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Patrick Cattiaux, José R. León, Clémentine Prieur. Estimation for Stochastic Damping Hamil-
tonian Systems under Partial Observation. II Drift term.. ALEA (Latin American Journal of
Probability and Statistics), 2014, 11 (1), p. 359-384. <hal-00877054v2>

HAL Id: hal-00877054

https://hal.archives-ouvertes.fr/hal-00877054v2

Submitted on 29 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. This paper is the second part of our study started with Cattiaux et al.
(2014). For some ergodic hamiltonian systems we obtained a central limit theorem
for a non-parametric estimator of the invariant density, under partial observation
(only the positions are observed). Here we obtain similarly a central limit theorem
for a non-parametric estimator of the drift term. This theorem relies on the previous
result for the invariant density.

1. INTRODUCTION.

Let
(
Zt := (Xt, Yt) ∈ R2d , t ≥ 0

)
be governed by the following Ito stochastic

differential equation:

dXt = Ytdt

dYt = σ dWt − (c(Xt, Yt)Yt +∇V (Xt))dt. (1.1)

Each component Y i (1 ≤ i ≤ d) is the velocity of a particle i with position Xi.
Function c is called the damping force and V the potential, σ is some (non-zero)
constant and W a standard brownian motion.
We shall assume that c and V are regular enough for the existence and uniqueness of
a non explosive solution of (1.1). We shall also assume that the process is ergodic
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with a unique invariant probability measure µ, and that the convergence in the
ergodic theorem is quick enough. Some sufficient conditions will be recalled in the
next section.
In our previous work Cattiaux et al. (2014) we proposed a non-parametric estimator
for the invariant density ps of the invariant measure µ. We refer to the introduction
of Cattiaux et al. (2014) for some references on this problem, as well as short
discussion of the physical interest of such models.
In the present paper we attack the problem of estimating the drift term

g(x, y) = − (c(x, y)y +∇V (x)) (1.2)

for incomplete but high-frequency data. We indeed observe only the first component
of (Zt , t ≥ 0), and our asymptotic results are proved under the assumption that
this component is available at arbitrarily short inter-observation time intervals.

As explained in Cattiaux et al. (2014), while there is an impressive literature
on non-parametric estimation for the invariant density or the drift term, most of
it deals with elliptic diffusion processes. Here we are looking at a fully degenerate
process, but still hypo-elliptic. In addition we intend to propose an estimator based
on the observation of the positions X only, at some discretized observation times.
Actually some works have already been done, in the hypo-elliptic context, but in
a parametric framework. We refer to the work by Pokern et al. (2009) or to the
recent work by Samson and Thieullen (2012) and the bibliography therein. In this
paper we focus on pointwise estimation, as it is a not straightforward issue in itself.
There exist results for the non-parametric estimation of the drift of one-dimensional
ergodic diffusions, see e.g. Comte et al. (2007) in the context of discretized obser-
vations, or Dalalyan (2005) in the context of full time-continuous observations. For
partial observations, there are results in the parametric setting (see e.g. Gloter,
2007). A natural development of our paper would be to extend this kind of results
to our framework.

The main result of Cattiaux et al. (2014) reads as follows: if ps denotes the
invariant density (see the next section for its existence), then one can find a dis-
cretization step hn, bandwidths b1n and b2n and kernels K such that, defining the
estimator

p̂n(x, y) :=
1

nbd1nb
d
2n

n∑
i=1

K

(
x−Xihn

b1n
,
y − X(i+1)hn−Xihn

hn

b2n

)
,

corresponding to partial observation, it holds√
nbd1nb

d
2n (p̂n(x, y)− ps(x, y))

D−−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
,

for all pairs (x, y). The previous convergence in distribution holds true under the
stationary distribution. In the non stationary case we have to shift the summation.
See Theorem 3.1 and the comment following the statement of the Theorem in
section 3.

The intuitive explanation for the definition of our estimator is based on the
Nadaraya-Watson kernel method for regression estimation. Assuming that we ob-
serve both coordinates (Xt, Yt)t≥0 on a grid ihn, i = 1, . . . , n, we deduce from the
system (1.1) the following approximation

Y(i+1)hn − Yihn ≈ σ(W(i+1)hn −Wihn) + g(Xihn , Yihn)hn.
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The first term is interpreted as the noise part and the second one as the regres-
sion term. The Naradaya-Watson’s method allows us to introduce the following
estimator of the function g(x, y)ps(x, y) :

ǧn(x, y)p̂n(x, y) =
1

(n− 1)b1nb2n

n−1∑
i=1

K(
x−Xihn

b1n
,
y − Yihn
b2n

)
Y(i+1)hn − Yihn

h
1/2
n

=
1

(n− 1)b1nb2n

n−1∑
i=1

K(
x−Xihn

b1n
,
y − Yihn
b2n

)

(
σ(W(i+1)hn −Wihn)

h
1/2
n

+ g(Xihn , Yihn)h1/2n

)
.

We then have

E
( ǧn(x, y)p̂n(x, y)

h
1/2
n

)
→ g(x, y)ps(x, y).

The estimator ǧn(x, y) is an thus an asymptotically unbiased estimator of g(x, y).
In our work we assume that only the first coordinate Xt is observed. Thus we

define an estimator where

Yihn is replaced by X(i+1)hn −Xihn

and

Y(i+1)hn − Yihn by X(i+1)hn − 2Xihn +X(i−1)hn .

Furthermore, to preserve some independence properties we need to have a certain
lag between the observations used in the kernel and those defining the double in-
crement. This last observation leads us to define X(i+ 1

3 )hn
− Xihn for the first

increment and X(i+1)hn − 2X(i+ 2
3 )hn

+X(i+ 1
3 )hn

for the second one.

We thus define the estimator ĝn as

ĝn(x, y) p̂n(x, y) :=
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

x−Xihn

b1n
,
y −

X
(i+1

3
)hn
−Xihn

(hn/3)

b2n

 Di,n

(hn/3)2
,

where

Di,n := X(i+1)hn − 2X(i+ 2
3 )hn

+X(i+ 1
3 )hn

.

Define Ĥn(x, y) := ĝn(x, y) p̂n(x, y). In Theorem 4.1 of the present paper we
state that one can find hn and two different bandwidths bin (for the definition of

Ĥn) and cin (for the definition of p̂n) (i = 1, 2) such that in the stationary regime√
nbd1nb

d
2nhn (ĝn(x, y)− g(x, y))

D−−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
,

where I denotes the identity matrix in Rd. As for the invariant density we also prove
such a central limit theorem in the non-stationary regime, shifting the summation
(see section 5).

It should be very interesting to estimate separately c(x, y) and ∇V (x), who have
different physical interpretations. Actually, there is no explicit relation between the
invariant density and the drift term, unless c is constant, in which case ps(x, y) =

exp
(
− 2c
σ2 ( |y|

2

2 + V (x))
)

. In that particular case, the estimation of the potential V

and of its gradient ∇V can be deduced from the estimators of the invariant density
and of the drift term. In full generality this will require some other ideas.
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2. THE MODEL AND ITS PROPERTIES.

We are obliged to recall some facts on the model. A more detailed discussion is
contained in Cattiaux et al. (2014).

We shall first give some results about non explosion and long time behaviour.
In a sense, coercivity can be seen in this context as some exponential decay to
equilibrium.

