
FromDaDy: Spreading Aircraft Trajectories Across Views to

Support Iterative Queries

Christophe Hurter, Benjamin Tissoires, and Stéphane Conversy

Abstract—When displaying thousands of aircraft trajectories on a screen, the visualization is spoiled by a tangle of trails. The

visual analysis is therefore difficult, especially if a specific class of trajectories in an erroneous dataset has to be studied. We

designed FromDaDy, a trajectory visualization tool that tackles the difficulties of exploring the visualization of multiple trails. This

multidimensional data exploration is based on scatterplots, brushing, pick and drop, juxtaposed views and rapid visual design.

Users can organize the workspace composed of multiple juxtaposed views. They can define the visual configuration of the views

by connecting data dimensions from the dataset to Bertin’s visual variables. They can then brush trajectories, and with a pick and

drop operation they can spread the brushed information across views. They can then repeat these interactions, until they extract

a set of relevant data, thus formulating complex queries. Through two real-world scenarios, we show how FromDaDy supports

iterative queries and the extraction of trajectories in a dataset that contains up to 5 million data.

Index Terms—visualization, iterative exploration, direct manipulation, trajectories.

1 INTRODUCTION

In the Air Traffic Control (ATC) field, analyzing traffic or devising

new ways of managing airspace requires trajectories analysis. An

aircraft trajectory is a record of positions of an aircraft in a given

airspace (3D+time plus other information such as identifier, speed

etc). As such, trajectories are multidimensional data. Air Traffic

stake-holders regularly analyze traffic to:

 • understand past conflicts and then improve safety with
adequate evolutions, • assess new onboard and ground safety systems and the
resulting aircraft trails, • devise new air space organization and procedures to handle
traffic increase, • compare trails with environmental considerations (fuel
consumption, noise pollution, vertical profile comparison), • study profitability from a business trajectory point of view
(number of aircraft on a specific Flight Route per day,
number of aircraft that actually landed at a specific
airport…), • filter and extract trajectories in order to re-use them (this
task will be later illustrated in this paper in the section on
trajectory extraction for Air Traffic Controllers’ training).

Formulating queries over trajectories in a declarative, textual-

language based manner, such as a SQL, is hard. Even if it is possible

to select trajectories that flow over specific locations, it is very

difficult to specify features like “select trajectories where this part of

the trajectory is straight” or “where this part has a constant climbing

rate”… Thus, visual analysis remains the only way to detect relevant

trajectory features efficiently.

Trajectories are numerous and tangle: one-day's traffic over France

for example, represents some 20000 trajectories (Fig. 1). When

dealing with trajectories, users must perform dynamic requests

(response time < 100 ms [15]) on a huge multi-dimensional dataset

(>1 million data). In addition to the data size problem, users have to

deal with a dataset that contains many errors and uncertainties:

recording is done in a periodic manner (in our database: a radar plot

per aircraft every 4 minutes), but a plot can be missed, or have

erroneous values because of physical problems that occurred at the

time of recording. The problem we address in this paper is to find a

way to express these queries, simply and accurately, given the

constraints of size and uncertainty of the datasets.

We have developed FromDaDy (which stands for “FROM DAta to

DisplaY”), a visualization tool that tackles the challenge of

representing, and interacting with, numerous trajectories involving

uncertainties. FromDaDy employs a simple paradigm to explore

multidimensional data based on scatterplots, brushing, pick and drop,

juxtaposed views and rapid visual configuration. The fundamental

new aspect of FromDaDy compared to existing visualization

systems, is to enable users to spread data across views. Together

with a finely tuned mix between design customization and simple

interaction, users can filter, remove and add trajectories in an iterated

manner until they extract a set of relevant data, thus formulating

complex queries.

