Hastings updates, the convergence
of HMCs generally slows down when the dimensionality of
the vector to be sampled increases. Consequently, sampling
an N(R − 1)-dimensional vector using the proposed CHMC
can be inefficient when the number of pixels is very large.
However, it can be shown that

f (Z|Y, M , b, σ 2, σb, w) =

N
∏

n=1

f (zn|yn, M , bn, σ
2) (26)

i.e., the N coefficients vectors{zn}n=1,...,N are a posteriori
independent and can be sampled independently in a parallel
manner. Straightforward computations lead to

f (zn|yn, M , bn, σ 2) ∝ exp

(

−
(yn − xn)T

�
−1(yn − xn)

2

)

×1(0,1)R−1 (zn)

R−1
∏

r

zR−r−1
n,r (27)

where xn = gn (M an), 1(0,1)R−1 (·) denotes the indicator
function over(0, 1)R−1. The distribution (27) is related to the
following potential energy

U(zn) =
(yn − xn)T

�
−1(yn − xn)

2
−

R−1
∑

r=1

log
(

zR−r−1
n,r

)

(28)

where we note thatf (zn|yn, M , bn, σ 2) ∝ exp [−U(zn)].
N momentum vectors associated with a canonical kinetic
energy are introduced. The CHMC of Section IV is then
applied independently to theN vectorszn whose dimension
(R − 1) is relatively small. The partial derivatives of the
potential function (28) required in Algo. 1 are derived in the
Appendix. As mentioned in Section II-B, the latent variables
depend on the endmember order. However, since the proposed
CHMC uses (27) to build an appropriate proposal distribution,
the impact of the initial endmember permutation on the
generated samples is not significant (see [42] for additional
simulations obtained with different permutations).

B. Sampling the Endmember MatrixM

From (19) and (20), it can be seen that

f (M |Y, Z, b, σ 2, s2,M) =

L
∏

ℓ=1

f (mℓ,:|yℓ,:, Z, b, σ 2
ℓ , s2, m̄ℓ,:)

wheremℓ,: (resp.m̄ℓ,: andyℓ,:) is theℓth row of M (resp. of
M andY) and

f (mℓ,:|yℓ,:, Z, b, σ 2
ℓ , s2, m̄ℓ,:) ∝ exp

(

−
‖yℓ,: − tℓ‖2

2σ 2
ℓ

)

× exp

(

−
‖mℓ,: − m̄ℓ,:‖

2

2s2

)

1(0,1)R

(

mℓ,:

)

(29)

with tℓ = AT mℓ,: + diag(b)
[(

AT mℓ,:

)

⊙
(

AT mℓ,:

)]

. Conse-
quently, the rows of the endmember matrixM can be sampled
independently similarly to the procedure described in the
previous section (to sampleZ). More precisely, we introduce
a potential energyV(mℓ,:) associated withmℓ,: defined by

V(mℓ,:) =
‖yℓ,: − tℓ‖2

2σ 2
ℓ

+
‖mℓ,: − m̄ℓ,:‖

2

2s2 (30)

and a momentum vector associated with a canonical kinetic
energy. The partial derivatives of the potential function (30)
required in Algo. 1 are derived in the Appendix.



C. Sampling the Nonlinearity Parameter Vectorb

Using (19) and (20), it can be easily shown that the con-
ditional distribution ofbn|yn, M zn, σ 2, w, σ 2

b is the following
Bernoulli-Gaussian distribution

bn|yn, M , zn, σ 2, w, σ 2
b ∼ (1−w∗

n)δ(bn)+w∗
nN
(

µn, s2
n

)

(31)

where

µn =
σ 2

b (yn − M an)
T

�
−1hn

σ 2
b hT

n �
−1hn + 1

, s2
n =

σ 2
b

σ 2
b hT

n �
−1hn + 1

and hn = (M an) ⊙ (M an). Moreover,

w∗
n =

w

βn + w(1 − βn)

βn =
σb

sn
exp

(

−
µ2

n

2s2
n

)

. (32)

For each bn, the conditional distribution (31) does not
depend on{bk}k�=n. Consequently, the nonlinearity parameters
{bn}n=1,...,N can be sampled independently.