Let us first introduce some sets of assumptions:

Hypothesis H1:

(i) the potential V is lower bounded, smooth over Rd, V and ∇V have poly-
nomial growth at infinity and there exists v > 0 such that

+∞ ≥ lim inf
|x|→+∞

x.∇V (x)

|x|
≥ v > 0 ,

the latter being often called “drift condition”,
(ii) the damping coefficient c(x, y) is smooth and bounded, and there exist

c, L > 0 so that cs(x, y) ≥ cId > 0, ∀(|x| > L, y ∈ Rd), where cs(x, y) is the
symmetrization of the matrix c(x, y), given by 1

2 (cij(x, y)+cji(x, y))1≤i,j≤d,

These conditions ensure that there is no explosion, and that the process is pos-
itive recurrent with a unique invariant probability measure µ. We will denote by
Ptf(z) = Ez(f(Zt)) which is well defined for all bounded function f , Pt extends as
a contraction semi-group on Lp(µ) for all 1 ≤ p ≤ +∞. Further in the paper we
add assumptions to ensure that the drift function g defined by (1.2) belongs to the
domain of the infinitesimal generator L of Pt (see Assumptions H3 and H4).

Furthermore µ admits some exponential moment, hence polynomial moments of
any order. Another key feature is that the process is actually α-mixing, i.e.

Proposition 2.1. There exist some constants C > 0 and ρ < 1 such that:

∀ g, f ∈ L∞(µ) , ∀ t ≥ 0,

|Covµ (f(Zt), g(Z0))| ≤ C ρt/2
∥∥∥∥g − ∫ gdµ

∥∥∥∥
∞

∥∥∥∥f − ∫ fdµ

∥∥∥∥
∞
. (2.1)

i.e., in the stationary regime, (Zt, t ≥ 0) is α-mixing with exponential rate.

As explained in section 2.2 of Cattiaux et al. (2014), the infinitesimal generator
L is hypo-elliptic, which implies that

µ(dz) = ps(z) dz

with some smooth function ps. One can relax the C∞ assumption on the coefficients
into a Ck assumption, for a large enough k, but this is irrelevant.

Furthermore it can be shown that ps is everywhere positive, for instance by using
an extension of Girsanov theory which is available here.

One can relax some assumptions and still have the same conclusions:

Hypothesis H2:
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(a) One can relax the boundedness assumption on c inH1, assuming that for all
N > 0: sup|x|≤N,y∈Rd ‖c(x, y)‖H.S. < +∞, where H.S. denotes the Hilbert-
Schmidt norm of a matrix; but one has to assume in addition conditions
(3.1) and (3.2) in Wu (2001). An interesting example (the Van der Pol
model) in this situation is described in Wu (2001) subsection 5.3.

(b) The most studied situation is the one when c is a constant matrix. Actually
almost all results obtained in Wu (2001) or Bakry et al. (2008) in this
situation extend to the general bounded case.
Nevertheless we shall assume now that c is a constant matrix.
In this case a very general statement replacing H1 (i) is given in Theorem
6.5 of Bakry et al. (2008). Tractable examples are discussed in Example
6.6 of the same paper. In particular one can replace the drift condition on
V by

lim inf
|x|→+∞

|∇V |2(x) > 0 and ‖∇2V ‖H.S. � |∇V | .

Notice that one can relax the repelling strength of the potential, and ob-
tain, no more exponential but sub-exponential or polynomial decay (see the
discussion in Bakry et al. (2008)).

From now on in the whole paper we will assume that Hypothesis H1 (or H2) is
fulfilled.
In all the proofs of the paper C denotes some constant which may vary from line
to line.

3. Estimation of the invariant density.

In this section we recall the central limit theorem for a non-parametric estimator
of the invariant density ps proposed in Cattiaux et al. (2014).

First we consider that one can observe the whole process Z. at discrete times
with discretization step hn, i.e we consider

p̃n(x, y) :=
1

nbd1nb
d
2n

n∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
. (3.1)

Second we consider the partially observed case, where only the position process X.

can be observed, and we approximate the velocity, i.e. we consider

p̂n(x, y) :=
1

nbd1nb
d
2n

n∑
i=1

K

(
x−Xihn

b1n
,
y − X(i+1)hn−Xihn

hn

b2n

)
. (3.2)

In both cases, the kernel K is some C2 function with compact support A such that∫
A
K(x, y)dxdy = 1. We may also assume, without loss of generality that A is

a bounded ball. Moreover, we assume that there exists m ∈ N∗ such that for all
polynomials P (x, y) with degree between 1 and m,

∫
P (u, v)K(u, v)dudv = 0. That

is, we assume the kernel K is of order m.
Let us state the main result in this section (Theorem 3.1 below).

Theorem 3.1 (Cattiaux et al. (2014)). Assume Hypothesis H1 or H2 are fulfilled.
Recall that ps denotes the density of the invariant measure µ. Assume that the
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bandwidths b1n, b2n and the discretization step hn tend to zero as n tends to infinity
and satisfy the following assumptions:

(i) n bd1n b
d
2n → +∞,

(ii) b1n b2n
h2
n
→ 0 ,

(iii) m is such that n bd1n b
d
2n max(b1n, b2n)2(m+1) → 0.

Then, in the stationary regime, one gets for any (x, y) ∈ R2d√
nbd1nb

d
2n (p̃n(x, y)− ps(x, y))

D−−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
.

If in addition

(iv) nhn
bd1n
b2+d2n

→ 0,

(v) there exists p > 1 such that nh2n
b
d(2−p)/p
1n

b2+d2n

→ 0.

Then, still in the stationary regime, one gets for any (x, y) ∈ R2d√
nbd1nb

d
2n (p̂n(x, y)− ps(x, y))

D−−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
.

A similar statement holds true starting from any point z0 ∈ R2d. In this situa-
tion we have to slightly change the definition of our estimators replacing

∑n
i=1 by∑n+ln

i=1+ln
for some ln such that ln hn → +∞ as n→ +∞.

4. Estimation of the drift term.

In this section we will consider an estimator of the drift function from R2d into Rd,
g(x, y) = −[c(x, y)y +∇V (x)].

Let K : R2d → R be a C2 2d-dimensional kernel whose support is compact and
such that there exists m ∈ N∗ such that for all non constant polynomial P (x, y)
with degree less or equal than m,

∫
P (u, v)K(u, v)dudv = 0. The estimators of the

invariant density, p̃n(x, y) and p̂n(x, y) are defined as in Section 3. However, for
simplicity we will only use p̂n(x, y).

Define for i ∈ N∗ , n ∈ N∗,

Di,n := X(i+1)hn − 2X(i+ 2
3 )hn

+X(i+ 1
3 )hn

(4.1)

=

∫ (i+1)hn

(i+ 2
3 )hn

(Ys − Y(i+ 2
3 )hn

) ds+

∫ (i+ 2
3 )hn

(i+ 1
3 )hn

(Y(i+ 2
3 )hn

− Ys) ds .

Because one observes only the position of the particle and not its derivative, we
must define our estimator by using only the position.

We introduce the estimator ĝn(x, y) of g(x, y) defined as

ĝn(x, y) p̂n(x, y) :=
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

x−Xihn

b1n
,
y −

X
(i+1

3
)hn
−Xihn

(hn/3)

b2n

 Di,n

(hn/3)2
,
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where

p̂n(x, y) :=
1

nbd1nb
d
2n

n∑
i=1

K

(
x−Xihn

c1n
,
y − X(i+1)hn−Xihn

hn

c2n

)
.

