
Hayaku : designing and optimizing finely tuned and

portable interactive graphics with a graphical compiler

Benjamin Tissoires, Stéphane Conversy

To cite this version:

Benjamin Tissoires, Stéphane Conversy. Hayaku : designing and optimizing finely tuned and
portable interactive graphics with a graphical compiler. EICS 2011, 3rd International Confer-
ence on Engineering Interactive Computing Systems, Jun 2011, Pisa, Italy. pp 117-126, 2011,
<10.1145/1996461.1996505>. <hal-01022248>

HAL Id: hal-01022248

https://hal-enac.archives-ouvertes.fr/hal-01022248

Submitted on 22 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-enac.archives-ouvertes.fr/hal-01022248

Hayaku: Designing and Optimizing Finely Tuned and
Portable Interactive Graphics with a Graphical Compiler

Benjamin Tissoires 1,2

1 DSNA DTI R&D
7, avenue Edouard Belin

31055, Toulouse,
France

tissoire@cena.fr

Stéphane Conversy 2

2 Université de Toulouse, ENAC, IRIT
7, avenue Edouard Belin

31055, Toulouse,
France

stephane.conversy@enac.fr

ABSTRACT

Although reactive and graphically rich interfaces are now
mainstream, their development is still a notoriously difficult
task. This paper presents Hayaku, a toolset that supports de-
signing finely tuned interactive graphics. With Hayaku, a
designer can abstract graphics in a class, describe the con-
nections between input and graphics through this class, and
compile it into runnable code with a graphical compile chain.
The benefits of this approach are multiple. First, the front-
end of the compiler is a rich standard graphical language that
designers can use with existing drawing tools. Second, ma-
nipulating a data flow and abstracting the low-level run-time
through a front-end language makes the transformation from
data to graphics easier for designers. Third, the graphical
interaction code can be ported to other platforms with min-
imal changes, while benefiting from optimizations provided
by the graphical compiler.

Author Keywords

Human-Computer interfaces, User Interface Design, Meth-
ods and Applications, Optimization

ACM Classification Keywords

H.5.2 User Interfaces: GUI.

General Terms

Design, Languages

INTRODUCTION

Interactive graphics development is a notoriously difficult
task [18, 19]. In particular, rich interactive systems design
requires finely-tuned interactive graphics [13], which con-
sists of a mix of graphical design, animation design and in-
teraction design. Subtle graphics, animations and feedback
enhance both user performance and pleasure when interact-
ing [16]. The success of the iPhone demonstrates it: finely
tuned widgets, reactive behavior, and rich graphics together

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.

Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

make the iPhone interface superior to other products. De-
signing such systems is a recent activity that has rarely been
supported explicitly in the past. Yet, their quality is essen-
tial for usability. Unfortunately, developing such software
is not reachable by all stakeholders of interactive system
design. This requires highly trained specialists, especially
when it comes to using very specific graphic concepts and
optimize the rendering and interactive code. Hence, there is
a clear need for making interactive graphical programming
more usable.

Moreover, even within a given style of computing (either
web or mobile), new means of thinking, designing and de-
veloping interfaces arise every couple of years. For exam-
ple, we successively saw the rise of Java2D, Adobe Flash,
Adobe Flex, Microsoft dot net, XAML, SVG, WMF, Web
2.0 interfaces programmed in javascript in the browser (with
the Canvas and HTML5), OpenGL etc.1. In order to design
and develop interactive systems on those platforms, inter-
face designers have access to a plethora of toolkits, usually
incompatible with one another. This results in the failure
of reusability, one of the most praised property in comput-
ing: designers have to redevelop existing software in order
to port it to another platform, with the associated drawback
of not reusing well crafted and tested software. For exam-
ple, the menu subsystems that have reached a good level of
usability in traditional desktop platforms (i.e. Windows or
MacOSX) are poorly imitated in Web 2.0 interfaces, where
the user is for instance required to follow a tunnel strictly
when navigating in a hierarchical menu. Hence, there is a
need for the ability to reuse existing software, especially if
we assume that new platforms will keep appearing in the fu-
ture (see WebGL for example).

This paper addresses the two requirements presented above:
design usability and reusability of finely-tuned interactive
gra-phics. In particular, we introduce Hayaku, a toolset that
targets interactive graphics that Brad Myers refers to as the
“insides” of the application [21], and that no widget toolkit
can support. After a review of related works, we present the
exact audience that we target, and the requirements of such
an audience. We then present the toolset using three use
cases, and some of the internal mechanisms that implement

1. . . , Cairo, Qt, Prefuse, Protovis, iPhone SDK, Open Handset Al-
liance’s Android, Palm WebOS to name a few more

its features. We finally provide a number of elements to eval-
uate the toolset according to our claims. Related Work This
work is related to two topics in the user interaction software
and technology community: methods to design interactive
systems, and graphical toolkits.

Interactive System Design Methods

Chatty et al. [6] present a method and associated tools to
involve graphic designers in interactive system design and
development. Programmers and graphic designers first agree
on a conceptual and simple SVG skeleton of the scene. While
programmers code the interaction with a low quality repre-
sentation, graphic designers can work on their design in par-
allel. Since programmers and designers respect a contract,
the production of the final system consists in the replace-
ment of the low quality representation by the designer’s one.
However, the tools oblige the graphic designer to use a li-
brary to transform the high-level language (SVG) to a lower-
level one (a Tk-like canvas) with a lesser expressive power.
This hinders exploration of alternative design since changing
gra-phics implies many manipulations to reflect the change
in the final application. Furthermore, when optimizing code,
the approach falls back to a sequential process: program-
mers have to wait for designers’ solutions before optimizing
by hand the rendering code, and designers have to wait for
optimizations to assess if their design is usable.