D. Sampling the Noise Variance Vectorσ
2

Using (19), it can be shown that

f (σ 2|Y, M , Z, b) =

L
∏

ℓ=1

f (σ 2
ℓ |yℓ,:, m:,ℓ, Z, b) (33)

and that σ 2
ℓ |yℓ,:, m:,ℓ, Z, b is distributed according to the

following inverse-gamma distribution

σ 2
ℓ |yℓ,:, m:,ℓ, Z, b ∼ IG

(

N

2
,
(yℓ,: − xℓ,:)

T (yℓ,: − xℓ,:)

2

)

(34)

whereX = [x1,:, . . . , xL ,:]
T . Thus the noise variances can be

sampled easily and independently.

E. Sampling the Hyperparametersσ 2
b and w

Looking carefully at the posterior distribution (19), it can be
seen thatσ 2

b |b, γ, ν is distributed according to the following
inverse-gamma distribution

σ 2
b |b, γ, ν ∼ IG

⎛

⎝

n1

2
+ γ,

∑

n∈I1

b2
n

2
+ ν

⎞

⎠ (35)

with I1 = {n|bn �= 0}, n0 = ‖b‖0 (where‖·‖0 is theℓ0 norm,
i.e., the number of elements ofb that are different from zero)
andn1 = N − n0, from which it is easy to sample. Similarly

w|b ∼ Be(n1 + 1, n0 + 1). (36)

Finally, the Gibbs sampler (including HMC procedures) used
to sample according to the posterior (19) consists of the six
steps summarized in Algo. 2. The small number of sampling
steps is due to the high parallelization properties of the
proposed sampling procedure, i.e., the generation of theN
coefficient vectors{zn}n=1,...,N , the N nonlinearity parameters
{bn}n=1,...,N and theL reflectance vectors

{

mℓ,:

}

ℓ=1,...,L . After
generatingNMC samples using the procedures detailed above,

Algorithm 2 Gibbs Sampler

Fig. 2. TheR = 3 endmembers extracted from the ENVI software [43] used
to generated the synthetic imagesI1 to I3.

the MMSE estimator of the unknown parameters can be
approximated by computing the empirical averages of these
samples, after an appropriate burn-in period. In the simulations
conducted in this paper, the number of iterations has been fixed
to NMC = 15000 includingNbi = 14000 burn-in iterations.
The next section studies the performance of the proposed
algorithm for synthetic hyperspectral images.

VI. SIMULATIONS ON SYNTHETIC DATA

A. Simulation Scenario

The performance of the proposed unsupervised nonlinear
SU algorithm is first evaluated by unmixing 3 synthetic images
of size 50× 50 pixels. TheR = 3 endmembers contained in
these images (and depicted in Fig. 2) have been extracted from
the spectral libraries provided with the ENVI software [43]
(i.e., green grass, olive green paint and galvanized steel metal).
They consist ofL = 207 different spectral bands ranging
from 400nm to 2500nm with a spectral resolution of 4nm
from 400nm to 800nm and of 6nm between 800nm and
2500nm. The main motivation for using these signatures is
that these materials have been considered in previous papers
[14], [21], [27], [41], allowing better comparisons. The first
synthetic imageI1 has been generated using the standard
linear mixing model (LMM). A second imageI2 has been
generated according to the PPNMM and a third imageI3 has
been generated according to the generalized bilinear mixing
model (GBM) presented in [14]. Note that the PPNMM does
not generalize the GBM but can be used to approximate
it (as will be shown in this section). For each image, the
abundance vectorsan have been generated according to a



uniform distribution in the admissible set defined by

St =

{

a

∣

∣

∣

∣

∣

0 < ar < 0.9,

R
∑

r=1

ar = 1

}

. (37)