Note that the the bandwidths bin, i = 1, 2 and cin, i = 1, 2 are constrained by
(4.2) in Theorem 4.1. This constraint is needed for our proof of Theorem 4.1 from

Proposition 4.3 which deals with the central limit theorem for Ĥn. The choice of
our estimator ĝn has been motivated in the introduction of the paper. It is both
based on a natural heuristic and on technical arguments needed for the proof of
Proposition 4.2, which is a step towards the proof of our main result. This main
result is stated in Theorem 4.1 below, it consists in a central limit theorem for
ĝn(x, y).

During the proof we shall need an additional assumption namely:

Hypothesis H3: g belongs to the domain of the infinitesimal generator L, in
all Lp(µ) for 1 ≤ p < +∞.

According to the properties we recalled before, for H3 to be satisfied it is enough
that:

Hypothesis H4: the function c (resp. V ) and its first two derivatives (resp. its
first three derivatives) have polynomial growth.

The aim of these assumptions is to ensure that the drift function g belongs to
the domain of the infinitesimal generator L of Pt.

Theorem 4.1. Assume that H1, H2 and H3 are satisfied and that the the band-
widths b1n, b2n, c1n, c2n and the discretization step hn tend to zero as n tends to
∞. Assume moreover that the following assumptions are satisfied respectively with
rin = bin and rin = cin:

i) nhn r
d
1n r

d
2n → +∞,

ii) m ∈ N∗ is such that nrd1nr
d
2nhn max(r1n, r2n)2(m+1) −−−−−→

n→+∞
0,

iii) ∃ ε1 > 0 such that n(rd1nr
d
2n)1−ε1 h3n −−−−−→

n→+∞
0,

iv) ∃ ε2, ε3 ∈ R∗+, ε2, ε3 < 1 such that
h2(1−ε2)
n

(r1nr2n)ε3
−−−−−→
n→+∞

0,

v) there exist p > 1, p < +∞ and ε > 0, such that h2nr
d( 1
p−1)

1n r
−(2+d)
2n −−−−−→

n→+∞
0

and hn
√
n r

d( 1
p(1+ε)

− 1
2 )

1n r
−( d2+1)
2n −−−−−→

n→+∞
0.

Define ĝn = Ĥn(b)/p̂n(c) where the indication in brackets indicates the bandwidths
we are using. Assume in addition that

hn(b, c) := hn
bd1nb

d
2n

cd1nc
d
2n

→ 0 as n→ +∞. (4.2)

Then√
nbd1nb

d
2nhn (ĝn(x, y)− g(x, y))

D−−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
.
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For technical reasons, the proof of Theorem 4.1 is based on two preliminary
results stated respectively in Proposition 4.2 and Proposition 4.3. We first introduce
an intermediate kernel estimate of g(x, y) ps(x, y), denoted by H̃n, and defined by:

H̃n(x, y) =
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
Di,n

(hn/3)2
. (4.3)

Note that this estimate can not be the final estimate as the Yihns are not observed

in practice. However, studying the convergence of H̃n(x, y) is easier and is the first
setp towards the proof of Theorem 4.1.

Now, to see why the definition of H̃n(x, y) is meaningful, let us first study the
asymptotic bias of this estimator in the stationary regime.

Using stationarity we get

E[H̃n(x, y)] =
9

bd1nb
d
2n

E
[
K

(
x−X0

b1n
,
y − Y0
b2n

)
D0,n

h2n

]
=

9

bd1nb
d
2n

∫
R2d

K

(
x− u
b1n

,
y − v
b2n

)
E
[
D0,n

h2n
|X0 = uY0 = v

]
ps(u, v)dudv.

Using (4.1), we may write

D0,n

h2n
=

1

h2n

(
σ[

∫ hn

2
3hn

(Ws −W 2
3hn

)ds+

∫ 2
3hn

hn
3

(W 2
3hn
−Ws)ds] + I(hn)

)
, (4.4)

where

I(hn) =

∫ hn

2
3hn

∫ t

2
3hn

g(Xs, Ys)dsdt+

∫ 2
3hn

hn
3

∫ 2
3hn

t

g(Xs, Ys)dsdt.

The independence of the increments of W and the semigroup properties yield

E[
D0,n

h2n
|X0 = u , Y0 = v] =

1

h2n

[∫ hn

2
3hn

∫ t

2
3hn

Psg(u, v)dsdt+

∫ 2
3hn

hn
3

∫ 2
3hn

t

Psg(u, v)dsdt

]
=: G(hn, u, v).

Notice that, G(hn, u, v)→ 1
9 g(u, v) as n→ +∞ since hn → 0.

A change of variable entails

E[H̃n(x, y)] =
9

bd1nb
d
2n

∫
R2d

K

(
x− u
b1n

,
y − v
b2n

)
G(hn, u, v)ps(u, v)dudv

= 9

∫
R2d

K(z1, z2)G(hn, x− b1nz1, y − b2nz2)ps(x− b1nz1, y − b2nz2)dz1dz2 ,

which converges to g(x, y)ps(x, y) as n tends to infinity, according to the bounded
convergence theorem and under Assumption H4. Indeed, Assumption H4 ensures
that g defined by (1.2) is regular enough to belong to the domain of the infinitesimal
generator of the semi-group Pt. The main argument to prove that is given in Lemma
1.1 in Wu (2001). Hence H̃n is an asymptotically unbiased estimator of gps.

Starting from this consideration, we now state a central limit theorem for the
estimator H̃n(x, y). Let denote I the identity matrix in Rd.



8 P. Cattiaux, J. León and C. Prieur

Proposition 4.2. Assume that H1, H2 and H3 are satisfied and that the band-
widths b1n, b2n and the discretization step hn tend to zero as n tends to∞. Assume
moreover that the bandwidths bin, i = 1, 2, satisfy assumptions i) to iv) of Theorem
4.1. Then, in the stationary regime,√
nbd1nb

d
2nhn

(
H̃n(x, y)− g(x, y)ps(x, y)

)
D−−−−−→

n→+∞
N
(

0, (
2

3
σ2ps(x, y)

∫
K2(u, v)dudv)I

)
.

Proof of Proposition 4.2: the proof is postponed to the Appendix. �

We now deduce from Proposition 4.2 the following result on the asymptotic
behaviour of Ĥn(x, y) = ĝn(x, y) p̂n(x, y):

Proposition 4.3. Under the assumptions of Proposition 4.2 and assuming more-
over assumption v) of Theorem 4.1 one gets√
nbd1nb

d
2nhn

(
Ĥn(x, y)− ps(x, y)g(x, y)

)
D−−−−−→

n→+∞
N
(

0, (
2

3
σ2ps(x, y)

∫
K2(u, v)dudv)I

)
.

Proof of Proposition 4.3: the proof is postponed to the Appendix. �

Proof of the main result, Theorem 4.1: We have

ĝn − g =
Ĥn

p̂n
− g =

Ĥn − psg
ps

+ Ĥn

(
1

p̂n
− 1

ps

)
.

For the first term, we have according to Proposition 4.3,√
nbd1nb

d
2nhn

Ĥn − psg
ps

(x, y)
D−−−−−→

n→+∞
N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
.

