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Abstract

The aim of the research presented in this paper is to forecast air traffic
controller workload and required airspace configuration changes with enough
lead time and with a good degree of realism. For this purpose, tree search
methods were combined with a neural network.

The neural network takes relevant air traffic complexity metrics as input
and provides a workload indication (high, normal, or low) for any given air
traffic control (ATC) sector. It was trained on historical data, i.e. archived
sector operations, considering that ATC sectors made up of several airspace
modules are usually split into several smaller sectors when the workload is
excessive, or merged with other sectors when the workload is low. The input
metrics are computed from the sector geometry and from simulated or real
aircraft trajectories.

The tree search methods explore all possible combinations of elementary
airspace modules in order to build an optimal airspace partition where the
workload is balanced as well as possible across the ATC sectors. The results
are compared both to the real airspace configurations and to the forecast
made by flow management operators in a French en-route air traffic control
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centre.
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1. Introduction

Air traffic is currently controlled by human operators (air traffic con-
trollers) who monitor aircraft trajectories and give instructions to pilots
so as to avoid mid-air collisions and dangerous situations. The airspace is
partitioned into managerial units, air traffic control centres (ATCC), which
are themselves partitioned into elementary airspace modules2. These basic
airspace modules may be combined together so as to form air traffic control
(ATC) sectors each operated by a small team of 2-3 controllers3.

In many centres, the airspace configuration, i.e. the partitioning of the
ATCC airspace into ATC sectors, may change during the day, depending on
the incoming traffic and controller workload. Sectors may be split4 when the
workload increases, or merged (or collapsed) when the workload decreases.
More complex recombinations may sometimes be decided by the control room
manager, so as to balance the workload across all the control sectors.

The ultimate objective of the research presented in this article is to fore-
cast airspace configurations with a good degree of realism, using a reliable
workload forecast grounded on relevant air traffic complexity metrics. The
basic idea is to learn from the current control sector operations in order to
propose efficient forecasting models and algorithms.

Assessing the controller workload and predicting when this workload will
exceed safe limits are difficult problems involving human factors, which have

2The usual term to denote these elementary airspace modules is sector, which may be
confusing as it can either denote a single airspace module, or a control sector made up of
several modules. So, in the rest of this paper, the elementary geographic sectors will be
referred to as modules, in order to avoid confusion with ATC (Air Traffic Control) sectors.

3A team operating a control sector is composed of a radar controller who gives in-
structions to the pilots (direction or flight level changes), and a planning controller. The
planning controller monitors the incoming traffic a few minutes before it enters the sec-
tor and is in charge of pre-detecting any potential conflicts, as well as coordination with
the adjacent sectors. In some countries, an additional controller may assist these two
controllers when the traffic is heavy.

4Splitting an ATC sector requires that it is composed of at least two modules.
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been the subject of many studies (see [1] for an overview). Some studies fo-
cus on the relationship between air traffic complexity metrics and controller
workload. A general statement is that workload depends largely on the num-
ber of flights, but also on the traffic complexity: aircraft flying parallel tracks
at constant flight levels are less difficult to handle than climbing/descending
flights on various converging trajectories, for example. However, no universal
workload metric has been agreed on so far, and one can only hope to select a
set of relevant air traffic complexity metrics that fits the chosen context and
application. Our main contribution on this subject ([2] and [3]) was to use
the sector status (merged, normal, or split) as a dependant variable, trying
to find the subset of metrics that was best correlated to this sector status.
The basic assumption is that the decision to reconfigure the ATC sectors is
somewhat related to the controller’s actual workload.

Airspace design and management have also been the subjects of many
studies, using several methods: mixed integer programming techniques ([4]),
evolutionary algorithms ([5], [6], [7]), seed growth methods inspired by crystal
growth ([8]), constraint programming ([9], [10], [11]), computational geom-
etry ([12]), graph partitioning methods or a new meta-heuristic inspired by
nuclear fusion and fission ([13], [14]). These studies address a variety of oper-
ational contexts: strategic airspace design, pre-tactical planning, and tactical
airspace management. Some background on air traffic management and more
details on related works on airspace design and management are provided in
section 2. Let us just say that many of these studies ([7], [9], [10], [13], [14],
[8]) addressed a highly difficult airspace partitioning problem, only slightly
reduced by the introduction of connectivity5 and convexity6 constraints on
sectorisation. Among these studies, most of them used only mock-up sec-
tors, whereas very few used real sectors and real traffic. Some other studies
([4]) were made in a highly realistic context but used metrics that are not
sufficient to model the actual workload (see subsection 2.2), and a fairly re-
duced subset of pre-defined airspace configurations. Others ([11]) used more
relevant air traffic complexity metrics to assess the controller workload, but
did not propose airspace reconfigurations.

Our contribution aims at improving the predictability and flexibility of

5An air traffic control sector should not be made up of several disconnected volumes of
airspace.

6Flights following standard routes should not exit and re-enter the same control sector.
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today’s airspace management in Europe, in a pre-tactical or tactical context7.
The initial difficulty of the airspace partitioning problem is highly reduced
by considering only sector recombinations within each managerial unit, using
only operationally valid ATC sectors listed in the en-route8 air traffic cen-
tre’s database. A realistic workload prediction model is proposed, relying on
relevant air traffic complexity metrics and using a neural network trained on
historical data. Our previous works dealt with the selection of the relevant
metrics (see section 3). An initial version of our airspace configuration al-
gorithm was given in [36], using a simple exhaustive tree search method for
local sector recombinations. In this article, a branch & bound algorithm was
used to reconfigure the whole airspace when necessary. Some preliminary re-
sults were presented in [37]. The current article gives full details of the model
and algorithm hybridizing the neural network for workload prediction and
the branch & bound that computes airspace partitions of minimum cost, bal-
ancing the workload as well as possible across the ATC sectors. In addition,
we have introduced the possibility of posting constraints on the maximum
number of ATC sectors in an airspace partition.

The rest of the paper is organized as follows: section 2 describes the
air traffic management context and related works. Section 3 gives a short
description of the methods we used to select the most relevant complexity
metrics. Section 4 details the neural network used for workload prediction.
The tree search algorithms that build optimal combinations of airspace mod-
ules are introduced in section 5, and the iterative algorithm that builds the
full opening schedule for a whole day of traffic is presented in section 6. The
experimental setup is described in section 7. Some results are shown in sec-
tion 8, and section 9 concludes and gives the perspectives of future research
and potential applications in the operational field. A glossary of terms can
be found in the appendix.

7In the European air traffic flow management process, pre-tactical operations usually
take place the previous day (sector opening schedules, preliminary flow regulations plan,
etc.), and tactical operations take place in real time, or up to a few hours before flights
actually enter the airspace.

8En-route air traffic management deals with traffic that follows routes between its origin
and its destination, as opposed to terminal air traffic management, which deals with traffic
near airports.
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2. Background and related works

2.1. The air traffic management and airspace configuration context

Let us start with a short description of the current air traffic manage-
ment system in Europe. We have seen in the introduction how elementary
airspace modules can be combined so as to form control sectors. The airspace
configuration may change during the day, depending on the controller work-
load. However, it is not always possible to split an ATC sector into several
smaller sectors when the workload increases, either because the initial sector
is composed of a single module or because there are not enough air traffic
controllers on duty. This may lead to potentially dangerous situations when
the traffic within a control sector is too heavy and too complex to be safely
handled by the human operators.

Such situations are avoided by re-routing or assigning departure delays
to aircraft that plan to enter the sector in the overloaded time interval. In
Europe, the departure slots are allocated by the Central Flow Management
Unit (CFMU). The Flow Management Position (FMP) operators of each
air traffic control centre try to anticipate future overloads in their airspace.
When necessary, flow regulations, which are used as input to the CFMU slot
allocation algorithms assigning ground delays to aircraft, are enforced.