Note that the conditionsar < 0.9 ensure that there is no
pure pixel in the images. All images have been corrupted
by an additive independent and identically distributed (i.i.d)
Gaussian noise of varianceσ 2 = 10−4, corresponding to
an average signal-to-noise ratio SNR≃ 31dB for the three
images. The noise is assumed to be i.i.d. to fairly compare
unmixing performance with SU algorithms assuming i.i.d.
Gaussian noise. The nonlinearity coefficients are uniformly
drawn in the set[0, 1] for the GBM. The parametersbn

have been generated uniformly in the set[−0.3, 0.3] for the
PPNMM.

B. Comparison With Other SU Procedures

Different estimation procedures have been considered for
the three mixing models. More precisely,

• Two unmixing algorithms have been considered for the
LMM. The first strategy extracts the endmembers from
the whole image using the N-FINDR algorithm [28] and
estimates the abundances using the FCLS algorithm [2]
(it is referred to as “SLMM” for supervised LMM). The
second strategy is a Bayesian algorithm which jointly
estimates the endmembers and the abundance matrix [41]
(it is referred to as “ULMM” for unsupervised LMM).

• Two approaches have also been considered for the
PPNMM. The first strategy uses the nonlinear EEA
studied in [31] and the gradient-based approach based on
the PPNMM studied in [27] for estimating the abundances
and the nonlinearity parameter. This strategy is referred
to as “SPPNMM” (supervised PPNMM). The second
strategy is the proposed unmixing procedure referred to
as “UPPNMM” (unsupervised PPNMM).

• The unmixing strategy used for the GBM is the nonlinear
EEA studied in [31] and the gradient-based algorithm
presented in [44] for abundance estimation.

The quality of the unmixing procedures can be measured by
comparing the estimated and actual abundance vector using the
root normalized mean square error (RNMSE) defined by

RNMSE=

√

√

√

√

1

N R

N
∑

n=1

∥

∥ân − an
∥

∥

2
(38)

where an and ân are the actual and estimated abundance
vectors for thenth pixel of the image andN is the number
of image pixels. Table I shows the RNMSEs associated with
the imagesI1, . . . , I3 for the different estimation procedures.
These results show that the proposed UPPNMM performs bet-
ter (in terms of RNMSE) than the other considered unmixing
methods for the three images. Moreover, the proposed method
provides similar results when compared with the ULMM for
the linearly mixed imageI1.

Fig. 3 compares the endmember simplexes estimated by
Heylen’s method [31] (black) (used to build the endmem-
ber prior) and by the proposed method (red) to the actual

TABLE I

ABUNDANCE RNMSEs (×10−2): SYNTHETIC IMAGES

Fig. 3. Visualization of theN = 2500 pixels (blue dots) of (a)I1, (b) I2
and (c) I3 using the first principal components provided by the standard PCA.
The green stars correspond to the actual endmembers and the triangles are
the simplexes defined by the endmembers estimated by the Heylen’s method
(black) and the proposed method (red).

endmembers (green stars). For visualization, the observed
pixels and the actual and estimated endmembers have been
projected onto the three first axes provided by the principal
component analysis. These figures show that the proposed
unmixing procedure provides accurate estimated endmembers
for the three imagesI1 to I3. Due to the absence of pure pixels
in the image, the manifold generated by the observed pixelsY
is difficult to estimate. This explains the limited performance
obtained with Heylen’s method. Conversely, the use of the
prior (12) allows the endmembersmr to depart from the prior
estimationsm̄r leading to improved performance.