The remainder of this paper is organized as follows. First, we present

relevant related work. Then we list the design requirements to fulfill

the trajectory analysis task. Next, we describe FromDaDy features

and justify our implementation choices. Finally, we outline the

strengths of FromDaDy with two specific data extraction scenarios.
 • Christophe Hurter is with DSNA/DTI R&D, ENAC and IRIT/IHCS

 E-Mail: christophe.hurter@aviation-civile.gouv.fr. • Benjamin Tissoires is with DSNA/DTI R&D, ENAC and IRIT/IHCS
E-Mail: tissoire@cena.fr. • Stéphane Conversy is with ENAC and IRIT/IHCS
E-Mail: stephane.conversy@enac.fr.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

2 RELATED WORK

FromdDaDy proposes a simple model of interaction that, compared

to existing models of interaction, provides more explicit support for

incremental data exploration, visual configuration and Boolean

operations. Our work is based on many previous research

publications on visualization and interaction with multidimensional

data (Spotfire [1], Tableau/Polaris [16], GGobi [17], TimeSearcher

[11]).

2.1 The dataflow model

Card, Mackinlay and Shneiderman [6] proposed a model that

describes visualizations as a data flow sequence from the raw data to

the views. This data flow model is still widely used in a lot of

visualization software (SpotFire [1], VQE [7] , InfoVis Toolkit [9],

ILOG Discovery [3], nVizN [19]…).

Fig. 1 : One-day’s record of traffic over France. The color gradient

from green to blue represents the ascending altitude of aircraft (green

being the lowest and blue the highest altitude). The French coastline is

apparent here in terms of sightseeing by light aircraft and the straight

blue lines represent high altitude Flight Routes.

2.2 Simple filtering and selection

Though originally designed for data exploration, Dynamic

Queries [2] represents the seminal work in query design. The

associated “range-slider” widget, allows for fast, incremental

manipulation of ranges, with immediate effect [15] . As such, a

range-slider reifies a simple query, which filters out data outside the

range.

Some systems allow data to be selected by defining an area over

graphical entities, which changes their appearance (for example, they

are reddened). In a multiple view system, such as a scatterplot

matrix, selected data appear highlighted both in the view

manipulated by the user, and in the other views, making it possible to

understand the relationships between selected data.

Interactions for selecting data include one-by-one designation [12],

rubber-band rectangle [12][8], lassoing [8] or brushing [4]. Various

systems propose enhanced brushing techniques, such as XmdvTool

[18]. However, they require a complex interface to tune parameters,

which hinders rapid iteration. For example, an “erase-data” mode in

XmdvTool is accessible, but only through a dialog box.

2.3 Defining filtering and selection

All tools enable the user to define a selection, but again in various

degrees. With Dynamic Queries, users can point to a range-slider

previously manipulated to adjust the range. “Rolling the Dice” [8]

makes it possible to “sculpt” queries, but only by defining a new

selection to be combined with existing ones. Though not fully

explained, it seems that redefining a selection requires defining a

completely new one: it does not seem possible to resize a rubber

rectangle or modify a lasso shape. XmdvTools allows the user to add

a new brush over an existing one, but does not allow removal of

parts of the stroke [18]. TimeSearcher allows the user to select time

series with movable boxes [11].

2.4 Multiple filtering and selections, Boolean
operations

Multiple range-sliders implicitly combine their queries into a single

one, implementing a Boolean “and” operation. Some systems allow

multiple selections (sometimes called “layers”), differentiated by

colors. This enables the user to find patterns between the different

groups of selected data. The combination of selections is done by the

visualisation of a mix of differently colored shapes. Thus users

visually apply a “xor” operation when seeking groups of isolated

shapes, while they apply an “and” operation when they try to group

differently-colored shapes.

In some systems, users can explicitly define how selections are

combined by choosing a Boolean operation: the resulting selection is

then highlighted with yet another color. The interaction uses either a

specific tool [18], or a specific button of the interface at the start of

the interaction [13]. “Rolling the Dice” [8] reifies selections into

stacked rectangles that enable the user to combine selections by

dragging and dropping one rectangle onto another. The choice of

which Boolean operation to apply is made by dragging either with

the right button (and) or the left button (or). Once executed, the two

selections are merged into one, and they cannot be manipulated any

further.

2.5 Views organization and navigation

Matrix scatterplots are scatterplots arranged in a matrix, so that every

scatterplot on a row (or column) shares the same dimension on the X

(or Y) axis. As each dimension is spatially matched to the others,

users can detect spatial patterns at a glance. In addition, there is no

need to navigate between views, as all of them are displayed at once.