We shall show that the second one goes to 0 in probability and then conclude by
using Slutsky theorem.
We thus decompose√

nbd1nb
d
2nhn Ĥn

(
1

p̂n
− 1

ps

)
=

(√
hn(b, c) Ĥn

p̂n ps

) (√
ncd1nc

d
2n (ps − p̂n)

)
.

The second term of this product converges in distribution according to Theorem
3.1. We shall show that the first term in the product goes to 0 in probability.
Indeed, according to Cattiaux et al. (2014), p̂n−ps → 0 in probability as n→ +∞,

and as we previously saw, Ĥn is bounded in L1. Let a > 0. We have

P

(√
hn(b, c) Ĥn

p̂n ps
> a

)
≤ P (p̂n ≤ (ps/2)) + P

(
Ĥn > (a p2s/2

√
hn(b, c))

)
,

and both terms go to 0, using the Markov inequality for instance for the second
one.
To conclude it remains to recall that if Un goes to 0 in probability and Vn goes to
V in distribution, the product Un Vn goes to 0 in probability. �.

We conclude this section by giving an explicit class of examples for the parame-
ters hn, bi,n, ci,n to satisfy all the required assumptions in Theorem 4.1.

Proposition 4.4. Choose hn = n−γ , bin = n−αi and cin = n−βi for some
γ, αi, βi > 0. If



Estimation for Hamiltonian systems. II. Drift term. 9

(1) α2 = β2 − ε
d(4+4d) = 1−2ε

d(4+4d) ,

(2) β1 = 3−2ε+4d
d(4+4d) , α1 = β1 + β2

2 −
1

2d2 ,

(3) 1
2d < γ < 1

2d + 3ε
4+4d ,

(4) m > 1+2d
1−ε .

for some ε > 0 small enough, then Theorem 4.1 holds true.

Remark 4.5. Under assumptions of Proposition 4.4 we can reach a rate of conver-

gence in n
3ε

4+4d .

Proof of Proposition 4.4: the proof is postponed to the appendix. �

Remark 4.6. Remark that contrary to the case of Theorem 3.1, where it is possible
to have m = 1 here m grows linearly with the dimension (m > 2+4d+6εd+2ε

2(1−ε) ).

5. Non-stationary case

In Section 3 we stated the central limit theorem for the estimate of the drift
g(x, y) in the case where the process is in the stationary regime. Let us now define
the new estimate

gn(x, y) =

1
(n−1)bd1nbd2n

∑n+ln−1
i=ln+1 K

(
x−Xihn
b1n

,
y−

X
(i+1

3
)hn

−Xihn
(hn/3)

b2n

)
Di,n

(hn/3)2

1
nbd1nb

d
2n

∑n+ln
i=ln+1K

(
x−Xihn
b1n

,
y−

X(i+1)hn
−Xihn

hn

b2n

) (5.1)

We remark that given Z0 ∼ µ(dz), gn(x, y)
L
= ĝn(x, y) ∀n ∈ N∗.

Theorem 5.1 below states that we can estimate g(x, y) by using gn(x, y) with
Z0 = z0 = (x0, y0).

Theorem 5.1. Under the assumptions in Theorem 4.1, starting from any initial
point z0 = (x0, y0), it holds√

nhn bd1nb
d
2n (gn(x, y)− g(x, y))

D−−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
,

provided ln appearing in the definition (5.1) of gn(x, y) satisfies lnhn −−−−−→
n→+∞

+∞.

Proof of Theorem 5.1:
Recall that ps : R2d 7→ R+ denotes the invariant density of Z and µ the associated
invariant probability measure.

Denote by Cb(R) the set of bounded continuous functions h : R → R. It is only
necessary to prove that, for any h ∈ Cb(R), the difference

∆n(h) = E
[
h(
√
hn nbd1nb

d
2nĝn(x, y)|Z0 ∼ µ)− h(

√
hn nbd1nb

d
2ngn(x, y)|Z0 = z0)

]
= E

[
h(
√
hn nbd1nb

d
2ngn(x, y)|Z0 ∼ µ)− h(

√
hn nbd1nb

d
2ngn(x, y)|Z0 = z0)

]
goes to zero as n tends to infinity. Let h ∈ Cb(R) and denote θ = ‖h‖∞.

To evaluate E (h(gn(x, y))|Z0 ∼ µ)− E (h(gn(x, y))|Z0 = z0). Let us fix n ∈ N∗.
We first make the computations conditionally to Zjhn , j > ln + 1.
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One may write
gn(x, y) = gn(x, y, Z(ln+1)hn , Zjhn , j > ln + 1) and
hZjhn , j>ln+1(z′) = gn(x, y, z′, Zjhn , j > ln + 1).

Now, conditionally to Zjhn , j > ln + 1, one has:

|E (h(gn(x, y))|Z0 ∼ µ)− E (h(gn(x, y))|Z0 = z0)|

=

∣∣∣∣∫ hZjhn , j>ln+1(z′)
(
ps(z

′)− q(ln+1)hn(z0, z
′)
)
dz′
∣∣∣∣

≤ θDρ(ln+1)hnΨ(z0) (5.2)

using Inequality (2.1) in Cattiaux et al. (2014).

Finally, as 0 < ρ < 1, we can conclude that ∆n(h) goes to zero as n tends to
infinity as soon as lnhn −−−−−→

n→+∞
+∞, which concludes the proof of Theorem 5.1. �

6. Examples and numerical simulation results

In this section, we consider examples of stochastic differential equations defined
by (1.1) and implement the estimator on simulated data. However, the choice of
the optimal bandwidths b1n, b2n, c1n and c2n as far as the choice of the optimal
discretization step hn, and the optimal choice of the kernel K, although interesting,
is not the purpose of this section nor this paper. This is a separate study to be
addressed in future work.

To simulate sample paths, we use an approximate discrete sampling generated
by an explicit Euler scheme (see Remark 6.1 at the end of this section). We consider
three specific examples. The first one has been proposed in Pokern et al. (2009).
It corresponds to a linear oscillator subject to noise and damping. The second
example is one example of generalized Duffing oscillators described in Wu (2001)
subsection 5.2. The last example is the Van der Pol oscillator whose damping force
depends on both position and velocity coordinates. These three models are of type
(1.1) and satisfy assumptions needed to apply our estimation results. Simulations
are run with the Epanechnikov kernel.

6.1. Model I: harmonic oscillator. We consider an harmonic oscillator that is driven
by a white noise forcing:

dXt = Ytdt

dYt = σ dWt − (κYt +DXt)dt. (6.1)

with κ > 0 and D > 0. In the following we choose D = 2, κ = 2 and σ = 1. For
this model we know that the stationary distribution is Gaussian, with mean zero
and an explicit variance matrix given in e.g. Gardiner (1985). With our choice of
parameters, the Gaussian invariant density is

ps(x, y) =
2
√

2

π
exp

(
−4x2 − 2y2

)
.
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And the drift is defined by g(x, y) = −2(y+x). In the following we make use of the

explicit Euler scheme to simulate an approximated discrete sampling (X̃i, Ỹi)i∈N of
(Xt, Yt)t∈R+

. For a given step δ > 0, the scheme is defined as

X̃i+1 − X̃i = Ỹiδ

Ỹ(i+1) − Ỹi = σ (W(i+1)δ −Wiδ)− (κỸi +DX̃i)δ (6.2)

(X̃0, Ỹ0) = (0, 0). We take n = 5000, h = 0.28, b1n = b2n = 0.18, and the step for
the explicit Euler scheme δ = 1

10h/3.
For some fixed value of x0, the drift g(x0, ·) is estimated on a grid (zl)l=1,...,L =

(x0, yl)l=1,...,L.
For some fixed value of y0, the drift g(·, y0) is estimated on a grid (zl)l=1,...,L =

(xl, y0)l=1,...,L.
On Figure 7.1 below we chose L = 40 and x0 = 0.0230.
On Figure 7.2 below we chose L = 40 and y0 = 0.1878.