In some air traffic control centres, like the five French en-route centres,
pre-tactical sector opening schedules are built by the FMP operators one or
two days ahead. In France, the current method to build such schedules is
fairly simple. A set of the usual airspace configurations is filed in a database.
The FMP operator chooses among them the ones he (or she) thinks are the
most adequate for each time period. The day is divided into fixed periods
of usually one hour and no sliding time window is used. Candidate config-
urations are empirically assessed by counting the flights entering each ATC
sector and comparing that count to pre-defined threshold values (sector ca-
pacities).

These pre-tactical schedules are unrealistic, partly because they rely on an
estimated traffic demand, but also for other reasons: first, counting entering
flights is not sufficient to model the controllers’ actual workload, and second
only a small subset of pre-defined configurations is considered. The current
method directly results from former procedures, when flights were counted
by hand.

As a consequence, the FMP schedules are not actually used to forecast
future overloads. Instead, the FMP and CFMU operators rely on their past
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experience of similar traffic situations to enforce flow regulations on specific
airspace boundaries, entry points, or airspace volumes9. The causal relation-
ship between the slot allocation based on these regulations and the actual
workload experienced by the controllers in real time is not clearly established.
A more accurate assessment of future workload and a better forecast of fu-
ture airspace configurations could certainly improve the predictability of the
European air traffic management system.

So far, we have only described the French and European air traffic man-
agement, which is the context of our study. In the United States, the context
is largely similar, although air traffic management is more concerned with
convective weather problems. Many studies focus on the dynamic adjustment
of the airspace structure to traffic flow reroutings caused by severe weather
conditions. It is expected that more flexible boundaries would allow a more
efficient use of airspace and increase overall capacity. In [30], pre-defined
scenarios of airspace sectorisations associated with traffic rerouting scenarios
are proposed as a short-term improvement to the current practices. A more
dynamic re-sectorisation with flexible boundaries is envisioned in future op-
erational concepts ([31], [32], and some SESAR10 Operational Improvement
steps). It is expected that moving the sector boundaries in real-time to adapt
to the traffic demand would increase the capacity and efficiency of the ATM
(Air Traffic Management) system. The actual capabilities and potential ben-
efits of this new operational paradigm are still largely unknown at this early
stage, however. There is also some concern that unlimited flexibility in the
sectors boundaries would lead to a loss of situational awareness by air traffic
controllers (see discussion and literature review in [33]).

In the rest of this paper, we stick to the current context where the airspace
is divided into pre-defined elementary modules.

2.2. Related works on airspace design and management

Current research on airspace configuration is manifold and may deal with
strategic airspace partitioning, pre-tactical sector opening schedules, or tac-
tical airspace management. Several methods have been tried out, with fairly

9For example: no more than N flights per hour over point P for flights originating from
geographic area Z

10SESAR: Single European Sky ATM Research Programme, where ATM stands for Air
Traffic Management.
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different definitions for ”workload”. In [12], Basu et al. used geometric algo-
rithms to design sector boundaries so as to balance a macroscopic workload
(i.e. cumulated traffic over a whole day) across the sectors. The sectorisation
problem was addressed by Delahaye et al. as a graph partitioning problem
([7]), and solved with evolutionary algorithms. Workload was an aggrega-
tion of conflict workload, coordination workload, and monitoring workload.
A graph representing the air routes was partitionned so as to minimize coordi-
nations between sectors, under various constraints (connectivity, convexity).
Klein ([8]) designed airspace boundaries for the American air route traffic
control centres by growing hexagonal cells from initial seed locations, us-
ing an equalized traffic mass metric. Bichot et al. ([13]) worked on today’s
actual sectors and tried to partition the European airspace into optimally
balanced airspace blocks (air traffic control centres), considering inter-sector
traffic flows and using graph partitioning methods (standard methods or a
new fusion-fission meta-heuristic). These studies are focused on strategic
airspace design.

In [6], Delahaye et al. addressed the dynamic airspace sectorisation prob-
lem for tactical operation, although only with mock-up sectors. The graph
model and workload definition are the same as in their other works described
above. This same problem was addressed by Tran Dac, Baptiste, and Duong
([10], [9]) using a Kernighan-Lin heuristic combined with Constraint Pro-
gramming techniques. Note that the airspace partitioning problem is highly
combinatorial in its initial formulation: the number of partitions of a set of
n elements into k subsets is the Stirling number of the second kind. The
introduction of connectivity constraints (an ATC sector should be a single
geographic area, not composed of several connected components), convexity
constraints (a flight following a route should not enter the same sector twice),
or operational constraints (choose from only identified operational sectors)
reduces this difficulty.

A more realistic operational context was considered by Verlhac and Man-
chon ([4]) of Eurocontrol, who applied mix integer programming techniques
to improve the pre-tactical planning of sector configurations in Europe, using
actual sectors. Only a small subset of pre-defined usual configurations was
considered. The traffic load was assessed by counting the flights entering the
sector in a one-hour time window, like in the current FMP schedule. This is
clearly not sufficient to model the actual controller workload: for example, a
flow of 40 flights per hour may well be below the sector capacity (maximum
value allowed for this flow), but may not be acceptable in terms of actual
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workload if all the flights entered the sector in the first 15 minutes of the
hour.

In [34], we proposed several algorithms exploring all combinations of
airspace modules in a realistic context, using the same variables (number
of flights entering the sector in a given time window) and thresholds (sector
capacities), as well as the same constraints (number of controllers on the
duty schedule) as the French Flow Management Positions (also used in [4]).
Standard tree search methods proved efficient when considering only opera-
tionally valid ATC sectors, i.e. those defined in the air traffic control centre
database. An evolutionary algorithm was also proposed as an alternative,
in case a wider range of airspace modules and ATC sectors was to be con-
sidered, and possibly larger geographic areas. The results were not realistic
enough (see [35]), however, as the flow variables do not model the workload
with enough accuracy. The conclusion was that a better assessment of the
controller workload was needed.

Much research has been undertaken on traffic complexity metrics (see
next section) with the aim of capturing the main features explaining the
air traffic controller workload. Such metrics were used by Flener et al. to
model controller workload in [11]. Tactical reroutings and flight profile mod-
ifications were used to balance traffic complexity across several sectors, for
tactical multi-sector planning purposes. However, no airspace reconfigura-
tion was proposed.

We propose to forecast the controller workload in each ATC sector, as
well as the airspace configuration of the whole centre airspace, with the aim
of improving the current pre-tactical or tactical air traffic management op-
erations. Currently, each controller is qualified only for operations in a given
geographic area (qualification zone11). As a consequence, the ATC sectors
of a qualification zone cannot be combined with sectors from another quali-
fication zone. In addition, we only consider operationally valid ATC sectors,
listed in the en-route air traffic centre’s database. With these restrictions
and in the current context, the airspace partitioning problem is much less
combinatorial and standard tree search methods can be used to find opti-
mal combinations of elementary airspace modules, balancing the controller
workload as well as possible across the ATC sectors.

The next section details how the relevant air traffic complexity metrics

11A qualification zone is usually the whole airspace of an air traffic centre, or half of it.
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that model the controller’s actual workload were selected.

3. Selection of the relevant complexity metrics

The selection process that allowed identification of the most relevant com-
plexity metrics has already been described in previous publications ([2], [3]).
Let us just recall the main steps of this process.

A set of relevant variables is usually selected by maximizing the correla-
tion of the chosen metrics with a quantifiable dependant variable assumed
to represent the actual controller workload. Many proposals have been made
in past studies on the choice of dependent variables: physical activity ([23]),
physiological indicators ([24], [25]), simulation models of the controller’s tasks
([26], [27], [20]), or subjective ratings ([18], [21], [19]).