Microsoft Expression Blend makes heavy use of XAML to
describe the graphical parts of the application. Like Intuikit,
the aim is to separate the graphical description from the func-
tional core of the application. The designer can produce one
design per C# class that has to be drawn, but he still needs
to manipulate the low level code in order to implement inter-
actions and animations. The concept of “binding” allows
programmers to link the graphical shapes and the source
objects. The Adobe Flex and Flash suite also provides a
means to separate the graphical description from the func-
tional core. However, even if the designer can rely on Flash
to build her graphical components, she has to develop the
rest of the application using the ActionScript language. Fur-
thermore, there is no abstraction of the graphics, nor a way
to express properties with a data-flow. Finally, even if Flex
runs on a variety of platforms in its own window, it is not
possible to embed the graphics among the graphical scene
of another application.

Toolkits

Many toolkits address the problem of performance: Prefuse
[14], Jazz [4], Piccolo [3], and Infoviz Toolkit (IVTK) [9]
for instance. Performance is maximized by using special-
ized data structures explicitly (tables for Prefuse and IVTK),
or hidden data structures (spatial tree for Piccolo). The first
limitation of this approach is that the language used to de-
scribe graphics is both inappropriate and not rich enough:
describing graphics in Java code with SwingStates [1] is ver-
bose, Java concepts do not match graphics exactly, and rich
graphics created with tools for graphic design cannot be di-
rectly used in the toolkit. Rich graphics toolkits exist, such
as Batik2, but they are not efficient performance-wise. Fur-
2 http://xmlgraphics.apache.org/batik/

thermore, the problem with these toolkits is that even if they
are efficient, they force the toolkit user to work with a spe-
cific language and a specific run-time. For instance, users of
toolkits can not use Prefuse to write a C or C++ application.

Other works use compiler-like optimizations to produce effi-
cient graphical code (Java3D, LLVM [15] with Gallium3D3

in Mesa). However these tools are only accessible to low
level graphical programmers that manage to write code for
the graphic card directly. They are not supposed to be used
by the average interactive application developer, with basic
understanding of the factors that accelerate rendering.

The solution we propose here consists in helping the produc-
tion of efficient code for heavy graphics handling. In order
to compile the graphical part, we rely on a dataflow, and a
mechanism that is able to track the dependencies between in-
put data and graphical elements. Dataflow has been used in
graphical interactive toolkits (Icon [8] for the input, and Gar-
net [25] for the constraints), and have been showed to help
building interactive systems efficiently. However, the main
difficulty with such a system is to make it fast for both graph-
ical rendering and the dependency updating mechanism.

This point is addressed in [24], which introduces a compile
chain for interactive graphical software. This work shows
that using a graphical compiler (GrC) together with a dataflow
leads to good performance. However, the tools were more a
proof of concept than a real toolset: the authors present a
way to implement optimizations, but do not detail how pro-
grammers of the graphical interface can connect all parts to-
gether. Another problem of the GrC is that it generates a
program that is linked to the runtime of the GrC. This forces
the designer to describe all graphical parts of the applica-
tion with the GrC. However, when dealing with high per-
formance applications, there are parts of the code that the
programmer still wants to write manually, in order to max-
imize the performances. Meanwhile, this programmer may
not want to write every piece of the software, if only because
they already exist.

The work we present in this paper improves on the concepts
described in [24]. In particular, we show how our new tool
can help the programmer and the graphic designer to use
graphical compiling in a simpler manner, and what benefits
can be gained from the new functionalities. We also improve
it by allowing it to be modular and thus producing embed-
dable components. Finally this modularity allows us to turn
this proof of concept into a real compiler that can handle
multiple graphics back ends and run-time modules.

TARGET AUDIENCE AND REQUIREMENTS

The work presented here targets members of interactive sys-
tem design teams. A large body of work aims at support-
ing interactive system design. For example, Participatory
Design (PD) partly aims at facilitating production and com-
munication between all designers, be they user-experience
specialists, graphic designers, users, programmers [17]. PD
employs multiple means to elicit design and communicate it

3http://wiki.freedesktop.org/wiki/Software/gallium

efficiently in groups where people do not share the same cul-
ture. Use cases in the form of stories, drawings and mock-up
[5], paper prototypes [23]: all tools aim at maximizing ex-
pression, exploration by iteration and understanding by cul-
turally different designers.

brainstorming/

mock-up

rough

prototype

dynamic

prototype

final

design

Figure 1. Targeted activity

After these tools have led to initial static prototypes, the de-
signers have to work on dynamic, graphical interactive pro-
totypes [2] [6] (figure 1). As said in the introduction, part
of the work is the design of finely-tuned interactive graph-
ics, which consists in a mix of graphical design, animation
design and interaction design. The quality of the artifacts de-
signed during this stage in the process is essential for usabil-
ity. The overall user experience of interacting depends on
how well all features (be they graphical, animation, behav-
ior) mix together: the designer must address all concerns at
the same time, and dispatching the task between a graphical
designer and a programmer does not work anymore. Hence,
this activity requires designers with skills in graphic design,
animation, interaction design and programming. Our work
especially targets this kind of designers.

As demonstrated by Artistic Resizing [7], we think that tech-
nical support has a great influence on the experience of de-
signers engaged in the activity. A recent survey analyzes
how designers design and program interactive behaviors with
current tools [19]. Among the findings, the designers ex-
presses that “the behavior they wanted were quite complex
and diverse [. . .] and therefore requires full programming
capabilities”; that “the design of interactive behaviors emerge
through the process of exploration [. . .] and that today’s tool
make it difficult to iterate on behavior or revert to old ver-
sions”; “Details are important, and you never have them all
until full implementation”; “I can represent very exactly the
desired appearance. However, I can only approximate the
backend behaviors”; and they want to do “Complex transi-
tions / animations.”

Based on these concerns, we propose a set of requirements
for our tools. Similarly to paper prototypes in PD, tools
should maximize expression, exploration, and communica-
tion between designers. Maximizing expression requires rich
graphics, hence a toolset should be able to handle heavy
graphical scenes, with lots of subtle graphical properties.
Designing such scenes requires efficient design tools, such
as vector graphics editors. However, in order to be usable in
interactive system, the toolset should deliver enough perfor-
mance. Maximizing exploration implies a system in which
changing things (e.g. a graphical property) should be as in-
expensive as possible, i.e. with as little manipulation as pos-
sible required to reflect the change in the subsystems.