6.2. Model II: generalized Duffing oscillator. We consider the noisy Duffing oscil-
lator known as Kramers oscillator. The system (1.1) can now be written as

dXt = Ytdt

dYt = σ dWt − (κYt + αX3
t − βXt)dt (6.3)

with σ, κ, α and β > 0. The potential is then V (x) = αx
4

4 − β
x2

2 . The invariant
density is in that case

ps(x, y) =

√
κ√

πσC
exp

(
−2κ

σ2
(
αx4

4
− β x2

2
+
y2

2
)

)
,

with C the normalizing constant.
And the drift is defined by g(x, y) = −(κy + αx3 − βx).
Once more, we make use of the explicit Euler scheme to simulate an approxi-

mated discrete sampling. The choice for the parameters is σ = 1, κ = α = β = 1.
We take n = 104, hn = 0.30, b1n = b2n = 0.30, and the step for the explicit

Euler scheme δ = 1
10h/3.

The drift is estimated for some fixed value of x0, g(x0, ·), on a grid (zl)l=1,...,L =
(x0, yl)l=1,...,L. It is also estimated for some fixed value of y0, g(·, y0), on a grid
(zl)l=1,...,L = (xl, y0)l=1,...,L.

On Figure 7.3 below we chose L = 40 and x0 = 0.0230. On Figure 7.4 below we
chose L = 40 and y0 = 0.1878.

6.3. Model III: Van der Pol oscillator. We consider the Van der Pol oscillator de-
fined by

dXt = Ytdt

dYt = σ dWt − ((c1X
2
t − c2)Yt + ω2

0Xt)dt (6.4)

with σ, c1, c2 and ω2
0 > 0. In the following we choose σ = c1 = c2 = ω0 = 1.

The drift is then defined by g(x, y) = −((x2 − 1)y + 4x). The invariant density is
unknown in that case. However, we know that it is the solution of the corresponding
Fokker-Planck equation
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1

2

∂2ps(x, y)

∂y2
−y ∂ps(x, y)

∂x
+ c(x, y)ps(x, y) + (c(x, y)y+V ′(x))

∂ps(x, y)

∂y
= 0 . (6.5)

Thus the invariant density ps(x, y) may be approximated by solving Equation
(6.5) above, e.g. using a finite difference scheme. Doing so we remark that this
density, although positive, is very small in many points. Therefore we plotted
g(x, y) ps(x, y) to avoid numerical instabilities.

We made use of the explicit Euler scheme to simulate an approximated discrete
sampling.

On Figures 7.5 and 7.6 below we took n = 105, hn = 0.18, b1n = b2n = 0.10, and
the step for the explicit Euler scheme δ = 1

10h/3.
The drift for some fixed value of x0, g(x0, ·), is estimated on a grid (zl)l=1,...,L =

(xl, y0)l=1,...,L.
On Figure 7.5 below we chose x0 = 0.0230 and plotted g(x0, ·) ∗ ps(x0, ·).
The drift for some fixed value of y0, g(·, y0) is estimated on a grid (zl)l=1,...,L =

(x0, yl)l=1,...,L.
L was chosen equal to 40.
On Figure 7.6 below we chose y0 = 0.1878 and plotted g(·, y0) ∗ ps(·, y0).
We remark that for this third model, we do not estimate the drift itself, but the

drift multiplied by the invariant density. Indeed, the direct estimation of the drift
required divisions by quantities close to zero. Even with a regularization term, the
results were not convincing.

Remark 6.1. In the simulations above we used the explicit Euler scheme, which may
be unstable because the coefficients of the differential system 1.1 are unbounded
for the models we considered as; see e.g. Talay (2002). We also implemented an
implicit scheme, but it slowed too much the simulations, and the results were not
better.

To conclude this section, note that non parametric estimation allows capturing
the shape of a drift for which no parametric formula is available. For that reason, it
is of real interest for practicians. Once the shape is captured, it might then become
possible to propose a parametric model whose parameters should be estimated.

7. Appendix

7.1. Proof of Proposition 4.2. We may replace
√
n by

√
n− 1 without any change.

Now decompose

Sn :=
√

(n− 1)bd1nb
d
2nhn

(
H̃n(x, y)− g(x, y)ps(x, y)

)
=

√
(n− 1)bd1nb

d
2nhn

(
H̃n(x, y)− EH̃n(x, y) + EH̃n(x, y)− g(x, y)ps(x, y)

)
=: I1n + I2n.

To prove Proposition 4.2 we first prove that I2n → 0 and then that

I1n
D−−−−−→

n→+∞
N (0, (

2

3
σ2ps(x, y)

∫
K2(x, y)dxdy)I).
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Define

Ii(hn) := 9

(∫ (i+1)hn

(i+ 2
3 )hn

∫ t

(i+ 2
3 )hn

g(Xs, Ys)dsdt+

∫ (i+ 2
3 )hn

(i+ 1
3 )hn

∫ (i+ 2
3 )hn

t

g(Xs, Ys)dsdt

)
,

and

Wi,n := 9

(∫ (i+1)hn

(i+ 2
3 )hn

(Ws −W(i+ 2
3 )hn

)ds+

∫ (i+ 2
3 )hn

(i+ 1
3 )hn

(W(i+ 2
3 )hn

−Ws)ds

)
.

The vector
√

(n− 1)bd1nb
d
2nhnH̃n(x, y) can be decomposed in two terms: the one

driving the bias in the central limit theorem

Sn,1(x, y) :=

√
hn√

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
1

h2n
Ii(hn) ,

and the one driving the variance

Sn,2(x, y) :=
σ√

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
Wi,n

h
3/2
n

.

Notice that ESn,2(x, y) = 0. We thus have

I2n = ESn,1(x, y)−
√

(n− 1)bd1nb
d
2nhn g(x, y)ps(x, y) , (7.1)

while

I1n = (Sn,1 − ESn,1(x, y)) + Sn,2(x, y) . (7.2)

First step: Study of I2n

We define

Pi,n

9
:=

∫ (i+1)hn

(i+ 2
3 )hn

∫ t

(i+ 2
3 )hn

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt

+

∫ (i+ 2
3 )hn

(i+ 1
3 )hn

∫ (i+ 2
3 )hn

t

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt .

Thanks to stationarity, it holds

I2n =

√
(n− 1)hn
bd1nb

d
2n

E
(
K

(
x−X0

b1n
,
y − Y0
b2n

)
1

h2n
P0,n

)
+

+

√
(n− 1)hn
bd1nb

d
2n

(
E
(
K

(
x−X0

b1n
,
y − Y0
b2n

)
g(X0, Y0)

)
− bd1nbd2ng(x, y)ps(x, y)

)
.