For our problem, we made the basic assumption that past decisions to
reconfigure the airspace by splitting or merging the ATC sectors were sta-
tistically related to the controllers’ actual workload12: ATC sectors can be
split into smaller sectors when the workload is too heavy, or merged with
other sectors when the workload is too light. They can be operated normally
otherwise. Other, more complex, recombinations are also possible. The sec-
tor status (split, normal13, or merged) was chosen as the dependent variable
quantifying the actual workload, when the sector was observed to be in one
of these three states14. This variable has the advantage of being directly
related to our problem. In addition, it does not require a heavy experimental
setup to collect the data: it is already available in large quantities from the
air traffic control centres archives.

The candidate explanatory variables were complexity metrics chosen from

12Note that this may not always be the case for all Air Navigation Service Providers.
Some control centres are far less flexible in the way they merge or split sectors, and strictly
follow a pre-defined duty roster. However, in the chosen context (France) and in many
countries, the airspace configuration is highly flexible and is adapted in real-time.

13Some other terms (such as operational, manned, or ”armed”) may be found in previous
papers for this status which denotes that the sector is, or could be, operated in its normal
workload domain.

14At a given time of the day an ATC sector, defined as a group of airspace modules,
may be split, merged, normally operated, or be in a nondescript state where, for example,
some of its modules are part of a larger sector, and the rest are operated normally, or split,
or merged into another sector. In such cases, the observed state cannot be interpreted as
an indication of the actual controller workload.
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the literature (see [15], [16] and [17] for a review), and included aircraft count,
proximity-related and conflict-related15 metrics, flow metrics, track or speed
disorder metrics, etc. Several methods have been used in past studies to
correlate such metrics to chosen dependent variables: linear ([18]) or logistic
([19]) regression, cross-sectional time series analysis ([20]), and neural net-
works ([21]). We used a neural network, although not as a regression method
but as a classification method (see details in the next section).

For workload modelling purposes, the metrics were computed from recorded
aircraft trajectories (”radar tracks”) and from the sector geometry. Later on
in this paper, when trying to forecast the workload, we use trajectories simu-
lated from flight plans16. Flight planning errors (cancellations, missing flight
plans, short-notice departures, etc.), as well as navigation errors, and con-
trollers’ actions – for example vectoring instructions to avoid conflicts with
other trajectories – may introduce forecasting errors and biases on the metrics
values. These issues are further discussed in section 7 and in the conclusion.
Let us just say that we can expect that the biases due to the controllers’
actions on the traffic should remain relatively small. The influence of the
differences between planned traffic and actual traffic on the quality of the
airspace configuration forecast is covered in subsection 8.2.

The metrics selection process started with a principal component analy-
sis that reduced the dimensionality of the initial set of candidate metrics.
The most relevant components were selected using Akaike’s AIC17 ([2]).
Schwartz’s Bayesian Information Criterion (BIC) was also used as an al-
ternative in [3] when selecting the best individual metrics in each relevant
principal component. The use of such information criteria avoids the bias due
to the increasing number of model parameters (the neural network weights)
when considering subsets of input metrics of increasing sizes.

Among the initial 28 explanatory variables chosen from [18], [21], [28],
[29] and other sources, the 6 most relevant variables were the sector volume
V , the number of aircraft within the sector Nb, the average vertical speed

15In the French upper airspace, and in many other European countries, the horizontal
separation between two aircraft should be at least 5 nautical miles, unless their vertical
separation is at least 1000 feet. A ”conflict” occurs when it is expected that the future
relative positions will not achieve this separation.

16A flight plan is sent by the airline operator before take-off, describing the planned
route, requested flight levels, and other basic flight intentions.

17AIC: ”An Information Criterion”
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avg vs, the incoming flows with time horizons of 15 minutes and 60 minutes
(F15, F60), and the number of potential trajectory crossings with an angle
greater than 20 degrees (inter hori18).

Let us note that these metrics are fairly basic, compared to others that
can be found in the initial set of candidate metrics. This does not mean
that all these other metrics were not relevant. Many of them were redundant
with the basic metrics that were found to be most correlated to the sector
status. This is probably due to the fact that our observation of the actual
workload is relatively macroscopic, as we only have three levels of workload:
”too low” when the sector is merged, ”normal” when it is operated, or ”too
high” when it is split into smaller sectors operated separately. This does
not allow very small variations of the actual workload, within the normal
domain of operation, to be captured with more sophisticated metrics. This
is enough, however, for our purpose of predicting airspace configurations.

In [38], we improved this workload prediction model by smoothing the
input metrics: the raw metrics showed high variations in time, causing too
frequent airspace reconfigurations (see [36]). Another promising approach,
which is left for further work, would be to consider the input metrics as time
series.

To conclude on the metrics selection, let us say that our final model
with its 6 variables could probably be improved by considering the sector
volume that is actually available at every moment of the day to air traffic
controllers, taking account of convective weather or military activity, instead
of the overall volume. Other metrics related to the sector complexity (see
[41]) could also be tried, as well as other traffic complexity metrics that have
not yet been implemented in our libraries.

4. A neural network for workload prediction

Let us now detail the model that is used for workload prediction, based
on the assumption that previous decisions to split or merge ATC sectors in
the past were statistically related to the controllers’ actual workload.

18This inter hori metric with its 20-degree threshold comes from a metric defined by
the Eurocontrol Performance Review Unit with the aim of comparing the performance of
ATC centres. It accounts for the fact that traffic following parallel routes is less complex
to handle than traffic with crossing trajectories.
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Considering the nature of the observed data, we chose a ”1 of 3” encoding
for the desired target representing the actual sector status:

• d = (1, 0, 0)T when the sector is merged with other sectors into a larger
ATC sector (low workload),

• d = (0, 1, 0)T when the sector is in its normal domain of operation
(acceptable workload),

• d = (0, 0, 1)T when the sector is split into several smaller control sectors
(excessive workload).

Observed patterns where the sector is in a state other than one of the
above19 were discarded.

The explanatory variables are the relevant complexity metrics {V ,Nb,
avg vs, F15, F60, inter hori} (see section 3), normalized by subtracting the
mean value and dividing by the standard deviation. Let us denote x =
(x1, ..., xi, ..., x6)

T this vector of input variables, where T denotes the trans-
pose operator.

Our aim is to determine from any given measure of x if the workload in
the considered ATC sector is low, normal, or too high. This is typically a
classification problem, that we chose to address with a simple feed-forward
network with one hidden layer, as a first approach. The reader can refer
to [42] and [43] for an extensive presentation of neural networks for pattern
recognition, or [44] for a shorter review. The results presented in this paper
were produced with a network having 6 units on the input layer, 15 units
on the single hidden layer, and 3 units in the output layer. Let us denote
y = (y0, y1, y2)

T the output vector of the neural network. The neural network
equation is written as follows:

(y0, y1, y2)
T = Ψ(

15∑
j=1

wjkΦ(
6∑

i=1

wijxi + w0j) + w0k) (1)

where Ψ is the softmax function:

Ψk(zk) =
ezk∑3

m=1 ezm
(2)

19For example when, for sector AB, A is merged within a sector AC and B within
another sector BD.
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Φ is the sigmoid logistic function:

Φ(z) =
1

1 + e−z
(3)

The error function we are trying to minimize when training the network
is the cross-entropy function:

E(w) = −
N∑

n=1

C∑
k=1

d
(n)
k ln(

y
(n)
k

d
(n)
k

) (4)

with C = 3 classes, and considering N patterns for training, and where
d = (d0, d1, d2)

T is the desired target vector. The cross-entropy function is
simply the log-likelihood

L(w) = −
N∑

n=1

C∑
k=1

d
(n)
k ln(y

(n)
k )

from which was subtracted the minimum log-likelihood

Lmin = −
N∑

n=1

C∑
k=1

d
(n)
k ln(d

(n)
k )

reached when yk = dk (see [42], pp. 237-238). See also [45] for justifications
on the choice of the cross-entropy penalty function for classification prob-
lems, and on the natural pairing of the softmax activation and cross-entropy
penalty functions.