This enables users to switch rapidly between views, so as to interact

with the view that is the most adapted to the problem at hand. By

contrast, a traditional visualization system offers few ways to display

multiple views, and forces the user to switch between views with

standard window manipulation.

However, the size of scatterplots matrix scales quadratically with the

number of dimensions, and results in thumbnail views that are

difficult to visualize and interact with. Furthermore, even if

interaction-free navigation requires finding a particular scatterplot in

the matrix, this sometimes takes time; the user has to find the row

and the column of the two dimensions to explore, and then find the

scatterplot at the intersection between the row and the column.

Designed to overcome this problem, “Rolling the Dice” [8] offers a

number of interactions to navigate from one scatterplot to another,

and displays a rolling dice-like animation when switching between

views. However, “Rolling the Dice” displays only one scatterplot at

a time (with geometrically transformed selections already made in

other views). This makes interaction with previous selections longer,

as it requires the user to look back and switch to a more appropriate

view.

3 DESIGN REQUIREMENTS

This section presents the design requirements required to achieve

trajectory exploration. The majority of our tasks consist in finding

real world trajectories with a specific set of features. This contrasts

with the traditional InfoVis tasks, where the goal is to discover

trends or outliers. Trajectory features are difficult to specify for two

reasons. First, they are often only specifiable with visual features

(straight lines, or general shape). Furthermore, users often explore

the queries as much as they explore the data: in the course of

exploration, users discover that the set of features they thought

relevant has to be adapted, either because they were false, or because

they cannot figure out how to query them efficiently. Hence, the

system must permit the customization of views so as to offer

multiple means of understanding and querying the data visually. It

should allow for a quick change of mapping between data and visual

dimensions. Often, the set of interesting trajectories for a particular

task can only be described by extension: hence, the system must also

support iterative selection design, i.e. the ability to store a temporal

state of a selection and to be able to improve it later. Trajectory

databases are huge and multidimensional (more than 500000 records

with more than 10 fields: aircraft’s name, speed, location…). The

system should be able to handle this amount of data, and display

graphical entities with a frame rate compatible with smooth

interaction. As said earlier, our database contains many errors and

uncertainties; thus the user must be able to figure out if the displayed

trajectory is reliable or not. If not, users must understand why.

Fig. 2 : The brushing interaction allows the user to select trajectories by brushing them with a size configurable tool.

4 RADAR DATASET

Our radar dataset contains recording of aircraft parameters at a given

time (Table 1). This dataset may contain many other fields, but we

present here the most important ones. Records are linked through the

aircraft identifier (provided by radar tracking). Points are gathered to

form trajectories.

Field name details

Latitude Latitude of the aircraft at a given time

Longitude Longitude of the aircraft at a given time

Flight Level Altitude of the aircraft

Time The time of the record

Speed The aircraft speed

Track ID The unique identifier of the aircraft

Table 1 : Record field names and semantics.

The trajectories dataset contains many errors: • The radar tracking system is faulty when an aircraft has a

very low altitude, • The onboard system may emit temporally wrong

information (aircraft ID and altitude) , • The flight route used by aircraft may not correspond to the

current aircraft heading (due to metrological

considerations, traffic optimization or safety reasons).

These errors are very important since they can highlight a radar loss

detection area, or onboard technical problems. Errors can easily be

detected visually when they create outliers or discontinuities in

visualization: e.g. the aircraft altitude suddenly jumps to zero then

back to high.

The dataset also contains uncertainties, which are due to the

sampling rate of the aircraft position. Our available dataset contains

aircraft positions every four minutes. Therefore the actual aircraft

position between two consecutive positions is unknown. For

exemple, aircraft having landed may stop at a high altitude (the last

detected position lasting four minutes).

5 SYSTEM DESCRIPTION

This section details FromDaDy basic features for trajectory

exploration tasks.

5.1 Visual configuration

FromDaDy uses the data flow model, through a tool that enables a

user to draw connections between data dimensions and visual

variables [5], thus specifying a visual configuration. For instance, in

the left hand image of Fig. 3, the user connected the longitude with

the X axis of the view and the latitude with the Y axis of the view.