The second summand in the above expression can be treated as in a classical density
estimation problem. More precisely, this term is equal to√

(n− 1)bd1nb
d
2nhn

∫
K(u, v) {g(x− ub1n, y − vb2n)ps(x− ub1n, y, vb2n)− g(x, y)ps(x, y)} dudv .
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Thus assuming there exists m ∈ N∗ such that for all polynomials P (x, y) with degree
between 1 and m,

∫
P (u, v)K(u, v)dudv = 0, and performing a Taylor expansion,

the above term converges to zero as n tends to infinity as soon as

nbd1nb
d
2nhn max(b1n, b2n)2(m+1) −−−−−→

n→+∞
0 .

Let us now study the first summand. As each of the coordinates of the drift
function g belongs to the domain of the infinitesimal generator L according to H3,
∀ 1 ≤ p < +∞ (Ptg − g)/t is bounded in Lp(µ) uniformly in t for t ∈ [0, 1], say by
Mp.
Now write√

(n− 1)hn
bd1nb

d
2n

E
(
K

(
x−X0

b1n
,
y − Y0
b2n

)
1

h2n
P0,n

)
=: 9

√
(n− 1)hn
bd1nb

d
2n

(A1n +A2n)

with

A1n =
1

h2n

∫ ∫ hn

2hn/3

∫ t

2hn/3

(Psg(u, v)− g(u, v)) K

(
x− u
b1n

,
y − v
b2n

)
ds dt µ(du, dv)

and A2n being similar just changing
∫ hn
2hn/3

∫ t
2hn/3

into
∫ 2hn/3

hn/3

∫ 2hn/3

t
. We thus only

study A1n.
Using Fubini’s theorem we may first integrate with respect to t and write

A1n =
1

h2n

∫ ∫ hn

2hn/3

(hn−s) s
(
Psg(u, v)− g(u, v)

s

)
K

(
x− u
b1n

,
y − v
b2n

)
ds µ(du, dv) .

Now we integrate with respect to µ, use Cauchy-Schwarz inequality and the remark
we have made about Psg − g (assuming that hn ≤ 1). We thus have (|.| denoting
the norm in Rd)

|A1n| ≤
Mp

h2n

∫ hn

2hn/3

(hn − s) s
(∫

Kr

(
x− u
b1n

,
y − v
b2n

)
µ(du, dv)

)1/r

ds

≤ CMp hn

(∫
Kr

(
x− u
b1n

,
y − v
b2n

)
µ(du, dv)

)1/r

with p > 1 , r < +∞ ∈ N∗ such that 1
p + 1

r = 1. It follows, using again the change

of variables √
(n− 1)hn
bd1nb

d
2n

A1n ≤ Cp
√

(n− 1)h3n (b1nb2n)
d( 1
r−

1
2 ) .

Thanks to assumption iii), one can choose r such that this last term tends to zero
as n tends to infinity.

Second step: Study of Sn,2

We now consider the term driving the variance. To study the weak convergence of
this sequence we adapt the proof of Theorem 3 in Beśka et al. (1982) and study the
characteristic function of Sn,2. Let us recall that

Sn,2(x, y) :=
σ√

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
Wi,n

h
3/2
n
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and that ESn,2(x, y) = 0.

The sketch of the proof of this step is the following. We first prove that the
sequence of random variables {Sn,2(x, y) , n ≥ 1} is tight. We then prove that if
Snk,2(x, y) is a subsequence of the original sequence, which converges in distribu-
tion, then it converges to Y ∼ N (0, 1). We then conclude that the sequence itself
converges in distribution to Y .

We proceed now with the proof.

Define for any u ∈ R+, Fu := σ ((Xl, Yl) , 0 ≤ l ≤ u). We now introduce, for
t ∈ Rd,

fn(t) :=

n−1∏
k=1

E[e
i<t, σ√

(n−1)bd1nb
d
2n

K(
x−Xkhn
b1n

,
y−Ykhn
b2n

)
Wk,n

h
3/2
n

>

|Fkhn ] ,

where < ·, · > denotes the usual scalar product in Rd.
Thanks to the independence of the Brownian increments we get

fn(t) =

n−1∏
k=1

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−Xkhn
b1n

,
x−Ykhn
b2n

)
= e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

∑n−1
k=1 K

2(
x−Xkhn
b1n

,
x−Ykhn
b2n

)
.

Now define

Zn =
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K2

(
x−Xihn

b1n
,
y − Yihn
b2n

)
.

It satisfies

EZn =
1

bd1nb
d
2n

∫
R2d

K2

(
x− u
b1n

,
y − v
b2n

)
ps(u, v)dudv → ps(x, y)

∫
K2(u, v)dudv = A.

Furthermore

E (|Zn −A|) ≤
∫ ∣∣∣∣( 1

bd1nb
d
2n

K2

(
x− u
b1n

,
y − v
b2n

)
ps(u, v)

)
−A

∣∣∣∣ dudv
≤ 1

bd1nb
d
2n

∫
K2

(
x− u
b1n

,
y − v
b2n

)
|ps(u, v)− ps(x, y)| dudv

≤
∫

K2(u, v) |ps(x− b1nu, y − b2nv)− ps(x, y)| dudv

and the latter goes to 0 by using the bounded convergence theorem and the conti-
nuity of ps.

Thus Zn → ps(x, y)
∫
K2(z1, z2)dz1dz2, in L1. Using the bounded convergence

theorem, we deduce that

fn(t)
P→ e−

t2 2
3
σ2d

2 ps(x,y)
∫
K2(z1,z2)dz1dz2 =: φ(t).

Passing to subsequences if necessary, we can assume that this convergence holds
almost everywhere i.e.

fn(t)→ φ(t) a.e. (7.3)

Let us now define for k = 1, . . . , n the sets

Hnk = {e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

∑k−1
i=1 K

2(
x−Xihn
b1n

,
y−Yihn
b2n

)
≥ 1

2
φ(t)}.
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Of course

Hn,n ⊂ Hn,n−1 ⊂ . . . ⊂ Hn,2,

and using (7.3)

P{lim sup
n→∞

Hc
n,n} = 0. (7.4)

Finally, introduce the random variables

ζn,i =
σ√

(n− 1)bd1nb
d
2n

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
Wi,n

h
3/2
n

1Hn,i ,

and also

f∗n(t) =

n−1∏
i=1

E[ei<t,ζn,i>|Fihn ] =

n−1∏
i=1

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−Xihn
b1n

,
y−Yihn
b2n

) 1Hn,i .

It holds

f∗n(t) ≥ 1

2
φ(t) by definition and f∗n(t)→ φ(t) a.e. by (7.4) . (7.5)

So, we can assume that these two properties hold for the initial variables.

Let us now come back to the study of the weak convergence of Sn,2(x, y). By
using Markov property and the independence of the Brownian increments, we obtain

E
[
ei<t,Sn,2(x,y)>

fn(t)

]
= E

∏n−1
i=1

e

i<t, σ√
(n−1)bd1nb

d
2n

K(
x−Xihn
b1n

,
y−Yihn
b2n

)
Wi,n

h
3/2
n

>

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−Xihn
b1n

,
x−Yihn
b2n

)



= E

n−2∏
i=1

e
i<t, σ√

(n−1)bd1nb
d
2n

K(
x−Xihn
b1n

,
y−Yihn
b2n

)
Wi,n

h
3/2
n

>

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−Xihn
b1n

,
x−Yihn
b2n

)

E

e
i<t, σ√

(n−1)bd1nb
d
2n

K(
x−X(n−1)hn

b1n
,
y−Y(n−1)hn

b2n
)
W(n−1),n

h
3/2
n

>

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−X(n−1)hn

b1n
,
x−Y(n−1)hn

b2n
)

∣∣∣F(n−1)h




= E

∏n−2
i=1

e

i<t, σ√
(n−1)bd1nb

d
2n

K(
x−Xihn
b1n

,
y−Yihn
b2n

)
Wi,n

h
3/2
n

>

e
−

t2 2
3
σ2d

2(n−1)bd1nb
d
2n

K2(
x−Xihn
b1n

,
x−Yihn
b2n

)

 = 1 using induction.