A standard back-propagation method ([48]) was used to compute the
gradient of the error function, and a quasi-Newton method (BFGS, namely)
was used to minimize the error. These methods were implemented in a library
written in Objective Caml.

The output vector can be interpreted as a vector of posterior probabilities
of class-membership: y0 can be seen as the probability p(Clow/x) that the
ATC sector falls in the ”merged” class (low workload) when the measured
air traffic complexity vector is x, and similarly for y1 and y2, with classes
Cnormal and Chigh respectively. Using an abbreviated notation, we shall

denote y = (plow, pnormal, phigh)
T the output vector in the rest of this paper,

so as to clarify the nature of the neural network output.
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As we are necessarily in one of the above three cases (low, normal, or
excessive workload), the sum of the three probabilities plow, pnormal, and
phigh is always 1, which is ensured by the use of the softmax function Ψ.

If interpreting the network output in terms of probabilities related to the
controller workload is rather straightforward, this is not so easy concerning
the function Φ and the cross-entropy20. As stated by Jordan and Bishop
([44]), neural networks may best be viewed as a class of algorithms for sta-
tistical modelling and prediction. A neural network is simply a statistical
model made of a mixture of adaptive functions. The functions Φ map each
a portion of the multi-dimensional space of input variables (the air traffic
complexity metrics). The model is adaptive in the sense that the function’s
weights w are tuned during the training phase so as to fit the observed data
as well as possible, minimizing the error between the computed output and
the observed sector status (using the cross-entropy in our case, which is just
an expression of the log-likelihood).

This combination of functions, when using a network with at least one
hidden layer of sigmoidal units, has the interesting property of approximat-
ing any decision boundary to arbitrary accuracy (see [42], p. 130 for bib-
liographic references on this property). This provides universal non-linear
discriminant functions, and allows modelisation of posterior probabilities of
class-membership for classification problems. This is why this class of algo-
rithms was preferred to linear or logistic discrimination techniques21.

This does not mean that those methods or other statistical models would
not perform well. For example, an ordered logit model like the one used in
[46] could be well adapted to our classification problem. However, although
it would be interesting, it is not in the scope of this paper to make such a
comparative study on various methods. This could be addressed in future
works

5. Tree search algorithms for airspace partitioning

Let us now see how to partition the airspace, using the workload indi-
cations given by the neural network to assess the optimality of candidate

20Note that this kind of domain-related interpretation would not be easy for other classes
of algorithms either, such as polynomial regression.

21Note that linear techniques can be seen as networks with linear units, and logistic
discrimination as a network with sigmoidal units but with no hidden layer
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configurations. In order to find an optimal airspace configuration, one needs
to explore all possible partitions of elementary airspace modules, while re-
stricting them to operationally valid configurations. As an example, let us
imagine an ATCC airspace divided into 5 modules {1, 2, 3, 4, 5}. Let us say
that the possible combinations of modules into ATC sectors are a = {2, 3},
b = {3, 4}, c = {4, 5}, d = {1, 5}, and e = {1, 2, 3, 4, 5}, to which we may
add each module operated as a single sector. A valid configuration shall be
a partition of the set of airspace modules into ATC sectors: for example
[({1}, s); ({2, 3}, a); ({4, 5}, c)], or [({1, 5}, d); ({2}, s); ({3, 4}, b)], where s is
the generic notation for a singleton.

Finding an optimal partition requires two things: first a mechanism to
build valid configurations and, second, some cost functions to evaluate and
compare the candidate configurations. The next subsections detail the cost
of a configuration and the tree search algorithms.

5.1. Cost of a configuration

To evaluate an airspace configuration, we consider the number of ATC
sectors and the values of probabilities plow(si, t), pnormal(si, t), and phigh(si, t)
issued by the neural network for each sector si in the configuration c =
{si/i ∈ [1, m]}, where t is the time. As illustrated in our previous example,
a sector si is a group of airspace modules labelled by a sector name.

Considering configuration [({1}, s); ({2, 3}, a); ({4, 5}, c)] of this example,
it would be perfectly balanced in terms of workload if we had (plow, pnormal, phigh)
equal to (0, 1, 0) for all ATC sectors a, b, and s = {1}. Such ideal situations
rarely occur in reality, however, where pnormal may be less than 1 in several
sectors, and where overloads and under-loads22 may occur, sometimes in the
same configuration.

Before defining the cost of a configuration, let us state the objectives we
are trying to reach, in decreasing order of priority. The first objective is to
satisfy the constraint on the maximum number of ATC sectors, when such a
constraint is posted. This constraint is useful when, for some reason, some
controller working positions are not available, or when there are not enough
controllers to operate more than a maximum number of sectors. The second
objective is to avoid overloads, which are potentially dangerous situations.

22In our context, a sector will be said to be overloaded (resp. under-loaded) when the
probability phigh (resp. plow) is higher than the two others.
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The third objective, supposing there are no overloads, is to open as few
sectors as possible. Finally, we would like to balance the workload as well
as possible across the ATC sectors, by minimizing under-loads and selecting
configurations where the pnormal probabilities are as close as possible to 1.

In some previous papers, the cost was expressed as a number where the
leftmost digits were assigned to sub-costs with the highest priorities. Note
however that there is no need to express the cost as a real number, as long
as we are able to compare two configurations. In the current paper, the cost
is defined as a record structure, whose attributes contain sub-costs. This
removes some numerical problems that were encountered when restricting
sub-cost values to a chosen number of digits.

The sub-costs assigned to a configuration c = {si/i ∈ [1, m]} are the
following, in decreasing order of priority:

• the number of ATC sectors above the maximum allowed number, when
such a constraint is defined.

• the maximum value of probability phigh(si, t) across overloaded sectors,
except when this value is 123 for the two configurations we are compar-
ing. In this case, this criterion alone does not allow highly overloaded
configurations to be compared, and we will simply use the number of
aircraft in the sector instead24,

• the total number of ATC sectors in the configuration,

• the maximum value of probability plow(si, t) across under-loaded sec-
tors,

• the maximum value of (1−pnormal(si, t)) across normally loaded sectors.

When comparing two candidate configurations, we simply compare these
sub-costs in decreasing order of priority. Now let us describe the algorithms
that build valid airspace configurations and select the optimal one, using the
above cost comparison.

23or close enough to 1, in practice
24Note that such situations mainly occur when the number of ATC sectors is highly

constrained.
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5.2. Exhaustive tree search

Figure 1 illustrates a tree search that builds all valid combinations of
airspace modules, on the same example as before. Here, each tree node is a
list of couples where the first element is a group of modules, and the second
is the list of valid ATC sectors that contain these modules, but no modules
from the other groups of the node.

Valid groups of sectors :
a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})({1},{s,d}) ({2,3,4},{})

({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2},{s,a})({1,2},{e})

({1,2,3,4,5},{e})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a}) and so on...

({1,4},{}) ({2,3},{a})

({1,5},{d}) ({2,3},{a}) ({4},{s})

({1},{s,d,e})

({1,2,3,4},{}) ({5},{s})

({1,2,3},{e})

Figure 1: Exhaustive tree search algorithm for airspace partitioning.

Let us illustrate how this tree is built. The root is a node containing a
single group {1}, made of only one module. The possible ATC sectors for {1}
are s = {1}, d = {1, 5}, and e = {1, 2, 3, 4, 5}. From this point, we may add
a second module, say 2, either in the same group already containing 1 (left
branch), or in a new group (right branch). For the left branch ({1, 2}), the
only ATC sector containing both 1 and 2 is e. For the right branch ({1} and
{2} as separate groups), the list of possible ATC sectors for {1} now contains
only s = {1} and d. The ATC sector e is no longer a valid possibility: it
contains 1, but also 2 which is already in a separate group. For this group
{2}, the valid ATC sectors are s = {2} and a = {2, 3}.