The quality of endmember estimation is also evaluated by
the spectral angle mapper (SAM) defined as

SAM = arccos

(

〈

m̂r , mr
〉

∥

∥m̂r
∥

∥ ‖mr ‖

)

(39)

wheremr is the r th actual endmember and̂mr its estimate.
The smaller |SAM|, the closer the estimated endmembers
to their actual values. Table II compares the performance
of the different endmember estimation algorithms. This table
shows that the proposed UPPNMM generally provides more
accurate endmember estimatesthan the others methods. More-
over, these results illustrate the robustness of the PPNMM
regarding model mis-specification. Note that the ULMM and



TABLE II

SAMS (×10−2): SYNTHETIC IMAGES

TABLE III

RES (×10−2): SYNTHETIC IMAGES

the UPPNMM provide similar results (in terms of SAMs) for
the imageI1 generated according to the LMM.

Finally, the unmixing quality can be evaluated by the
reconstruction error (RE) defined as

RE =

√

√

√

√

1

N L

N
∑

n=1

∥

∥ŷn − yn
∥

∥

2
(40)

where yn is the nth observation vector and̂yn its estimate.
Table III compares the REs obtained for the different synthetic
images. These results show that the REs are close for the dif-
ferent unmixing algorithms even if the estimated abundances
can vary more significantly (see Table I). Again, the proposed
PPNMM seems to be more robust than the other mixing
models to deviations from the actual model in terms of RE.

C. Analysis of the Estimated Nonlinearity Parameters

As mentioned above, one of the major properties of the
PPNMM is its ability to characterize the linearity/nonlinearity
of the underlying mixing model for each pixel of the image via
the nonlinearity parameterbn. Fig. 4 shows the nonlinearity
parameter distribution estimated for the three imagesI1 to I3
using the UPPNMM. This figure shows that the UPPNMM
clearly identifies the linear mixtures of the imageI1 whereas
more nonlinearly mixed pixels can be identified in the images
I2 and I3. The analysis of Fig. 4 also shows that the nonlin-
earities contained in the imageI3 (GBM) are generally less
significant than the nonlinearities affectingI2 (PPNMM) for
a same signal-to-noise ratio (SNR≃ 31dB).

D. Performance for Different Numbers of Endmembers

The next set of simulations analyzes the performance of
the proposed UPPNMM algorithm for different numbers of

Fig. 4. Distributions of the nonlinearity parametersbn for the imagesI1
(left), I2 (middle) andI3 (right).

TABLE IV

UNMIXING PERFORMANCE: SYNTHETIC IMAGES

endmembers (R ∈ {4, 5, 6}) by unmixing three synthetic
images of N = 2500 pixels distributed according to the
PPNMM. The endmembers contained in these images have
been extracted from the spectrallibraries provided with the
ENVI software [43]. For each image, the abundance vectors
an, n = 1, . . . , N have been randomly generated according to
a uniform distribution over the admissible set (37). All images
have been corrupted by an additive white Gaussian noise
corresponding toσ 2 = 10−4, corresponding to an average
signal-to-noise ratio SNR≃ 31dB for the three images.
The nonlinearity coefficientsbn are uniformly drawn in the
set [−0.3, 0.3]. Tables IV compares the performance of the
proposed method in terms of endmember estimation (average
SAMs of the R endmembers), abundance estimation and
reconstruction error. These results show a general degradation
of the abundance and endmember estimations whenR is
increasing (this is intuitive since estimator variances usually
increase with the number of parameters to be estimated).
However, this degradation is reasonable when compared to
Heylen’s method. The proposed algorithm still provides accu-
rate estimates, as illustrated in Fig. 5 which compares the
actual and estimated endmembers associated with the image
containingR = 6 endmembers.

VII. S IMULATIONS ON REAL DATA

A. Data Sets

The real image considered in this section was acquired in
2010 by the Hyspex hyperspectral scanner over Villelongue,
France (00° 03’W and 42°57’N).L = 160 spectral bands
ranging from about 408nm to 985nm were recorded, with
a spectral resolution of 3.6nm and a spatial resolution of
0.5m. This dataset has already been studied in [21] and [45]
and is mainly composed of forested and urban areas. More
details about the data acquisition and pre-processing steps are
available in [45]. Two sub-images denoted as scene #1 and



Fig. 5. Actual endmembers (blue dots) and the endmembers estimated by
Heylen’s method (black lines) and the UPPNMM (red lines) for the synthetic
image containingR = 6 endmembers.