TOOLKIT DESIGN AND CONCEPTUAL MODEL

Designing a system that addresses all the requirements above
is beyond the scope of this paper. In this work, we describe
Hayaku, a tool set that partly addresses these requirements.
In particular, we address richness of expression, exploration,
performances, and reusability. Hayaku mainly focuses on
the rendering part of the application. It also provides hooks
to implement interaction with the user and communication
with the rest of the application. The functional part of the
application (what happens in the system when the button is
pressed for instance) is out of the scope of the paper.

General Idea: the Interaction Designer is in Charge

As said before, this activity requires designers with skills in
graphic design, animation, interaction design and program-
ming. Omniscient individuals that possess all skills are rare,
if existing. In order to tackle this problem, teams include
specialists in each domain, and design is distributed among
the members of the team. In particular, graphical designers
and computer scientists (or more precisely interaction pro-
grammer) are among the kind of specialists involved in the
design of interactive software.

Interaction

Designer

Functional

Core Coder

Interaction

Coder

Graphic

Designer

Functional

Core Coder

Compiler

codes

behavior

optimizes

code

relies

on

designs with

graphical editor

(a)

(b)

agree
on

model

agree
on

graphic
struct

codes

functional core

codes

behavior

optimizes

code

designs with

graphical editor

agree
on

model

codes

functional core

Figure 2. Role repartition with Intuikit and XAML (a) and role repar-
tition with Hayaku (b).

The general idea of our approach is wider than the Intuikit
approach [6]: instead of acknowledging the irreconcilabil-
ity between graphical designers and interaction programmer,
and maximizing communication between two different spe-
cialists, we tried to make the programmer’s concerns acces-
sible to the graphical designer. More precisely, what we tar-
get is a graphic designer that has basic programming skills,
and that the tool empowers. As depicted in Figure 2, Hayaku
provides the required graphical expressive power, while of-
floading optimizations to the graphical compiler. This turns
the interaction coder and the graphic designer into an inter-
action designer. Again, we assume that the artefacts pro-
duced at this stage in the design should be done with all
concerns (graphics and code) in mind, and thus by a unique
person, or a very close team that share tools and artefacts.
The approach is similar to Artistic Resizing: instead of de-
scribing with code the behavior of graphical elements under
size change, Artistic Resizing enables graphic designers to
express the behavior with means closer to their knowledge.

We provide the interaction designer with a tool chain that
uses a standard vector graphics editor (Inkscape or Adobe
Illustrator) as its first link. This has two advantages: the de-
signer leverages on her experience with such tools, and she

can express graphics using the full expressive power of the
tools. The other links of the toolchain consist in a compile
chain that takes two inputs: graphics elements edited with
the graphical editor, and abstractions of graphical element to
control them. The remaining of this section enumerates the
main features of Hayaku. One of the contributions of this
work is the identification of those features. The goal of the
paper is to present the concepts used by the tool, and show
why they are adapted to the activity we target. Though there
is not enough information to fully describe the system be-
cause of limited space, the concepts presented here can be
used by readers if they want to design a similar system.

Abstract and Control Graphical Elements The graphic edi-
tor stores the drawings in an SVG description. SVG draw-
ings are like “classes” of graphical objects. In order to use
SVG drawings in a real application, the designer has to pro-
vide three descriptions, all written in JSON4. The first one
is the “conceptual language” shared with the functional core
coders, and serves as a bridge between the functional core
and interactive graphics. As in [6], the designer and the rest
of the team must agree on a common data structure, or “mod-
els” which also acts as classes of concepts. This language
is illustrated by the right part of Figure 3. The second one
describes how the models defined in the first description is
related to SVG graphics, by connecting fields of the models
to nodes and attributes in SVG drawings with a mini, data-
flow-like functional language. It is similar to a stylesheet.
In Figure 3, the connections are represented by the lines be-
tween the SVG part and the abstract model part. Finally, the
last description is the “scene”, i.e. a list of instances of the
classes (not represented on Figure 3).

Figure 3. Representation of the connections (the black lines) between
the graphical classes (the SVG) and the model.

Though this conceptual model of application design seems
complex, it is no more than existing ways of writing code:
the first JSON description can be considered as a class defi-
nition, the second one as a stylesheet, while the last one cor-
responds to the instantiation phase of classes at the launch of
a program. The only addition is the SVG description, which
corresponds to “graphical classes” definitions.

Fast Application Generation

Hayaku includes a compiler that takes the SVG description
and the three JSON files as input, and generates an appli-
cation. The compiler uses various strategies to maximize
compile speed and launch speed of the generated applica-
tion. This allow for rapid fixes and tests, and thus efficient
exploration of design.

4Javascript Object Notation

Fast and Portable Code Generation

As many compilers, the graphical compiler is able to opti-
mize the generated code. Thanks to a data-flow analysis,
and user-provided hooks, the code allows the use of complex
graphics (expressive power) with a rendering speed compati-
ble with interaction. Furthermore, the compiler is able to tar-
get different graphical back-ends, such as OpenGL or Cairo.
This guarantees that the design is portable.

Generate Whole Application or Embeddable Code The com-
piler can generate either a stand-alone application, or em-
beddable code. With traditional toolkits, embedding is often
limited to a window that the host application displays next
to its own windows. The kind of embedding that we tar-
get is more useful: graphics should appear inside an existing
scene of the host application. Such embeddable code allows
for creation of dynamic applications, in which the number of
graphical elements is not known at compile-time. This also
allows designers to use the compiler as a translation tool be-
tween SVG and a run-time environment. More generally,
this transforms our toolset in a toolkit for graphical toolkit
design (a toolkit of toolkits).

