
Monitoring On-line Timing Information to Support

Mixed-Critical Workloads

Angeliki Kritikakou, Olivier Baldellon, Claire Pagetti, Christine Rochange,

Matthieu Roy, Fabian Vargas

To cite this version:

Angeliki Kritikakou, Olivier Baldellon, Claire Pagetti, Christine Rochange, Matthieu Roy, et
al.. Monitoring On-line Timing Information to Support Mixed-Critical Workloads. IEEE
Real-Time Systems Symposium 2013, Dec 2013, Vancouver, Canada. pp.9-10, 2013. <hal-
01015455>

HAL Id: hal-01015455

https://hal.archives-ouvertes.fr/hal-01015455

Submitted on 26 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01015455


Monitoring On-line Timing Information

to Support Mixed-Critical Workloads

A. Kritikakou∗, O. Baldellon†, C. Pagetti∗, C. Rochange‡, M. Roy†, F. Vargas§

∗ONERA, †LAAS/CNRS, ‡Université de Toulouse, France
§PUCRS, Brazil

I. INTRODUCTION AND MOTIVATION

Multi-/many-core architectures provide a drastic increase in

computation power, enabling the simultaneous execution of

several tasks on the system. Yet, in critical embedded systems,

e.g. aeronautical systems, the uncertainty of the non-uniform

and concurrent memory accesses prohibits the full utilization

of the system potentials. To ensure safety, such systems im-

pose static Worst Case Execution Time (WCET) estimations;

memory access times are upper bounded considering a fully

congested memory bus, leading to safe but almost unusable

bounds and to overwhelmingly conservative schedules [1].

Existing techniques for multicore systems address the op-

timization of the scheduling objectives, e.g. processor uti-

lization, when the task set is schedulable at least in the

highest criticality level. In the mixed-criticality theoretical

model of [2], multiple WCET values, related to different

criticality levels, are considered for each task. The lower the

level, the more unsafe is the WCET bound. In the highest level,

the value is trustful. In [3], [4], [5], all tasks are started at the

low criticality level. When a task has not finished on time, its

level is increased and the less critical tasks are dropped. When

the WCET of the highest level is larger than the deadline, the

problem is considered as unschedulable.

Let us now consider a critical task with a WCET below the

deadline, when it is the only task executed on the system,

i.e. in isolation. We advocate that in this case, the safety

of the critical task can be ensured, while some less critical

tasks are run in parallel on other cores. Fig. 1 depicts the

aforementioned problem, where one critical task TC and one

less critical task T1 are considered on two cores. When both

tasks are executed, the WCET of TC is estimated above its

deadline D, and thus the problem is unschedulable, as depicted

in Fig. 1(a). However, if TC is executed in isolation, it is

schedulable, as shown in Fig. 1(b). In contrast with existing

approaches, our methodology is capable of scheduling the TC

by considering two execution scenarios. Initially, both tasks are

executed on the system. Monitoring points are used to on-line

monitor the real execution time of TC and decide switching

to isolation execution of TC , as shown in Fig. 1(c).

In this work, we propose an approach to improve core

utilization by running several tasks in parallel and guarantee

the critical task safety.

Shared Memory

CPU1

L1

Core1

CPU0

L1

Core0

T
C

T
1

Core0

Core1

T
C

D

t

t

a)

b)

T
C

t

c)

Core0

Core1

Core0

Core1 T
1

Fig. 1. Scheduling based on WCET when are considered for execution (a)
both tasks, (b) only the critical task and (c) proposed hybrid approach.

II. TARGET SYSTEM

Our application domain is described by a task set with a

single critical task TC , which is schedulable in isolation, but

non-schedulable when executed with other less critical tasks.

The WCET of the critical task is computable, i.e. the whole

code can be unfolded into a bounded tree. We represent binary

code of the application under study as a Control Flow Graph

(CFG) [6]. Each node represents a basic block and edges

connect nodes that can be executed in sequence. Our target

platform is a time-predictable bus-based multicore system.

More precisely, we consider several processing IP-cores on

an FPGA platform with hardware monitoring capabilities [7].

We assume a number of cores equal to the number of tasks,

which can then be statically co-scheduled.

III. PROPOSED METHODOLOGY

Our methodology is two-fold: i) Off-line, we analyze the

CFG and safely estimate the remaining WCET at several

points of the TC , under two scenarios: isolation, where the

critical task is executed alone, and maximum load, where

the maximum interference from co-running less critical tasks

exists. ii) On-line, we use a hardware monitor to observe the

real execution time of TC and to check whether a risk exists

that the critical task misses its deadline due to system overload.

If so, the less critical tasks are stopped and the execution

is continued in isolation scenario. The proposed approach is

schematically depicted in Fig. 2.