Fig. 6. Top: real hyperspectral Madonna data acquired by the Hyspex
hyperspectral scanner over Villelongue, France. Bottom: Scene #1 (left) and
Scene #2 (right) shown in true colors.

scene #2 (of size 31× 30 and 50× 50 pixels) are chosen here
to evaluate the proposed unmixing procedure and are depicted
in Fig. 6 (bottom images). The scene #1 is mainly composed
of road, ditch and grass pixels. The scene #2 is more complex
since it includes shadowed pixels. For this image, shadow is
considered as an additional endmember, resulting inR = 4
endmembers, i.e., tree, grass, soil and shadow.

B. Endmember and Abundance Estimation

The endmembers extracted by N-FINDR, the ULMM
algorithm [41] and Heylen’s method [31] withR = 3 (resp.
R = 4) for the scene #1 (resp. scene #2) are compared with
the endmembers estimated by the UPPNMM in Fig. 7 (resp.
Fig. 8). For the scene #1, the four algorithms provide similar
endmember estimates whereasthe estimated shadow spectra
are different for the scene #2. The N-FINDR algorithm and
Heylen’s method estimate endmembers as the purest pixels
of the observed image, which can be problematic when there

Fig. 7. TheR = 3 endmembers estimated by N-Findr (blue lines), ULMM
(green lines), Heylen’s method (black lines) and the UPPNMM (red lines) for
the scene #1.

Fig. 8. TheR = 4 endmembers estimated by N-Findr (blue lines), ULMM
(green lines), Heylen’s method (black lines) and the UPPNMM (red lines) for
the scene #2.

is no pure pixel in the image (as it occurs with shadowed
pixels in the scene #2). Conversely, the ULMM and UPPNMM
methods, which jointly estimate the endmembers and the
abundances seem to provide more relevant shadow spectra
(of lower amplitude). Examples of abundance maps for the
scene #1 (resp. scene #2), estimated by the ULMM and the
UPPNMM algorithms are presented in Fig. 9 (resp. Fig. 10).
The abundance maps obtained by the UPPNMM are similar
to the abundance maps obtained with ULMM.

C. Analysis of Nonlinearities

Fig. 11 shows the estimated maps ofbn for the two con-
sidered images. Different nonlinear regions can be identified
in the scene #1, mainly in the grass-planted region (probably
due to endmember variability) and near the ditch (presence of
relief). For the scene #2, nonlinear effects are mainly detected
in shadowed pixels.

D. Estimation of Noise Variances

Fig. 12 compares the noise variance estimated by the
UPPNMM for the two real images with the noise variance
estimated by the HySime algorithm [46]. The HySime algo-
rithm assumes additive noise and estimates the noise covari-
ance matrix of the image using multiple regression. Fig. 12
shows that the two algorithms provide similar noise variance
estimates. Moreover, these results motivate the consideration



Fig. 9. Abundance maps estimated by the SLMM, the GBM and the
UPPNMM algorithms for the scene #1.

Fig. 10. Abundance maps estimated by the SLMM, the GBM and the
UPPNMM algorithms for the scene #2.

Fig. 11. Maps of the nonlinearity parameterbn estimated by the UPPNMM
for the real images. (a) Scene #1. (b) Scene #2.

of non i.i.d. noise for hyperspectral images since the noise
variances increase for the higher wavelengths for the two
images.

E. Image Reconstruction

The proposed algorithm is finally evaluated from the
REs associated with the two real images. These REs are
compared in Table V with those obtained by assuming other
mixing models. The two unsupervised algorithms (ULMM
and UPPNMM) provide smaller REs than the SU procedures
decomposed into two steps. This observation motivates the
use of joint abundance and endmember estimation algorithms.

Fig. 12. Noise variances estimated by the UPPNMM (red) and the Hysime
algorithm (blue) for the scene #1 (top) and the scene #2 (bottom).