USE CASES

In order to illustrate our approach, we describe how to use
Hayaku to implement three different kinds of applications.
Though the descriptions look like a tutorial, they enable to
understand and assess how a designer is supposed to use the
features provided by the tool, and help evaluate how effi-
cient the features are at supporting the designer’s activity.
The first one is a basic multi-touch application that enables
multiple users to move and resize simple graphical objects.
It is not very rich in terms of graphics, but since it is simple,
it allows for a gentle introduction and short code examples.
The second one is a more graphically complex application:
a resizeable keyboard with a fish-eye effect that is activated
only if the size of the keyboard is too small. The last exam-
ple is a generic pie-menu that can be reused in an existing
application.

Figure 4. A simple multi-touch application.

Writing a Simple Application

This test-case consists in writing a simple multi-touch appli-
cation (Figure 4). The interaction consists in controlling in
a simple and natural way each of the “heads” that appears
on Figure 4. The properties that users of the application can
control are the position, size and rotation of each shape.

For the designer, the first phase consists in defining four
graphical “classes” (here the “head”-shapes) with Inkscape,
and save them in a SVG file.

{ "model": "SMILEYS",

"classes": [{

"name":"Object",

"extends":null,

"attributes": {

"ID":"key",

"X0":"vint", "Y0":"vint",

"SCALE":"vfloat",

"ROTATION":"vfloat",

"PRIORITY":"vfloat",

"Picked_Key":"vint" }},

{ "name":"Object_0",

"extends":"Object",

"attributes": {}}]}

Figure 5. Model of the multi-touch widget.

{"model":"SMILEYS",

"objects": [

{"className":"Object_0",

"file":"demo.svg",

"graphicalItems": [

{"name":"smiley_svg",

"connections":

{"X0":"smiley_svg.transform.tx",

"Y0":"smiley_svg.transform.ty",

"SCALE":"smiley_svg.transform.scale",

"ROTATION":"smiley_svg.transform.rotation",

"PRIORITY":"smiley_svg.transform.priority"},

"picking":

{"Picked_Key":"smiley_svg"}}]}]}

Figure 6. Connection between the model of the multi-touch widget and
the graphic parts (smiley svg).

{ "name":"Smileys",

"model":"SMILEYS",

"content": [

{ "type":"Object_0",

"attributes": {

"ID":0,

"ParentID":0,

"X0":100, "Y0":100,

"SCALE":0.5,

"ROTATION":0.0,

"Picked_Key":-1 }}] }

Figure 7. Instantiation of the multi-touch widget.

def translate(self,dx,dy):

self.x0.set(self.x0.eval() + dx)

self.y0.set(self.y0.eval() + dy)

def rotate(self, dr):

self.rotation.set(self.rotation.eval() + dr)

def zoom(self, z):

if self.scale.eval() + z >= 0.1:

self.scale.set(self.scale.eval() + z)

Figure 8. The Python code of the three commands to control the graph-
ical objects.

The third phase consists in defining the connections between
the model and the graphical part (Figure 6), again in a JSON
file. Connections are straightforward and need no explana-
tion. The fourth description pertains to the scene, in another
JSON file. This file consists in instantiating the different el-
ements of the graphical scene (Figure 7).

The designer has to provide the reactive part of the appli-
cation, i.e. the connection between input events and reac-
tion of the graphical objects. Since Hayaku focuses on the
rendering part only, it does not provide any multi-touch ca-
pabilities. Rather, it is up to the designer to describe with
the run-time language and input toolkit how events act on

the conceptual model, by updating the corresponding fields
of the instances. However, when generating the code corre-
sponding to the conceptual model, the toolset offers the pos-
sibility to concatenate user-defined code. This enables the
designer to abstract behavior (see Figure 8). Furthemore,
Hayaku provides a picking mechanism that can be called
from user-defined code.

In order to test and launch the application, the interaction de-
signer edits a Python script that contains a call to the function
load with the three JSON files as arguments (the model, the
model-to-svg connection, and the scene). She then launches
the command hayaku with the script as a parameter. If the
compile phase succeeds, Hayaku launches the generated ap-
plication.

The compilation time for this example is 2.2 seconds the first
time. Further recompilations requires 1.9 secs only. The first
time of compilation is longer due to some tools that need
to be embedded in the final application and that does not
need to be recompiled each time a change occurs (OpenGL
shaders and utility functions). The application takes less
than one second to launch, and runs at 515 frames per second
(see Table 2). Again, this application is simple and not de-
manding in terms of computation power. Still, it shows that
the toolkit is reactive enough to deal with high-rate incoming
data.

A Fish-eye Keyboard

The second application is a 40 auto-expanding keys key-
board, designed for motor-disabled users (Figure 9) [22].
The keyboard consists in two parts: the keyboard itself, and
a one line screen to display the result. The caps-lock key is
fully functional: the key mapping changes accordingly. The
key “123” toggles the numeric mode. Finally, the keyboard
can be resized, and at low sizes the keys close to the cursor
expand thanks to a fish-eye effect [10].

Figure 9. The test application in action.

This example demonstrates the ability of the toolkit to han-
dle rich graphics with high rendering performance. The de-
sign of the keyboard uses a full vectorial description for its
components. This leads to high quality graphics even when
the keyboard is resized. The design also uses rich graphic
properties: gradients, transparency, shadows. . .

Realisation

The graphical part of the application has been realised with
Inkscape (Figure 10). In a first SVG file, the designer creates
a key by using eight separate graphical layers. The layers are
grouped and named in a unique SVG component. In order

to build the global composition, the keys are then cloned,
organized and modified to generate an artwork of the final
keyboard. The creation of the upper area, including the text
display, the backspace key and a background with a gradient
completes this artwork. The whole keyboard contains 400
graphical elements.

Figure 10. The SVG description of the different components of the
keyboard, realized with Inkscape.

Once the global composition is satisfactory, three examples
of the different type of keys are put in a separate SVG file,
to serve as “graphical classes” : char key, func key and en-
ter key. The graphical components correspond to the com-
ponent described in the model, and are named accordingly.
The blocks that describe the background and the display of
the result are also added to this file. A parent class Key has
been defined to handle the common properties of the differ-
ent keys. The class is inherited by the different types of key
(char, func and enter).