Now we are ready to prove the weak convergence

∣∣∣E [ei<t,Sn,2(x,y)>]− φ(t)
∣∣∣ =

∣∣∣∣E [ei<t,Sn,2(x,y)> − E
[
φ(t)

ei<t,Sn,2(x,y)>

fn(t)

]]∣∣∣∣
=

∣∣∣∣E [ei<t,Sn,2(x,y)>(1− φ(t)

fn(t)

)]∣∣∣∣ ≤ 2

φ(t)
E|fn(t)− φ(t)| → 0.

This last equality is deduced from the L1-L∞ Hölder inequality combined with
the bound on fn(t) deduced from (7.5).

We may conclude the proof of the tightness of {Sn,2(x, y) , n ≥ 1}. To this end,

let Snk,2(x, y) be a subsequence of the original sequence. We know that fnk(t)
P→

φ(t). Whence there exists another subsequence fnkj (t)
a.e.→ φ(t). By the above result

Snkj converges weakly to a r.v. Y , moreover E[ei<t,Y >] = φ(t). Thus the tightness.
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All the limits of the convergent subsequences being the same, we directly con-
clude that the sequence {Sn,2(x, y) , n ≥ 1} converges weakly and that its limit is
Y . It concludes the proof of the second step.

Third step: study of Zn := Sn,1(x, y)− ESn,1(x, y)

Let us denote as before by Pk
i,n the kth coordinate of the vector Pi,n. Defin-

ing
Γkn(i, x, y,X, Y ) = K(x−Xb1n ,

y−Y
b2n

) 1
h2
n
Pk
i,n, we write

Zkn =

√
hn√

(n− 1)bd1nb
d
2n

n−1∑
i=1

Γkn(i, x, y,Xihn , Yihn),

so that

(n−1)bd1nb
d
2n

hn
V ar(Zkn)

=
( n−1∑
i=1

V ar(Γkn(i, x, y,Xihn , Yihn))+
∑
i 6=l

Cov(Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn))
)
.

To bound the above expression we first write as we did for the first step

E(Γkn(i, x, y,Xihn , Yihn))2 = E
(
K(

x−X
b1n

,
y − Y
b2n

)
1

h2n
Pk
i,n

)2

≤ U1n + U2n

with

U1n = 2

(
9

∫ (i+1)hn

(i+ 2
3 )hn

∫ t

(i+ 2
3 )hn

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt

)2

and

U2n = 2

(
9

∫ (i+ 2
3 )hn

(i+ 1
3 )hn

∫ (i+ 2
3 )hn

t

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt

)2

.

Then, using stationarity,

U1n ≤
C

h4n
E

K2

(
x−X0

b1n
,
y − Y0
b2n

)(∫ hn

2hn/3

(hn − s) (Psg(X0, Y0)− g(X0, Y0)) ds

)2
 ,

U2n being similar just replacing
∫ hn
2hn/3

(hn − s) by
∫ 2hn/3

hn/3
(s− (hn/3)).

Using Cauchy-Schwarz inequality we get

U1n ≤ C

hn

∫ hn

2hn/3

(∫
K2

(
x− u
b1n

,
y − v
b2n

)
(Psg(u, v)− g(u, v))

2
dµ

)
ds

≤ C hn

∫ hn

2hn/3

(∫
K2

(
x− u
b1n

,
y − v
b2n

) (
Psg(u, v)− g(u, v)

s

)2

dµ

)
ds .

We may argue as in the first step, this time using Hölder inequality for some
conjugate pair (p, q) and H3 in L2q, to conclude that

U1n ≤ C h2n (b1nb2n)d/p .
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It follows

hn
(n− 1)bd1nb

d
2n

n−1∑
i=1

V ar(Γkn(i, x, y,Xihn , Yihn)) = O
(
h3n(b1nb2n)d(

1
p−1)

)
. (7.6)

One can choose p such that the right hand term tends to zero thanks to assumption
iv).

Let us now compute the covariances.
One has thanks to stationarity and mixing inequality (2.1)∑

i6=l

Cov
(
Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn)

)

≤ Cn
n−2∑
j=1

min
(
ρjhn/2,Var(Γkn(0, x, y,X0, Y0))

)
.

Then, using inequality (7.6) one gets the following bound

≤ Cn
n−2∑
j=1

min
(
ρjhn/2, (b1nb2n)

d
ph2n

)
.

Then using that for all x, y ≥ 0, and all a ∈ (0, 1), x ∧ y ≤ x1−aya one gets that
the above quantity is in

O
(
n(b1nb2n)

d
p (1−a)h1−2an

)
for any 0 < a < 1.

We thus get

hn
(n− 1)bd1nb

d
2n

∑
i6=l

Cov
(
Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn)

)
= O

(
(b1nb2n)

d
p (1−a)−dh2(1−a)n

)
.

One can choose p and a such that the right hand term tends to zero as n tends to
infinity thanks to assumption iv). This completes the proof.

7.2. Proof of Proposition 4.3. Starting from Proposition 4.2, it remains now to
consider Dn defined by

1√
(n− 1)bd1nb

d
2n

n−1∑
j=1

K (x−Xjhn

b1n
,
y − Yjhn
b2n

)
−K

x−Xjhn

b1n
,
y −

X
(j+1

3
)hn
−Xjh

(hn/3)

b2n

 Dj,n

h3/2
.

Let us define Aj = K
(
x−Xjhn
b1n

,
y−Yjhn
b2n

)
− K

(
x−Xjhn
b1n

,
y−

X
(j+1

3
)hn

−Xjh

(hn/3)

b2n

)
. We

then write

Dn =
1√

(n− 1)bd1nb
d
2n

n−1∑
j=1

Aj
Dj,n

h3/2
=

1√
(n− 1)bd1nb

d
2n

n−1∑
j=1

Aj
(σWj,n + Ij(hn))

h3/2
.
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Using Hölder Inequality, we bound E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

Ij(hn)

h3/2

∣∣∣∣ by

1√
(n− 1)bd1nb

d
2n

h−3/2
n−1∑
j=1

(
E|Aj |1+ε

)1/(1+ε) (E|Ij(hn)|(1+ε)/ε
)ε/(1+ε)

,

with ε > 0.

We first consider E|Ij(hn)|(1+ε)/ε = E|I0(hn)|(1+ε)/ε by stationarity. We use
(4.4) and we get that

E
[
|I0(hn)|(1+ε)/ε |X0 = u, Y0 = v

]
≤

∣∣∣∣∣
∫ hn

2
3hn

∫ t

2
3hn

Psg(u, v)dsdt+

∫ 2
3hn

hn
3

∫ 2
3hn

t

Psg(u, v)dsdt

∣∣∣∣∣
(1+ε)/ε

.

(7.7)
Recall that for all t > 0, and for all f ∈ Lp, 1 ≤ p ≤ ∞, Ptf(z) is defined as
Ezf(Zt).