TABLE V

RES (×10−2): REAL IMAGE

VIII. C ONCLUSION AND FUTURE WORK

We proposed a new hierarchical Bayesian algorithm for
unsupervised nonlinear spectral unmixing of hyperspectral
images. This algorithm assumed that each pixel of the image
is a post-nonlinear mixture of the endmembers contaminated
by additive Gaussian noise. The physical constraints for the
abundances and endmembers were included in the Bayesian
framework through appropriate prior distributions. Due to
the complexity of the resulting joint posterior distribution, a
Markov chain Monte Carlo method was used to approximate
the MMSE estimator of the unknown model parameters.
Because of the large number of parameters to be estimated,
Hamiltonian Monte Carlo methods were used to reduce the
sampling procedure complexity and to improve the mixing
properties of the proposed sampler. Simulations conducted
on synthetic data illustrated the performance of the proposed
algorithm for linear and nonlinear spectral unmixing.
An important advantage of the proposed algorithm is its
flexibility regarding the absence of pure pixels in the image.
Another interesting property resulting from the post-nonlinear
mixing model is thepossibility of detecting nonlinearly from
linearly mixed pixels. This detection can identify the image
regions affected by nonlinearities in order to characterize the
nonlinear effects more deeply. The number of endmembers
contained in the hyperspectral image was assumed to be
known in this work. Even if LMM-based methods could
be used to estimate the number of components in a scene
[46], [47], estimating the number of components present in
image containing nonlinear mixtures is an important issue that
should be considered in future work. A full Bayesian approach



was used in this paper. However, it could be interesting to
consider other strategies (e.g., nonlinear optimization methods)
for nonlinear unmixing with reduced computational com-
plexity. Finally, considering endmember variability in linear
mixtures has received much attention in the literature [3], and
[48]–[50]. Extending these results to nonlinear mixtures is
clearly an interesting prospect.

APPENDIX

DERIVATION OF THE POTENTIAL FUNCTIONS

The potential energy (28) can be rewritten

U(zn) = U1(an) + U2(zn) (41)

where

U1(an) =
1

2

[

yn − gn (M an)
]T

�
−1 [yn − gn (M an)

]

,

U2(zn) = −

R−1
∑

r=1

log
(

zR−r−1
r,n

)

.

Partial derivatives ofU(zn) with respect tozn is obtained using
the classical chain rule

∂U(zn)

∂ zn
=

∂U1(an)

∂an

∂an

∂ zn
+

∂U2(zn)

∂ zn

Straightforward computations lead to

∂U1(an)

∂an
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⎩

0 if i > r
ar,n

zi,n − 1
if i = r

ar,n

zi,n
if i < r

∂U2(zn)

∂zi,n
= −

R − i − 1

zi,n
. (42)

Similarly, the potential energy (30) can be rewritten

V(mℓ,:) = V1(tℓ) + V2(zn) (43)

with tℓ = AT mℓ,: + diag(b)
[(

AT mℓ,:

)

⊙
(

AT mℓ,:

)]

and

V1(tℓ) =
‖yℓ,: − tℓ‖2

2σ 2
ℓ

V2(mℓ,:) =
‖mℓ,: − m̄ℓ,:‖

2

2s2 .

The partial derivatives of the potential energy (30) can be
obtained using the chain rule

∂V(mℓ,:)

∂mℓ,:
=

∂V1(tℓ)
∂ tℓ

∂ tℓ
∂mℓ,:

+
∂V2(mℓ,:)

∂mℓ,:

and

∂V1(tℓ)
∂ tℓ

= −
(yℓ,: − tℓ)T

σ 2
ℓ

∂ tℓ
∂mℓ,:

= AT + 2diag(b)
[(

AT mℓ,:1T
R

)

⊙ AT
]

∂V2(mℓ,:)

∂mℓ,:
=

(mℓ,: − m̄ℓ,:)
T

s2 .
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