The layout of the keyboard is given in the JSON scene file.
However, Hayaku does not provide a visual editor for the
scene. Thus, the designer has to provide it. Since the pro-
duction of this file can be laborious, a script has been writ-
ten to produce it. This script allows the interaction designer
to rapidly change the layout of the keyboard by changing
some variables in the script, instead of a bunch of values and
parenthesis into the JSON file.

The fish-eye effect is implemented by computing the dis-
tance between the cursor and each key, and by using this
distance to set the scaling property of the key accordingly.
Each time the cursor moves, a redraw is triggered, and the
key is scaled with is current scale before being drawn.

A Generic Pie-menu

To assess that Hayaku can be considered as a toolkit of toolk-
its5, we implemented a generic pie-menu (Figure 11). The
objective was to provide an implementation-independent de-
scription in order to use it inside an actual, existing appli-
cation (Figure 12). The pie-menu we designed includes a
feedback when flying over a slice: the underlying slice is
enlarged. Thus we can not use a mere circle, but several dis-
tinct slices. We also need to be able to control the number of
elements inside the menu.

5here, Hayaku can be considered as a toolkit for building a widget

Figure 11. The pie-menu in action.

Realisation

The design in itself resembles the design of the keyboard: we
designed the pie-menu to be a set of slices. Each slice has
7 main graphical parameters: a position, a label, an angle,
an internal radius, an external radius, a rotation, and a color
parameter. To describe the scene, we wrote a script similar to
the one that generated the keys in the keyboard. The script
generates the slices and their parameters according to the
number of slices.

The behaviour part maps the picking value of each slice with
a callback that changes the internal radius, the external ra-
dius and the color as needed. High-level events, such as
“menu 7 has been selected”, have to be generated by the be-
haviour part, since Hayaku only provides the graphical part
of the application.

Embedding in an Existing Application

We have embedded the pie-menu into an existing radar-like
application for Air Traffic Control (see Figure 12). This
application is written in C++ and makes extensive use of
OpenGL. The application is extensible, and provides a mech-
anism for loading dynamic external libraries. We used this
mechanism to plug our pie-menu into this system.

Figure 12. The pie-menu inside a real application.

The steps involved were the following. First, we had to write
a C++ class that interacts with the dynamically loaded ob-
jects generated by Hayaku. This class is the glue that links
the host application and the generated interactive graphics,
and factorizes the setup code for all embedded Hayaku code.
Then we wrote a subclass specific to the pie-menu, to han-
dle the pie-menu behaviour with respect to user interaction.
This subclass represents 112 lines of code. It is a transcrip-
tion in C++ of previously written Python code, developed
during the prototyping phase of the pie-menu widget. As

Figure 12 shows, the pie-menu smoothly integrates into the
host application, and does not reduce the frame rate.

This use case shows that it was possible to externalize the
creation of widgets and reuse them in other applications.
However, in general, existing systems do not support exten-
sions with external dynamic plug-in: in this case, the code
generated by Hayaku must be embedded at source-level. The
glue between the original code and the graphical part is sim-
pler (just a “#include” at the beginning). Drawing is initiated
by calling the exported draw function.

TOOLKIT IMPLEMENTATION

How the Toolset Works

The command hayaku automatically calls the GrC. The GrC
then creates a directory named BUILD in which it places all
its productions. The JSON files are transformed into Python
ones, and a set of C files and their headers are written. Then,
the GrC calls gcc to compile those C files and produce the
object files that can be embedded into C applications. It gen-
erates a dynamic library that can be either linked to the run-
time of the GrC, or embedded into an existing application.

To reduce compile time, the compiler is able to detect parts
that have been modified between two successive compila-
tions, and compiles those parts only. In addition, we de-
signed a monitoring system on the files, and the recompi-
lation occurs automatically whenever a file is modified and
saved. The change is automatically reflected in the generated
application while it is still running. For example, changing
the color of one of the shapes in the example above with
Inkscape, and saving the SVG file automatically updates all
shapes of this class in the running application. This illus-
trates the advantage of separating graphics from behavior
and using data-flow mechanisms: since the graphical pipe-
line is clearly delimited, the toolset is able to trigger it at any
time, without affecting the behavior of the whole applica-
tion. Such tools reduce the time needed between envisioning
an idea and testing it.

Generation of Portable Code

As we already said in the previous sections, the designer
produces the graphical shapes thanks to SVG files. The ab-
stractions and connections between those graphical shapes
and the models are given through JSON files. Then, Hayaku
loads them into the GrC.

The GrC in itself is written in Python. The GrC is able to
produce different types of outputs, in terms of target lan-
guage and run-time (currently C and Java), and in term of
graphical backend (currently OpenGL, and partly Cairo). To
be able to reuse the code of the transformations, we im-
plemented our own partial class mechanism. We separate
the description of the intermediate languages and the trans-
formation between them. At the beginning of the compile
chain, the GrC chooses which languages and transforma-
tions it needs to produce the final code by attaching the trans-
formation functions to the descriptions nodes. The trees that
are generated can then be transformed just by visiting each
node. This mechanism allows us to modularize the graphi-

cal compiler and thus to plug different behaviour at different
stages as needed.

Generation of Static and Semi-static Code

Most examples are instances of application in which the num-
ber of objects is not variable (sliders, pie-menus, keyboard).
For other types of applications, such as radar image where
the number of flights is in theory not bounded, the data-flow
architecture does not allow for simple description and han-
dling of dynamic creation of objects. In this case, Hayaku
provides two strategies.

The first one is to consider the number of elements to be dis-
played bound by an upper limit [24]. This requires to start
the application with a pool of available invisible graphical
objects, which are allocated to any new data that appear dur-
ing run-time. In practice, this strategy works well: for exam-
ple, the number of flights in a sector is bounded by regulation
agencies in order to enable a limited numbers of controllers
to handle the traffic. It comes at the expense of internal han-
dling of invisible objects (which may hinder performance
uselessly) and longer compile time. But the benefits out-
weigh the drawbacks, since it helps keeping the application
simple to write and understand.