A. Off-line critical task analysis

As we consider critical tasks, our approach uses safe static

WCET analysis [8]. From the annotated CFG, an Integer

Linear Programming (ILP) formulation is written to express



binary 

code 

source 

code 

WCET 

ANALYZER 

code 
compiler 

C0  C1  C2  C3 

memory 

HW MONITOR 

timing table 
(CAM) 

control 

logic 

OS 

timing 
information 

Fig. 2. Overview of the proposed approach

level ℓ ℓ+ 1 ℓ+ 2

b1

b2

b8

b3

b4

b7

b5

b6

d2,3 d4,5

w2 w4

Fig. 3. CFG with nesting levels and partial WCET

the program execution time as the sum of the individual times

of basic blocks (nodes) weighted by their execution counts.

This expression is maximized to find the required WCETs,

with a number of constraints that reflect flow facts, e.g. loop

bounds and unfeasible paths. This approach is adapted to our

requirements: by modifying the ILP formulation appropriately,

we are able to compute partial WCETs, i.e. WCETs between

two monitoring points in the code, and the remaining WCET

from one monitoring point until the end of the program.

The monitoring points are set at the first instruction of each

basic block of CFG, at this project stage. Ideally, for each

monitoring point b, the remaining WCET until the end of

the program should be estimated. However, as a point may

be visited several times, e.g. when it belongs to a loop, the

number of point instances to be stored is equal to the number

of loop iterations. This highly increases storage requirements.

Hence, we need a hybrid approach: the initial remaining

WCET until the end of the program (RWCETiso) of the

first point instance is computed off-line; then at runtime, the

RWCETiso is updated each time the point is encountered, as

described in Section III-B2. For this purpose, the information

required for point b is: (i) the nested level in the CFG, levelb,

used to identify the reference remaining time; (ii) if b is a

loop header, the WCET of the loop body (wb); (iii) the WCET

from the inner loop header to point b (db). Figure 3 depicts

such parameters. The timing values (ii) and (iii) are always

estimated for the isolation scenario to guarantee the TC safety.

B. On-line execution

1) Hardware monitoring scheme: Our approach relies on

hardware monitoring, as proposed in [9]. The scheme observes

the instruction addresses from the memory. We assume that

cores do not have instruction caches at this project stage. An

address that has been monitored indexes a local associative

memory (CAM), where levelb, RWCETiso, wb and db are

stored. The CAM returns the timing information of the mon-

itoring address to be used by the on-line control mechanism.

Whenever the on-line control mechanism determines that the

non-critical tasks should be suspended, the hardware monitor

interrupts the operating system.

2) On-line control mechanism: Our on-line low-overhead

control mechanism implemented in hardware guarantees the

safety of the TC execution. Initially, both the critical and less

critical tasks are executed on the multicore system. At each

monitoring point b, the on-line control mechanism decides

whether switching from the maximum load scenario to the iso-

lation scenario is required. This decision is taken based on the

information retrieved from the CAM memory in each monitor-

ing point b. The RWCETiso is on-line computed and updated

in CAM. When the CFG is traversed in the forward direction,

the RWCETiso(b) is computed as RWCETiso(levelb) − db.

When the CFG is traversed backward to a loop header b, the

RWCETiso(b) is computed as RWCETiso(b)−wb and the new

value is updated to the CAM memory. Scenario switching

is triggered at monitoring point b when the condition of

Equation 1 holds: ET(b) denotes the monitored real execution

time of TC until point b, WCETmon is the maximum WCET

between two successive monitoring points and tOver is the

cost of our recovery mechanism. The latter includes the time

to monitor ET(b), the time for the hardware logic to access the

CAM memory and to decide, and the time for the operating

system to suspend the non critical tasks. Intuitively, Equation 1

means that the critical task might miss its deadline in the

current (maximum load) scenario, but by switching to the

isolation scenario in point b, the deadline can still be met.

ET(b) + RWCETiso(b) + WCETmon + tOver > D (1)

Our future work is the implementation of the proposed

offline analysis tool and the online hardware control in the

FPGA platform. We will also extend our approach to systems

with several critical tasks and larger (scheduled) task sets.

REFERENCES

[1] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” TCAD, vol. 28, no. 7,
2009.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in RTSS, pp. 239–243, 2007.

[3] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg, “Multicore
operating-system support for mixed criticality,” in WMC, April 2009.

[4] M. S. Mollison et al., “Mixed-criticality real-time scheduling for multi-
core systems.,” in CIT, pp. 1864–1871, 2010.

[5] H. Li and S. Baruah, “Global mixed-criticality scheduling on multipro-
cessors,” in ECRTS, pp. 166–175, 2012.

[6] K. D. Cooper et al., “Building a control-flow graph from scheduled
assembly code,” Tech. Rep. TR02-399, Rice University, 2002.

[7] M. Paolieri, E. Quinones, F. Cazorla, G. Bernat, and M. Valero, “Hard-
ware support for wcet analysis of hard real-time multicore systems,” in
Int’l Symposium on Computer Architecture (ISCA), 2009.

[8] R. Wilhelm et al., “The worst-case execution-time problem: overview of
methods and survey of tools,” TECS, vol. 7, no. 3, 2008.

[9] D. Silva et al., “An intellectual property core to detect task schedulling-
related faults in rtos-based embedded systems,” in IOLTS, 2011.