While exploring this tree, it may happen that the list of possible ATC
sectors becomes empty. This is the case for example with the node made of
groups {1, 2} and {3} (when developing the left branch). There is no valid
ATC sector containing both 1 and 2 which does not also contain 3. There is
no need to develop further this node, as it will never lead to an operationally
valid airspace partition.

17



The selection of the best airspace partition is made according to the cost
criteria defined in section 5.1, which depend on the number of ATC sectors
and the values of the probabilities plow, pnormal, and phigh issued by the neural
network for each control sector of the considered airspace configuration.

The exhaustive tree search may be computationally intensive, or even
not feasible in a reasonable amount of time, when the number of elementary
airspace modules and possible ATC sectors is too high.

5.3. Branch & Bound

Let us describe the Branch & Bound algorithm used to build airspace
configurations. The main difference with the exhaustive tree search is that,
for each node being explored, a lower bound of the costs of all leaves (full
configurations) that can be reached from that node is computed. If this lower
bound is higher than the cost of the best configuration found so far, then
there is no need to continue the search from this node.

Figure 2 shows how the tree is explored, on the same example as in the
previous subsection. In the beginning (steps 1 to 4 in the figure), the search
is performed like in the exhaustive search, until a first valid configuration is
reached (step 5). Afterwards, the best configuration is memorized, together
with its cost, and the following nodes are evaluated and compared to this
best configuration.

The cost of a node is similar to the cost of a configuration (see subsec-
tion 5.1), except that we consider the best possible choice from among all
the control sectors associated with each group in the node, so as to provide
a lower bound of all full configurations that can be obtained from that node.

In the example shown in Figure 2, the cost function for configurations is
denoted cost, whereas the cost function for a node is denoted cost′. When
evaluating the cost of node [({1}, {s, d}); ({2}, {s, a})] in step 6, we shall
take the best possible choice for group {1}, from among singleton s = {1}
and valid group d = {1, 5}, and for group {2}, we will choose among sin-
gleton s = {2} and valid group a = {2, 3}. Let us say that the best
possible choices are d for group {1} and a for group {2}. The node cost
cost′([({1}, {s, d}); ({2}, {s, a})]) is then equal to cost([d; a]), the cost of a
virtual, and incomplete, configuration containing only these two ATC sec-
tors.

Note that choosing the best ATC sector for each group in the node may
lead to virtual configurations that are not airspace partitions. In step 8 for
example, a virtual configuration with d = {1, 5}, a = {2, 3} and c = {4, 5} is
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Valid groups of sectors :
a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

otherwise continue the search
then cut this branch

if cost’(node) > Best_cost

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})({1},{s,d}) ({2,3,4},{})

({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2},{s,a})({1,2},{e})

({1,2,3,4,5},{e})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a}) and so on...

({1,4},{}) ({2,3},{a})

({1,5},{d}) ({2,3},{a}) ({4},{s})

({1},{s,d,e})

({1,2,3,4},{}) ({5},{s})

1

2

3

4

5

Best_conf= ({d},{a},{4})
Best_cost= cost({d},{a},{4})

if cost({d},{a},{4})<Best_cost then
Best_cost= cost({e})
Best_conf= ({e})

({1,2,3},{e})

?6

7

8 ?

?

Figure 2: Branch & Bound algorithm for airspace partitioning.

not a valid airspace partition as module 5 is in both sectors d and c. However,
this heuristic ensures that the cost of a node is always lower than the cost of
any valid configuration that can be reached from that node.

6. Predicting airspace configurations throughout the day

6.1. Description of the algorithm

So far, we have seen how a neural network could be used to assess the con-
troller workload for any given ATC sector, and how to partition the airspace
so as to balance this workload as well as possible among all sectors, at any
given time t. Now, let us see how to build an airspace configuration schedule
for a whole day of traffic.

Finding an optimal airspace partition of the whole airspace at every mo-
ment of the day seems the most straightforward solution, but it would lead
to a succession of drastically different configurations in short periods of time.
In reality, the airspace is reconfigured around 30 times a day (for French
airspace), and usually with relatively minor changes from one configuration
to another. The reason is that transferring one or more airspace modules
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from one controller to another must be done safely, ensuring that the receiv-
ing controller does not miss any potentially dangerous situations in the new
traffic and the new airspace sector he will have to handle.

1. Initial configuration (t=0):

1 ATC sector ←− all elementary airspace modules

2. At each time step (1 minute):

• Decide if airspace must be reconfigured

−→ check workload in each ATC sector

• If so, reconfigure airspace:

– select modules to recombine,

– explore all combinations,

– select configuration with minimum cost.

Figure 3: Iterative algorithm for airspace sectors opening schedule.

So it was decided to mimic the actual behaviour of control room man-
agers as well as possible, keeping the current airspace configuration as long
as it remained acceptable. Figure 3 describes the main loop of the chosen
algorithm. The current airspace configuration is checked at every time step.
If the workload in some sectors of the current configuration is really too low
(plow close enough to 1) or too high (phigh close enough to 1), then a recon-
figuration is triggered. Depending on a user-preferred option, either only a
few sectors are recombined, or the whole airspace is reconfigured.

Let us recall that the network was trained on observed sector statuses
(merged, normally operated, or split). So, when a configuration change is
triggered, one might interpret the network output as a recommendation to
split or merge the triggering sector. This output is just a workload indication,
though, and the tree search algorithm does not restrict itself to splitting or
merging sectors: it recomputes a new optimal partition of the set of modules
chosen for recombination.

As a result, the transition from one configuration to the next may show
split sectors, merged sectors, or modified boundaries between two ATC sec-
tors due to the transfer of one or several modules from one sector to the other.
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There may be even more complex recombinations such as A, BC, D,E −→
AB, CDE (where A,B,C,D, and E are airspace modules). Some of these
complex recombinations may actually not be feasible in operation. In fu-
ture work, we plan to optimize sequences of configurations while satisfying
constraints on the transitions, allowing for example only one simple change
per sector: split, merge, shift boundaries, or open a new sector made up of
modules transferred from other sectors.

6.2. Decision criterion

In order to describe more formally the decision criterion triggering the
configuration changes, let us consider our three probabilities (plow, pnormal, phigh)
sorted by decreasing values p1, p2, p3. The decision criterion is expressed as
follows, depending on which probability is the highest:

• if p1 is the probability plow that the workload in the sector is too low:
the decision to reconfigure is taken only if 1− p1 < α

• if p1 is the probability phigh that the workload is too high: we decide
to reconfigure only if 1− p1 < β, where β is a chosen parameter.

In the other cases, the sector does not trigger a reconfiguration. We choose
different criteria for probabilities plow and phigh, because we may need to be
more reactive when the workload is increasing than when it is decreasing.

6.3. Choosing the sectors to recombine

When a reconfiguration is triggered, we can adopt different strategies
when building the set of sectors to recombine. We can select either:

• only the triggered sectors (phigh or plow close enough to 1),

• or the sectors for which phigh (or plow) is higher than the other two
probabilities. This usually gives us a slightly larger set than with the
previous criterion,

• or the previous set to which we add the neighbouring air traffic control
sectors. This increases the chances of a better local recombination,
especially for under-loaded sectors. These sectors cannot be recombined
alone, whereas overloaded sectors can always be split as long as they
are made up of several modules,
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• or all the sectors. This allows an optimal partition for the whole
airspace to be found.

The user can choose one of the above options, or a mix of local and full
recombinations. In the latter case, the default behaviour is to make a local
recombination (for example only sectors for which the probability phigh or plow

is the highest), except when there are more than 2 connected components (or
a chosen number) in the set of ATC sectors to recombine. In this case, a full
airspace reconfiguration is triggered. The rationale underlying this logic is
that there are some cases when the limited recombination is not sufficient, for
example when there are two under-loaded sectors that are not geographically
adjacent.

Sectors can be recombined using either the exhaustive tree search for
local recombinations only, or the branch & bound for both local and full
reconfigurations. The results presented in this article are obtained with full
reconfigurations with the branch & bound. Before presenting these results,
let us detail the experimental setup.