Thus for all t > 0 and all α > 0

|Ptg(u, v)|α =

∣∣∣∣∫ g(x, y)pt(x, y;u, v)dxdy

∣∣∣∣α ≤ ∫ |g(x, y)|αpt(x, y;u, v)dxdy = Pt|g|α(u, v)

with pt(z; z
′) denoting the transition kernel for the Markov process Z.

We can thus bound the right hand side of (7.7), using L
1+ε
ε -L1+ε Hölder inequal-

ity, by

C h
2
ε
n

[∫ hn

2
3hn

∫ t

2
3hn

Ps|g|
1+ε
ε (u, v)dsdt+

∫ 2
3hn

hn
3

∫ 2
3hn

t

Ps|g|
1+ε
ε (u, v)dsdt

]
which is equal to

C h
2
ε
nh

2
nGε(hn, u, v)

with Gε(hn, u, v) −−−−−→
n→+∞

|g| 1+εε (u, v).

Using now similar arguments as in Step 2 in the proof of Theorem 3.3 in Cattiaux
et al. (2014) (Theorem 3.1 of the present paper), one bounds E|Ai|1+ε by

O
(
h1+εn b

d
p

1nb
−(1+ε)
2n

)
. (7.8)

Thus E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

Ij(hn)

h3/2

∣∣∣∣ is bounded by

O
(
hn
√
nb
d( 1
p(1+ε)

− 1
2 )

1n b
−( d2+1)
2n

)
with 1 < p < +∞. It converges to zero as we assumed (see Assumption v).

It remains now to bound E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

σWj,n

h3/2

∣∣∣∣. The terms AjWj,n,

1 ≤ j ≤ n−1 are centered and uncorrelated. Thus by stationarity we have to bound
σ2

bd1n b
d
2n
EA2

0W
2
0,n

h3
n

. First conditioning now on Zhn
3

one gets EA2
0W

2
0,n = h3nEA2

0 . We

then conclude by using (7.8) for ε = 1 which yields EA2
0W

2
0,n = h3nh

2
nb
d/p
1n b

−2
2n for all

1 < p < +∞. This completes the proof, using v).
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7.3. Proof os Proposition 4.4. For Theorem 3.1 to be satisfied in this situation we
must have (see Remark 3.4 in Cattiaux et al. (2014))

(a) β1 >
2+β2(3+2d)

1+2d in particular β1 > β2,

(b) 1− β1d+ β2(2 + d) < γ < 1
2 (β1 + β2) < 1

2d ,

(c) m > 1−d(β1+β2)
2β2

.

Condition (a) ensures that 1 − β1d + β2(2 + d) < 1
2 (β1 + β2), so that we may

find some γ sandwiched by both terms. For both (a) and (b) to be satisfied, it is
necessary that

β2 <
1

d(4 + 4d)
, (7.9)

and then we can choose

1

d
− β2 > β1 >

2 + β2(3 + 2d)

1 + 2d
.

Remark that our interest is to take β2 as close as possible to its upper bound, β1
as close as possible to 1

d − β2 so that m can be chosen as small as possible (1 is
possible). γ can then be chosen smaller than and close to 1/2d.

Now we look at Proposition 4.3 starting with conditions i)-iv) in Proposition 4.2

(1) 1 > γ + d(α1 + α2),
(2) 1 < d(α1 + α2) + 2(m+ 1)(α1 ∧ α2) + γ,
(3) 1 < 3γ + d(α1 + α2) is enough for getting ε1 > 0 in iii),
(4) 2γ > ε3 (α1 + α2) is enough for getting ε2 > 0 in iv).

We see that the latter will be automatically satisfied for ε3 small enough. We have
to add

(5) 2γ > (2 + d)α2,
(6) 1

2 < γ + d
2 (α1 − α2)− α2,

which is enough to furnish both p > 1 and ε > 0 in v) of Proposition 4.3.
Finally we have to add

(7) γ > d((β1 + β2)− (α1 + α2)) .

Look at (1). The compatibility with (b) imposes

γ + d(α1 + α2) < 1 < γ + d(β1 + β2)− β2(2 + 2d) .

That is why we cannot take the same bandwidths b and c.
We thus have a first necessary condition

d(α1 + α2) < d(β1 + β2)− β2(2 + 2d) ,

which is satisfied as soon as

d(α1 + α2) = d(β1 + β2)− 1

2d
. (7.10)

Now we choose for some small ε (say less than 10−6/d2),

β2 =
1− ε

d(4 + 4d)
, β1 =

3− 2ε+ 4d

d(4 + 4d)
.
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(7.9) and the following inequalities are satisfied, as well as the final upper bound in
(b). We have thus to choose γ such that, first γ > 1

2d for (7) to be satisfied, next
for (1) and the first lower bound of (b) to be satisfied. This amounts to

1− ε
2d

+
3ε

4 + 4d
< γ <

1

2d
+

3ε

4 + 4d
.

The left hand side of the previous inequality is less than 1
2d since d ≥ 1. So we only

have to choose
1

2d
< γ <

1

2d
+

3ε

4 + 4d
. (7.11)

The upper bound in (b) are then satisfied. If we look at (3) it reduces to

1

2d
+

3ε

4 + 4d
< 3γ

which is satisfied. Now (6) becomes

3ε

4 + 4d
+

1

2d
+ (2d+ 2)α2 < 2γ

which implies (5) and which is satisfied as soon as

3ε

4 + 4d
+ (2d+ 2)α2 <

1

2d
.

Notice that the latter implies α2 < α1. Notice that for ε > 0 we may choose
α2 = β2 − ε

d(4+4d) . It remains to choose m for (2) to be satisfied.
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dom sums of dependent d-dimensional random vectors. Z. Wahrsch. Verw. Ge-
biete 61 (1), 43–57 (1982).
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Figure 7.1. Estimation of the drift for the harmonic oscillator:
theoretical g(x0, ·) in plain line, estimated in dashed line for x0 =
0.0230, 95% asymptotic confidence intervals (upper bounds with
croices, lower bounds with stars)
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Figure 7.2. Estimation of the drift for the harmonic oscillator:
theoretical g(·, y0) in plain line, estimated in dashed line for y0 =
0.1878, 95% asymptotic confidence intervals (upper bounds with
croices, lower bounds with stars)
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Figure 7.3. Estimation of the drift for the Duffing oscillator:
theoretical g(x0, ·) in plain line, estimated in dashed line for
x0 = 0.0230, 95% asymptotic confidence intervals (upper bounds
with croices, lower bounds with stars)
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Figure 7.4. Estimation of the drift for the Duffing oscillator:
theoretical g(·, y0) in plain line, estimated in dashed line for
y0 = 0.1878, 95% asymptotic confidence intervals (upper bounds
with croices, lower bounds with stars)



Estimation for Hamiltonian systems. II. Drift term. 27

−3 −2 −1 0 1 2 3
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 7.5. Estimation of the ”drift” for the Van der Pol oscil-
lator: theoretical g(x0, ·) ∗ ps(x0, ·) in plain line, estimated with
dots for x0 = 0.0230, 95% asymptotic confidence intervals (upper
bounds with croices, lower bounds with stars)
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Figure 7.6. Estimation of the ”drift” for the Van der Pol oscil-
lator: theoretical g(·, y0) ∗ ps(·, y0) in plain line, estimated with
dots for y0 = 0.1878, 95% asymptotic confidence intervals (upper
bounds with croices, lower bounds with stars)
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