The second strategy consists in generating pieces of specific
interactive graphical code that can be reused in a larger pro-
gram. In the radar image, this would consist in designing the
graphics for a single flight, and generating the corresponding
display code. The main program would then manage cre-
ation of new flights and deletion of disappearing ones, and
use the display code whenever necessary. With this solution,
the compile time is reduced, since the graphical code is not
unrolled as in loop unrolling for instance, and the constraint
of the upper limit of objects is removed.

Generated code must follow a number of requirements to
make it embeddable. First, the generated code has to keep
the state of the application. For instance, when working
with OpenGL applications, the drawing code has to keep the
pipeline in the same state it was before its use. A second
requirement is to produce “human readable” code. Since
most of the time a designer will connect the generated code
to the other application, the names of the functions that are
exported have to be understandable by the programmer. For
instance, set0 25 2 1 is less readable than set component0 -
key25 backgroundColor red.

Picking Support

The generated code must provide a way to send back infor-
mation. For instance, when the end-user moves the mouse,
the code has to inform the caller that the picking state chan-
ged. Hayaku provides a picking mechanism, together with
a callback system. The host application has to register call-
backs if it wants to be notified by the graphics code, or by
the underlying dataflow. Care must be taken when handling
picking. For example, a usual picking algorithm consists
in rendering the scene in a tiny rectangle around the cur-
sor, and storing each graphical object that owns pixels actu-
ally rendered in the rectangle. Applying the same algorithm

in a multitouch application requires as many passes as the
number of touches, which is costly. Instead, we used a one-
pass color-keying algorithm [12]. Each graphical shape is
assigned a unique color in an associative array, and rendered
with their unique solid color in an off-screen buffer. Picking
shapes consists in reading back the color of the pixel under
each touch, and retrieving the corresponding shape from the
color with the associative array.

PRELIMINARY EVALUATION

As with any method that aims at supporting design, evaluat-
ing a toolset requires controlled experiments, with multiple
design teams under different conditions (with or without the
tested toolset for example). Such an experimentation is a
heavy task, and is beyond the scope of this paper. However,
we provide in this section a preliminary evaluation in terms
of descriptive power, performance, and usability.

Descriptive Power

We provide two dimensions of analysis to evaluate the de-
scriptive power of the toolkit: the size of the class of visual-
izations that can be described by the toolkit in a reasonable
amount of work, and the simplicity of the description of typ-
ical applications. A toolset must target the right balance be-
tween the class size and simplicity. A thin class may indicate
that the toolset is so specialized that the benefits provided are
not very significant. On the other hand, expanding the class
usually comes at the expense of simplicity.

Class of Application: previous work showed that the GrC is
able to handle basic WIMP interaction (sliders) and graphi-
cal scene with a large number of objects, such as a radar im-
age. We showed with the use-cases of this paper that Hayaku
can implement multiple types of interactive graphical soft-
ware: interactors (pie-menus), graphically rich interactive
software (fish-eye keyboard), and multitouch applications.

As said before, most examples are instances of application
in which the number of objects is not variable (sliders, pie-
menus, keyboard). For other types of applications, such
as radar image where the number of flights is in practice
bounded, a strategy consists in picking objects in a pool of
available invisble objects. Hayaku enables to use a second
strategy that relies on embeddable, generated code, thus ex-
panding the class of applications.

Using a graphical editor also enables the designer to expand
the class of representation he can employ. However, we did
not try to design very dynamic applications such as graphi-
cal editors with Hayaku because we think that Hayaku is not
made for that kind of applications. We suspect that writing
such systems would require to twist the conceptual model
of application design so much, that it would be too cumber-
some to do.

Simplicity: Despite our research in the literature, we could
not find a clear definition for simplicity. Thus, we measured
it in terms of compactness of the code required to describe
interactive graphics, by providing the number of lines of
code (LOC) of previously described examples. (Table 1). As

said before, the JSON description of the scene (the graphical
components of the interface) has been judged as “laborious”,
and a Python script to produce it has been required. It cor-
responds to the “generator” column. For example, the 890
LOC for the keyboard have actually been generated by the
210 lines of code generator. As we can see, the amount of
code is in the hundreds, which is low considering the rich-
ness and variability of the three examples.

use case
conceptual model to

scene
generator

model SVG of the scene
multi-touch 43 LOC 90 LOC 54 LOC ∅

keyboard 129 LOC 199 LOC 890 LOC 210 LOC

pie-menu 40 LOC 42 LOC 102 LOC 46 LOC

Table 1. The number of lines of code (LOC) of the different examples.

Performance

In Table 2, we show the performances of the three use-cases,
compiled with Hayaku, and rendered through OpenGL. For
each example, we show the frame rate of the produced code
(C+OpenGL), and the time needed to compile it. We dif-
ferentiate “first compile-time” from “re-compile time”, be-
cause Hayaku caches some computation between two con-
secutive compile phases (text fonts for example). The most
significant time is the re-compile time, since a designer using
Hayaku will spend most of her time doing small increments
to her description, and will launch recompilation from time
to time.

use case
frames per first compile re-compile

second time time
multi-touch ∼515 f.p.s. 2.2 sec 1.9 sec
keyboard ∼136 f.p.s. 29.1 sec 8.6 sec
pie-menu ∼400 f.p.s. 10.2 sec 2.9 sec

Table 2. The performances of the different examples.

If performances may not be as good as expected, they could
be much higher (8.6 sec re-compile time for the keyboard).
The implementation of the toolkit we show here is a pro-
totype (written in the Python language), and could be im-
proved in many ways. For instance, the produced OpenGL
code does not use Vertex Buffer Objects, which could signif-
icantly improve the run-time performances. In addition, the
internal data structures of Hayaku and the GrC (graphs of
tiny Python objects) should be changed to decrease compile
time.