7. Experimental setup

7.1. Discussion on the choice of input trajectories

The neural network was trained on actual aircraft trajectories (see details
in the next subsection). When trying to forecast airspace configurations, the
input trajectories were simulated from flight plans.

Choosing radar tracks to tune the workload model and flight planned tra-
jectories to predict future workload may introduce a bias between modelling
and forecasting, as the actual trajectories may have changed from the planned
trajectories, due the controllers’ actions. With radar tracks, trajectory con-
flicts are solved by the controllers before separation losses25 actually occur,
whereas this is not the case when using flight plans. So the proximity-related
metrics relying on the distance between aircraft, as well as the conflict-related
metrics, may be under-estimated when using radar tracks instead of flight
planned trajectories.

25In the french upper airspace, and in many other European countries, the horizontal
separation between two aircraft should be at least 5 nautical miles, unless their vertical
separation is at least 1000 feet. A ”conflict” occurs when it is expected that the future
relative positions will not achieve this separation.
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This may have slightly biased the selection of relevant metrics (see sec-
tion 3), although the conflict-related metrics that were implemented in our
initial set of metrics use relative directions and velocities, so potential con-
flicts should be correctly detected with enough anticipation, before trajecto-
ries are deviated by the controller. In any case, these biases should remain
small, considering the relative influence of conflict-related metrics when com-
pared to the aircraft count, the sector volume, and other metrics (see [2] and
[3]).

So we use radar tracks for workload modelling, and flight planned tra-
jectories for forecasting purposes, as we have no better guess on where the
aircraft will be in the future. In future works, a mix of radar tracks and
intended26 trajectories may provide greater accuracy. After this discussion
on the possible biases due to the chosen input traffic, let us return to the
details of our experimental setup.

7.2. Training the neural network on historical data

For the results shown below, the neural network was trained on data sam-
ples from 2nd June, 2003, using recorded traffic (”radar” tracks) and sector
opening archives from the five French air traffic control centres (ATCCs).

The data set used to train the neural network was built by measuring
the relevant complexity metrics every minute of the day, in all ATC sectors
of the five centres. The complexity metrics were computed from the aircraft
trajectories and sector geometry. The training and test patterns were made
from the input complexity metrics and from the observed state of each sector,
merged, normal (i.e. actually operated), or split, coded as a state vector (see
section 4). Data samples corresponding to a state where the sector is neither
operated, nor split into several smaller sectors, nor collapsed within a larger
sector were discarded, as we cannot deduce anything on the actual workload
from such states.

In our training set, about 46% of the observed patterns fell in the merge
class, 27% in the normal class, and 27% in the split class. Detailed results
on the neural network outputs can be found in previous publications ([2], [3],
[38]). Let us just say that the correct classification rates across all classes were

26”Intended trajectory” can be understood here as the baseline trajectory entered by
the pilot in his flight management system (FMS), and from which he might deviate if
instructed to do so by the controller so as to avoid other traffic. It may be different from
the flight plan available in ground-based systems, or simply more accurate.
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around 85% with a feed-forward neural network with 15 hidden units, when
using smoothed input metrics (see [38]). Considering each class individually,
we obtained 90% of correct classifications for the merge class, 68% for the
normal class, and 93% for the split class. The results on the test set were
quite consistent with those obtained on the training set. We have a feeling
that these results could still be improved by considering the input metrics as
time series and by using recurrent neural networks, but this remains to be
done.

7.3. Choice of parameters

Our initial results with a straightforward decision criterion based on the
highest probability, and with raw complexity metrics as input showed too
frequent configuration changes during the day, although the evolution in the
number of ATC sectors stayed fairly close to the actual airspace configura-
tions.

The choice of parameters α and β27 for the decision criterion was discussed
in [36]. The best compromise that was found was α = 0.1 and β = 0.3.
These values mean that our algorithms are more reactive when the workload
increases than when it decreases. This seems to reflect the controllers’ actual
behaviour.

Smoothing the input metrics over 30 minutes with a ”moving average”
method also improved the results for an air traffic control centre with large
sectors such as Brest ATC centre28. We use these parameters in the results
presented in this paper.

7.4. Assessing the airspace configuration on recorded trajectories

In addition to the neural network evaluation, we also need to assess the
airspace configurations produced by our algorithms. A first step to validate
our approach was to compute the complexity metrics from real recorded traf-
fic (”radar tracks”), and compare the resulting configurations to the actual
sector openings.

27An additional parameter η expressing a threshold on the difference between the two
highest probabilities was also used in [36]. As this parameter was useless, considering the
current values used for α and β, it was abandoned.

28The smoothing strategy may vary from one centre to another: trials with centres
where ATC sectors are smaller seem to show better results with a shorter time window,
but no exhaustive results on this subject have been published yet.

24



Ideally, the computed schedules should reproduce the actual configura-
tions recorded that day. However, there is a high variability in the decisions
made by control room managers on how to reconfigure the airspace, which
comes in addition to the variability of decisions on when to reconfigure. We
may hope that our workload model could give an indication on when to
trigger a reconfiguration and allow the tree search method to build realis-
tic configurations, but our algorithms may not compute exactly the same
configuration as in reality.

So we will mainly assess the realism of the computed schedule by com-
paring the number of ATC sectors in our computed configurations with the
actual number of sectors open on the same day. Pearson’s correlation coeffi-
cient may give an indication of the linear correlation between the computed
and the real number of sectors. However, this may not always be reliable29

so we will also compute an ad-hoc ”dissimilarity measure”, which is the sur-
face delimited by the two curves (computed and real number of ATC sectors
operated during the day), divided by the surface between the x-axis and the
curve of the real number of ATC sectors. With this measure, two identical
curves have a dissimilarity 0 if they are exactly superposed. In addition, we
will also consider the number of reconfigurations throughout the day, which
should be close enough to the real one.

7.5. Assessment of the airspace configuration forecasted from planned traffic

Radar tracks are available only after the aircraft have flown through the
airspace. The proposed algorithms may be useful only if we are actually able
to forecast airspace configurations before the aircraft enter the airspace.

For this purpose, predicted aircraft trajectories are simulated from the
anticipated traffic demand (i.e. flight plans filed by the airline operators),
using a fast-time simulator (see [39], [40]). The resulting airspace configu-
ration schedule is then compared both to the prediction that was made the
day before by flow management, and to the actual sector openings. Let us
now see a few results, starting with the validation on historical data.

29The correlation coefficient between two equal variables x and y = x will be 1. Let us
note however that this coefficient is not sufficient actually to measure how close we are to
equality: the correlation coefficient between a variable x and another variable y = x + d,
where d is a constant offset, will also be 1.
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Figure 4: Computed vs. real configurations (Brest ACC, 6th June 2003), using real traffic
as input.

8. Results

8.1. Comparison to real configurations, using recorded traffic

The model tuned on 2nd June was tested on two other days of traffic,
using recorded radar tracks as input. Figure 4 shows the number of air traffic
control sectors in the computed configurations, and the real number of ATC
sectors that were open on 6th June 2003, in Brest air traffic control centre.
The upper curve shows the number of aircraft within the centre boundaries,
as an indication of the total traffic that day. Note that this curve is related
to the y axis on the right, and that it has been shifted upward so as to make
the figure more readable. The left y axis shows the number of sectors, and
the x axis is the time, expressed in minutes after 0h00.

As shown on this figure, the computed number of sectors is fairly close to
the actual number of sectors that were operated that day. The dissimilarity
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measure is 0.191 and Pearson’s correlation coefficient is 0.91. Our algorithms
found 46 configuration changes, whereas there were 33 in reality.

The total number of aircraft within the centre (upper curve) is given
as a very crude indication of the overall workload. We can observe that
the number of ATC sectors follows this curve more or less, although not
always strictly. One should bear in mind that the traffic may be dispatched
differently across the sectors throughout the day, and also that the number
of aircraft is not the only factor of air traffic complexity and workload. Still,
this traffic curve gives a good hint of the traffic variations throughout the
day, and allows finer interpretations of the other curves.
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Figure 5: Computed vs. real configurations (Brest ACC, 7nd June 2003) using real traffic
as input.

Figure 5 shows the same information, but for 7th June 2003. For that
day, the algorithms show slightly better results, with a dissimilarity mea-
sure of 0.115 and a correlation coefficient of 0.94. There were 37 computed
configurations, against 33 in reality.
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The two figures, 4 and 5, illustrate the fact that the model only reflects
the average behaviour of air traffic controllers and control room managers
when they decide to split or merge sectors, or reconfigure otherwise. There
are variations in this behaviour among the population. Some controllers are
more experienced or more efficient than others and may consequently manage
higher workloads, or there may be younger controllers completing the final
period of their training under the supervision of fully qualified instructors.

8.2. Planned vs. real

 0

 5

 10

 15

 20

 0  200  400  600  800  1000  1200  1400
-20

 0

 20

 40

 60

 80

 100

 120

N
u

m
b

er
 o

f 
co

n
tr

o
l 

se
ct

o
rs

N
u

m
b

er
 o

f 
ai

rc
ra

ft

Time (minutes)

Planned traffic (initial traffic demand)
Configurations with planned traffic

Real traffic (radar tracks)
Configurations with real traffic

Figure 6: Initial traffic demand (flight plans) vs. real traffic (radar tracks), in Brest ACC
on 7th June 2003.

Figure 6 shows the traffic in Brest airspace on 6th June 2003, and the
number of ATC sectors in the configurations computed with either the real
traffic or the simulated traffic as input. In the latter case, a fast-time30 air

30The simulation of a whole day of traffic over France takes about one minute of com-
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traffic simulator was used to compute the aircraft trajectories from the flight
plans of the initial traffic demand. This is typically what might be done in
a pre-tactical context, well before flights take off, when no radar tracks are
available.

We can observe the differences between the planned traffic and real traf-
fic by considering the two upper curves in Figure 6. Although it may be
described as a statistical phenomenon ([47]), this difference between planned
and real traffic is rather difficult to anticipate with great accuracy in a given
sector at a given time. This leads to uncertainties when forecasting the com-
plexity metrics used as input to the neural network.

Missing flight plans or short-notice departures may indeed lead to drasti-
cally under-estimated aircraft counts and other complexity metrics (see [22]),
especially for departure sectors. Considering the results in Figure 6, this does
not seem to be the case with our flight plan data and with the considered
en-route ATCC. However, we still observe some differences that may stem
from navigation uncertainties, re-routings, flight cancellations, etc. These
uncertainties on planned traffic do have an influence on the quality of the
forecast, although this influence is certainly somewhat lessened by the use of
a moving average method to smooth the input metrics.

Flight planning uncertainties may be reduced by using a mix of radar
tracks and flight intentions, if the proposed algorithms are to be used in a
tactical context where complexity metrics are forecast 20-30 minutes ahead.
In any case, the difference between planned traffic and actual traffic may be
an important source of error. The quality of the prediction depends on the
reliability of the 4D-trajectory forecast.

8.3. Comparison with the current forecast

Let us now compare our forecast, using planned traffic, with the actual
prediction made on the same data by the flow management operators. We
can see in Figure 7 that the schedule computed with planned traffic as input
is much closer to the number of control sectors that were actually open that
day than what was predicted by the FMP operators from the same flight
plans that we used.

The dissimilarity metric measuring the difference between prediction and
reality is 0.568 for the FMP schedule, whereas it is only 0.137 for our fore-

putation time
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Figure 7: Airspace configuration forecast using flight plans as input: computed prediction
vs. current FMP prediction (Brest ACC, 7th June 2003).
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8.4. Results with or without constraints on the number of sectors
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Figure 8: Airspace configuration forecast with or without constraints on the maximum
number of ATC sectors (Brest ACC, 7th June 2003).

Finally, let us illustrate what may be the most useful application of the
proposed algorithms. So far we have not introduced constraints on the max-
imum number of ATC sectors in each configuration. Running the algorithms
without such constraints allows the operator to check if the duty roster is
sufficient to handle the planned traffic.

Now, what happens if for some reason, there are not enough controllers,
or not enough working positions available to handle the traffic? In such cases,

31The correlation coefficient is 0.91 for the FMP prediction and 0.93 for our prediction,
which confirms that this coefficient is not usable to assess the quality of the prediction
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the cost comparison described in section 5.1 allows the branch & bound algo-
rithm to find configurations that satisfy such constraints while balancing the
workload as well as possible. In Figure 8, we have constrained the maximum
number of control sectors to 4 between 00h00 and 06h00, 8 between 06h00
and 08h30, 10 between 8h30 and 20h00, and finally 4 after 20h00. The figure
shows the number of sectors for both solutions, with or without constraints.

Figure 9: HMI display of the airspace configuration forecast, without constraints (Brest
ACC, 7th June 2003).

An experimental human-machine interface is currently under develop-
ment, with the aim of demonstrating and refining the proposed algorithms.
Figure 9 shows the general view of the sector opening schedule for Brest
centre, without constraints, over one day of traffic. Each column represents
a partition of the airspace into ATC sectors. A pop-up window (not shown)
may give more details on each configuration when browsing over the coloured
boxes. The colour code is the following: blue when the sector is under-loaded,
green when it is normally loaded, red when it is overloaded (although there
are none here, without constraints). Coloured dots on the right of each box
give an indication of which workload threshold (low or high) triggered the
configuration change.

When posting no constraints on the maximum number of sectors, this
display shows how many sectors would be necessary to handle a given traf-
fic demand. This could allow the staff manager to adapt the duty roster
to the input traffic. Note that without constraints, only ATC sectors made
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up of a single airspace module can be overloaded: otherwise a sector com-
posed of several modules would have been split into two smaller sectors when
becoming overloaded.

Figure 10: HMI display of the airspace configuration forecast, with constraints (Brest
ACC, 7th June 2003).

Figure 10 shows the same situation, with constraints on the maximum
number of sectors. We can observe the overloaded control sectors shown in
red. Such a display could help flow managers to take preventive measures
(departure delays, reroutings) so as to prevent such dangerously overloaded
situations from actually occurring.

The user can switch to a more detailed view, as shown in Figure 11 where
the workload evolution across time is displayed for each selected sector. For
this purpose, each selected sector box shows the three probabilities issued by
the neural network, stacked one above the other, using the same colour code:
blue for plow, green for pnormal, and red for phigh. The transitions between
airspace configurations are also shown.

9. Conclusion and perspectives

9.1. Summary remarks

Forecasting airspace configurations requires at least two things: first a
model assessing the controller workload for any given ATC sector in traf-
fic conditions of variable complexity, and second an algorithm providing an
optimal partition of the airspace into ATC sectors.
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Figure 11: Details of some overloaded control sectors when enforcing constraints on the
number of available working positions (Brest ACC, 7th June 2003).

The proposed workload model assumes that the observed sector opera-
tions reflect the controllers’ actual workload: ATC sectors made of several
modules may be recombined when the workload is either too high or too low.
The model relies on a neural network to issue workload probabilities, using
the sector volume and a selection of air traffic complexity metrics as input.
Among several others found in the literature, these metrics appeared to be
the most correlated to the observed sector status in past operations. Some
others also proved relevant but were redundant with the selected variables
and slightly less relevant. As the literature is fairly extensive on this subject,
we have not implemented all existing metrics, and other complexity factors
may be tried in the future that might improve the model.

The partitioning problem, which is highly combinatorial when considering
all the possible combinations of airspace modules, has been addressed using
standard tree search methods. This was made possible by restricting the tree
search to partitions made up only of ATC sectors described in the ATCC
databases. The neural network output probabilities were used to assess the
cost of candidate configurations while exploring the tree.