Usability

Evaluating the usability of a toolkit is an open research prob-
lem [20]. For this purpose, we discuss how Hayaku ranks
against Cognitive Dimensions of Notation [11], which help
make explicit what a notation (i.e a language) is supposed to
improve, or fails to support. Cognitive dimensions are based
on activities typical of the use of interactive systems. We
chose to evaluate the following activities: incrementation,
transcription, modification, and exploratory design; along
the following dimensions: closeness of mapping, hidden de-
pendencies, premature commitment, progressive evaluation,
abstraction, viscosity, and visibility.

Closeness of Mapping: the designer creates (incrementa-
tion) drawings directly into a graphical editor: it is very close
to the final product, at least closer than textual graphical lan-
guage. This allows the use of existing exploratory design
tools (inkscape), and thus maximizes this property. Mod-
ification of the graphics is eased since it modifies in turn
an SVG file that keeps the same properties (e.g. naming),
which in turn is compiled i.e. transformed computationally.
Porting can be considered as a transcription, and is efficient
thanks to the use of a compiler with multiple front-ends and
back-ends. The front end of the compiler is the conceptual
model JSON file. Since the interaction designer designs the
conceptual model, she can make it as close as possible to the
domain she models. Hence, closeness of mapping is maxi-
mized. However, setting the link between the graphics, the
conceptual models, and the data-flow language requires a
switch of notation (a graphical editor vs a textual notation).

Hidden Dependencies: the dataflow we provide is not en-
tirely visible. It is difficult for the designer to know ex-
actly what happens once the models and transformations are
given. However, the designer is mostly interested in the part
of the data-flow he wrote. The part of the data-flow gener-
ated by the compiler is less susceptible to be read and under-
stood, except for debugging purpose. Premature Commit-
ment: using a graphical compiler inherently prevents pre-
mature commitment. For example, changing the run-time
environment can occur at any time during the design pro-
cess. Furthermore, changing a property of the graphics may
require a simple recompile to be reflected in the applica-
tion. Moreover, as Hayaku relies on style-sheets to link
the graphical model to the graphical shapes, the design can
be rewritten several times without having to rewrite the be-
haviour part. However, the structure of the graphics must not
change too often, since other descriptions rely on it (see vis-
cosity). Progressive Evaluation: evaluating a recently mod-
ified graphics is immediate. However, evaluating the behav-
ior with respect to the interaction requires to launch the soft-
ware. Clearly, a tool such as artistic resizing is needed for
this kind of activity and concerns.

Abstraction: Hayaku relies on JSON files to abstract the
graphical model, the connections and the graphical scene.
However, if this language is well adapted to represent ab-
stract data, and forces the user to keep it abstract, it is not
very well adapted to the human that needs to write it into
his/her text editor. In particular, the connection between the
models and the graphics would be better defined directly in
a graphical editor.

Viscosity: the conceptual model requires all graphical ele-
ments to be declared in the JSON file. Hence, if a graphical
element is used multiple times (such as the key element in
the keyboard example), a change in the “prototype” requires
propagating the change in all instances of that element. A so-
lution to this viscosity problem is to design a small program
that generates all instances from a prototype in a JSON file.
This program can be considered as another link in the com-
pile chain, and helps abstract concepts from the conceptual
model of the application to be designed.

A change in the conceptual model itself must be reflected
into the connection description, and the scene description.
This is the problem that the programmer of a C++ class en-
counters when he adds a field for example: he has to update
all calls of the class constructor if a parameter to set up the
field is required. Various mechanisms exist to cope with this
problem (e.g. a default value), but none is implemented in
Hayaku. Similarly, a change in the graphical structure (i.e.
the hierarchy of SVG elements) can have a large impact on
the model-graphics connection description.

Visibility: currently, the visibility of the toolkit is limited.
For example, JSON files tend to be verbose and long, which
hinders searching or exploratory understanding.

EARLY FEEDBACK FROM DESIGNERS

We provided Hayaku to the graphical designer of the origi-
nal Fish-Eye Keyboard, and we asked him to recreate it. This
designer is used to both design graphics and write interaction
code. The designer praised the reliability of the rendered
scene. Since Hayaku relies on a graphical compiler, the fi-
nal generated code does not suffer from a trade-off between
speed and power of expression. The final rendered scene is
then very close to a static one, produced by Inkscape for in-
stance. Thanks to the expression power of SVG, the graphic
designer is not limited when dealing with graphics.

The designer found that one of the most interesting thing
was to design the graphical objects by keeping in mind their
graphical behaviour during the interaction. This behaviour
has been defined by targeting the graphical properties that
need to be connected to the models in the graphical scene.
The evolution of the parameters are then described, either
“relatively” with a mathematical expression (similar to the
one-way constraints in Garnet [25]), or with a value com-
puted by the behaviour part. For example, the anchor of the
shape of a key depends on its width (“FORM X0”: “(self.
WIDTH - 100) / -2”): since the width depends on the dis-
tance with the cursor, the anchor is updated automatically.
Considering all the inputs and outputs of the generated ap-
plication as a data flow simplified the work of the designer.
For instance, implementing the global resize of the keyboard
took around 10 minutes, the time needed to understand and
implement the solution to connect the two variables screen
width and screen height to the application. The “connec-
tions” allow the graphic designer to quickly build complex
behaviour, such as the “fish-eye” function of the keys.

However, there still are some pitfalls. The main problem
was the hand writing of the different JSON files. This has
been judged as laborious, since the coherence between those
files had to be maintained manually. Furthermore, writing
a JSON file for the scene is also annoying, since a scene
can contain many similar elements. As explained, a solution
to this problem is to write a script that generates the scene,
which makes it more controllable.

CONCLUSION

In this paper, we have identified that there is a lack of tools to
support designers in producing graphically rich, finely tuned

and highly reactive graphical applications. We have pre-
sented Hayaku, a toolset that aims at supporting this activity,
by turning the interaction coder and graphical designer into
an interaction designer. The interaction designer writes the
program in a high-level, known language (SVG) and through
JSON files that abstract the graphical elements. He then
compiles it into an runnable application or embeddable code.