This hybrid method was first tried on recorded traffic, and assessed by
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comparing the results to the archived sector openings. The neural network
was trained on data collected in the five French ATC centres on 2nd June 2003
and assessed on two other days (6th and 7th June 2003). Two measures were
used to quantify the differences between the computed output and reality:
a dissimilarity measure accounting for the differences in the number of ATC
sectors, and the number of configuration changes.

The proposed method showed that the number of ATC sectors was fairly
close to the actual one. The dissimilarity measure was 0.191 on 6th June
and 0.115 on 7th June. However, the number of configuration changes was
still above what actually occurred in reality: 46 against 33 in reality on 6th
June, and 37 against 33 on 7th June.

After outlining the possible sources of bias and forecasting errors that
may occur due to the difference between the planned traffic demand and
actual flights, we tried our algorithms on simulated trajectories computed
from flight plans. The comparison to the actual forecast made by the flow
management operators shows that our prediction is far more realistic than
those done currently in operations: the dissimilarity measure is 0.137 for the
computed configurations, and 0.568 for the FMP forecast on 7th June.

9.2. Limitations of the proposed method

In our results, the influence of flight planning and navigation uncertainties
was certainly somewhat lessened by two factors. First by the use of a moving
average method to smooth the input metrics (including the aircraft count),
and second by the fact that the neural network trained on historical data
reflects the average behaviour of controllers and control room managers over
the observed past airspace operations.

Concerning the first factor, one must be aware that there is a trade-off
between smoothing the metrics and the forecast accuracy. In fact, averaging
the metrics over too long a period delays the times when airspace configu-
ration changes are predicted. This might motivate further research, using
time series, instead of smoothing the input metrics with a moving average
method.

Dealing with flight planning uncertainties may have an influence over the
context in which the proposed algorithms could be used. A certain level
of uncertainty and the use of smoothed metrics may be acceptable in a pre-
tactical context, when roughly assessing how many ATC sectors are necessary
to handle the planned traffic. But this same level of uncertainty may not be
acceptable for a tactical tool, when overloads need to be anticipated with
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greater accuracy. However, we can expect to reduce these uncertainties by
using a mix of radar tracks and flight intentions.

These issues need to be further explored, through scientific studies even-
tually involving ATC experts in real-time experiments. In any case, it must
be underlined that one cannot expect a highly realistic airspace configuration
forecast without an accurate 4D trajectory forecast.

Let us finally highlight a restriction in the use of the proposed algorithms:
the workload prediction model is tuned on historical data and reproduces the
average past behaviour of control room managers and air traffic controllers.
So it should not be used by control room managers actually to decide how
to split or merge sectors. This would freeze the whole system and always
reproduce the same behaviour. The proposed hybrid method should in fact
be seen as a forecasting tool for flow managers or multi-sector planners.

9.3. Potential gains in operational perspective

Considering the difference (see Figure 7) between the sector opening
schedule made by the FMP operator and the actual sector operations, the
potential benefits in staff costs that could be expected from a more accurate
forecast are obvious.

However, several arguments mitigate this statement. One cannot expect
to adjust the staff variable perfectly to the traffic demand on an everyday
basis, even with a perfect airspace configuration forecast. The staff variable
is adjusted to peak traffic demand, estimated well in advance, as it takes
several years to train a controller: air traffic controllers are a highly trained
and highly qualified work force. The total number of controllers in opera-
tion cannot be fine-tuned over the year: this would mean employing fewer
controllers in the winter than during the summer for example, which is not
easily feasible.

Also, air traffic management is a world of uncertainties (take-off times,
unexpected delays, sector entry times, weather disturbances, etc): some re-
searchers refer to the ”stochastic” nature of air traffic planning. Consequently
the overall system also needs to deal with these uncertainties. The fact that
the FMP schedule requires more staffing than what is actually necessary is
also a safety margin that can be useful when unexpected peaks of traffic oc-
cur. It also reflects the flexibility of the current system: merging sectors or
reconfiguring the airspace in real-time when the workload is low also allows
air traffic controllers to maintain their proficiency by handling a large enough
amount of traffic at all times of the day. So, in fact, it is not cost efficiency
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or flexibility (the system is already highly flexible in real time) that we could
improve the most with the proposed algorithms, it is the predictability of the
system.

It is expected that our algorithms could be used, possibly by flow man-
agement operators or multi-sector planners, to forecast airspace configura-
tions and controller workload with greater accuracy than today’s empirical
method. This would allow better anticipation of potentially dangerous sit-
uations, and preventive measures to be taken well in advance when some
sectors are predicted to be overloaded.

When using our algorithms without constraining the maximum number
of ATC sectors, they could be used to assess how many sectors would be nec-
essary to handle a given traffic demand. Posting constraints on the number
of ATC sectors could help flow managers to forecast potential overloads in
the circumstances of the day (duty roster, or limited number of controller
working positions).

The potential gain in operations remains to be assessed through real-time
experiments, and the HMI currently under development may be used for this
purpose in the future.

9.4. Further work

This work was a first approach to the problem. Time-dependencies were
not explicitly taken into consideration, except through the use of complexity
metrics that are related to traffic flows over a period of time. A simple feed-
forward neural network was used, and its output only depends on a snapshot
of the metrics values at every time t.

In future work, we plan to improve the workload prediction model by
considering each input metric as a time series, and by using recurrent neu-
ral networks like the Jordan network ([49]), trained with backpropagation
through time ([48], [50], [51]).

The opening schedule algorithm also needs improvements, such as check-
ing if there is a feasible path from one configuration to another. At the
beginning of this conclusion, we stated two issues when forecasting airspace
configurations: predict the workload, and find an optimal airspace partition.
In fact, we can add a third one, which is to find an optimal sequence of
airspace configurations throughout the day, satisfying some constraints on
the transitions between airspace configurations.

We have partially addressed this third issue by allowing local recombina-
tions of sectors from one configuration to the next. However, we still need to
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explore this issue further by applying tree search methods through a whole
sequence of successive candidate configurations, instead of successively ap-
plying the tree search at each time step. Constraint programming techniques
could be useful for this purpose.

The work presented in this paper will be included in the contribution of
the French Air Navigation Services Provider to SESAR, the major European
R&D programme.

A. Glossary of terms

Elementary airspace module: a volume of airspace to which a radio fre-
quency is assigned that may be used for communications between the
aircraft flying in this volume and the air traffic controller in charge of
aircraft separation. Modules can be combined (i.e. grouped onto one
working position) to form larger ATC sectors, depending on the con-
troller workload. Note that the usual term to denote these airspace
modules is sector, which might be confusing as sector can either denote
a single airspace module, or an air traffic control sector made up of one
or more modules. So in this paper these elementary geographic sectors
are referred to as modules, in order to avoid confusion with ATC (Air
Traffic Control) sectors.

ATC sector: volume of airspace made up of one or more elementary airspace
modules, operated as a single unit by a team of usually two controllers
(”radar” and ”planning”).

Controller working position: a piece of furniture with radar screens, radio-
communications equipment, telephones, systems interfaces, etc, oper-
ated by two controllers in charge of a control sector.

Airspace configuration: mapping of the set of elementary airspace mod-
ules onto a smaller number of controller working positions. It can also
be seen as a partition of the ATC centre’s airspace into control sectors.

Sector opening schedule: (or opening scheme) the successive airspace con-
figurations that are predicted over a period of time in the future.

ATC: Air Traffic Control.
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ATCC: Air Traffic Control Centre. A managerial unit in charge of a volume
of airspace divided into a number of sectors.

ATM: Air Traffic Management.

ATFM: Air Traffic Flow Management

CFMU: European Central Flow Management Unit

FMP: Flow Management Position

SESAR: Single European Sky ATM Research Programme.
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