Like the keyboard example shows, the compile time hinders
design exploration, and must be improved. We have devel-
oped Hayaku in Python in order to prototype it rapidly, and
we are aware that parts of the code are sub-optimal (notably
trees traversal). Many optimizations can be done to improve
that part of the toolset. Future works also include expand-
ing the sets of back ends, both for graphics platform and
languages. Finally, using multiple JSON files as a descrip-
tion language is cumbersome, especially when describing
the connection between models and graphic models. Spe-
cialized tools must be designed, such as a graphical editor.

REFERENCES

1. Appert, C., and Beaudouin-Lafon, M. SwingStates:
adding state machines to Java and the Swing toolkit.
Software: Practice & Exp. 38, 11 (2008), 1149–1182.

2. Beaudouin-Lafon, M., and Mackay, W. Prototyping
tools and techniques. In The Hum. Comp. Inter.
Handbook, A. Sears and J. A. Jacko, Eds. CRC Press,
2007.

3. Bederson, B., Grosjean, J., and Meyer, J. Toolkit design
for interactive structured graphics. IEEE Transactions
on Software Engineering 30, 8 (aug. 2004), 535 – 546.

4. Bederson, B. B., Meyer, J., and Good, L. Jazz: an
extensible zoomable user interface graphics toolkit in
Java. In Proc. of UIST ’00 (2000), ACM, 171–180.

5. Buxton, B. Sketching User Experiences: Getting the
Design Right and the Right Design. Morgan Kaufman,
2007.

6. Chatty, S., Sire, S., Vinot, J.-L., Lecoanet, P., Lemort,
A., and Mertz, C. Revisiting visual interface
programming: creating GUI tools for designers and
programmers. In Proc. of UIST ’04 (2004), ACM,
267–276.

7. Dragicevic, P., Chatty, S., Thevenin, D., and Vinot,
J.-L. Artistic resizing: a technique for rich
scale-sensitive vector graphics. In Proc. of UIST ’05
(2005), ACM, 201–210.

8. Dragicevic, P., and Fekete, J.-D. Support for input
adaptability in the ICON toolkit. In Proc. of ICMI ’04
(2004), ACM, 212–219.

9. Fekete, J.-D. The InfoVis Toolkit. In Proc. of
InfoVis’04 (October 2004), IEEE Press, 167–174.

10. Furnas, G. W. Generalized fisheye views. SIGCHI Bull.
17, 4 (1986), 16–23.

11. Green, T. R. G. Cognitive dimensions of notations. In
Proc. of HCI’89 (1989), Cambridge University Press,
443–460.

12. Hanrahan, P., and Haeberli, P. Direct WYSIWYG
painting and texturing on 3D shapes. In Proc. of
SIGGRAPH’90 (1990), ACM, 215–223.

13. Hartmann, B., Yu, L., Allison, A., Yang, Y., and
Klemmer, S. R. Design as exploration: creating
interface alternatives through parallel authoring and
runtime tuning. In Proc. of UIST ’08 (2008), ACM,
91–100.

14. Heer, J., Card, S. K., and Landay, J. A. Prefuse: a
toolkit for interactive information visualization. In
Proc. of CHI ’05 (2005), ACM, 421–430.

15. Lattner, C., and Adve, V. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proc. of CGO’04 (Mar 2004).

16. Mertz, C., Chatty, S., and Vinot, J.-L. The influence of
design techniques on user interfaces: the DigiStrips
experiment for air traffic control. In Proc. of HCI Aero
IFIP 13.5 (2000).

17. Muller, M. Participatory design: The third space in
HCI. In The Hum. Comp. Inter. Handbook, A. Sears
and J. A. Jacko, Eds. CRC Press, 2007, 1061–1081.

18. Myers, B. Challenges of HCI design and
implementation. Interactions 1, 1 (1994), 73–83.

19. Myers, B., Park, S. Y., Nakano, Y., Mueller, G., and Ko,
A. How designers design and program interactive
behaviors. In Proc. of IEEE VL/HCC ’08 (2008).

20. Myers, B. A. Usability issues in programming
languages. Tech. rep., School of Computer Science,
Carnegie Mellon University, 2000.

21. Myers, B. A., and Rosson, M. B. Survey on user
interface programming. In Proc. of CHI (New York,
1992), CHI ’92, ACM, 195–202.

22. Raynal, M., Vinot, J.-L., and Truillet, P. Fisheye
keyboard: Whole keyboard displayed on small device.
In Proc. of UIST ’07: poster session (Oct 2007).

23. Snyder, C. Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces (The Morgan
Kaufmann Series in Interactive Technologies). Morgan
Kaufmann, April 2003.

24. Tissoires, B., and Conversy, S. Graphic Rendering
Considered as a Compilation Chain. In DSV-IS’08
(2008), no. 5136 in LNCS, Springer, 267–280.

25. Vander Zanden, B. T., Halterman, R., Myers, B. A.,
McDaniel, R., Miller, R., Szekely, P., Giuse, D. A., and
Kosbie, D. Lessons learned about one-way, dataflow
constraints in the Garnet and Amulet graphical toolkits.
ACM Trans. Prog. Lang. Syst. 23, 6 (2001), 776–796.

	Introduction
	Interactive System Design Methods
	Toolkits

	Target Audience and Requirements
	Toolkit Design and Conceptual Model
	General Idea: the Interaction Designer is in Charge
	Fast Application Generation
	Fast and Portable Code Generation

	Use Cases
	Writing a Simple Application
	A Fish-eye Keyboard
	Realisation

	A Generic Pie-menu
	Realisation
	Embedding in an Existing Application

	Toolkit Implementation
	How the Toolset Works
	Generation of Portable Code
	Generation of Static and Semi-static Code
	Picking Support

	Preliminary Evaluation
	Descriptive Power
	Performance
	Usability

	Early Feedback from Designers
	Conclusion
	REFERENCES