The user also connected the altitude field of the database to the color

of the lines. The resulting connections produce a vertical

representation of a one-day traffic record over France (see right Fig.

3). The user can also double-click on axis X or Y of a view to make

the field selection menu appear, and change the mapping for that

axis.

FromDaDy uses an automatic scaling process to make data visible on

the screen. This process is based on scaling with the min/max value

of each field of the dataset and the configuration of the view. For

instance, the user connected longitude with the X screen and latitude

with the Y screen: FromDaDy scales the view so that all latitude and

longitude values fit into the view.

Fig. 3. The connection tool for visual design (left), menu axis (right)

5.2 Brushing interaction and incremental selection

The user selects a subset by means of a brushing technique. Brushing

is an interaction that allows the user to “brush” graphical entities,

using a size-configurable or shape-configurable area controlled by

the mouse pointer [4]. Each trajectory touched by the area during the

mouse movement is selected, and becomes gray. The selection can

be modified by further brush strokes (“Ctrl key” pressed), or by

removing parts of it with brush strokes in the “erase” mode (“Shift

key” pressed). Our implementation leaves a brush trail, so that the

user can see and remember more easily how the selection was made.

All trajectories that cross the trail are selected: hence, modifying the

selection is like painting or erasing the trail (Fig. 2). While the ctrl

and shift key are pressed, the size of the stroke can be adjusted with

the mouse wheel. If neither of them is pressed, the mouse wheel

allows zooming of the view in and out. The combination of fast

switching between the add or erase mode, trail visualization, rapid

size-setting, and cursor-centered zooming with the mouse wheel

provides for fast, incremental selection.

5.3 “Pick and drop” paradigm

Thanks to the brushing technique, the user can select and highlight

parts of the displayed data. By hitting the space bar, the user can

extract previously selected data and attach them to the mouse cursor

(beginning of Fig. 5). By default, the selected data are picked: they

are removed from the view, and appear in a “fly-over” view

(transparent background). When the user hits the space bar for the

second time, a drop occurs in another view under the cursor. If there

is an empty view under the cursor (gray views as shown in Fig. 5),

the software creates a new view with the selected data. If the user

presses the space bar while moving over an existing view,

FromDaDy adds the selected data to this view.

Although it resembles to a regular drag’n’drop operation, we prefer

to use the term “pick’n’drop” [14], in the sense that data is removed

from the previous view and is attached to the mouse even if the space

bar is released.

Fig. 5. Pick and Drop interaction

5.4 The organization of Views

A session starts with a view displaying all the data. The visualization

employs a default visual configuration, i.e. the mapping between

data dimensions and visual variables. The view is inside a window,

and occupies a cell in a virtual infinite grid that extends from the four

sides of the cell. With the brushing and the Pick/Drop paradigm, the

user creates new views and changes their visual configurations. The

user can select the other cells to display another representation of the

data. The user can also destroy a view if the brush selects all the

trajectories and if the user picks them.

Fig. 4 : Users control the transition between top (Latitude, Longitude) view and vertical (Altitude, Longitude) view by dragging the mouse along

the vertical axis.

5.5 Rolling dice animation

Sudden changes in the axis of the view are disruptive since they

prevent the user from tracking changes over time. Therefore

FromDaDy uses an animation similar to “Rolling the Dice” [8]. In

other words, one dimension in the focused view is preserved while

the other changes. The change is visualized using an animated

transition. As in [8], instead of simply interpolating the position of

each point for the transition, FromDaDy performs the transition as a

3D rotation. This gives some semantic meaning to the movement of

the points, allowing the human mind to interpret the motion as a

rotating shape, and to keep the focus on visual entities during the

transition. The user can also control the transition with a click and

drag along an axis (Fig. 4). Rolling dice animation is also used when

dragging the picked data over a view.

Fig. 6. FromDaDy interface with cells, design tools and one picked

selection

6 INITIAL OBSERVED BENEFITS

FromDaDy has been used by engineers and Air Traffic Controllers.

During this qualitative evaluation we observe how they took

advantage of FromDaDy’s assets: the spreading of trajectories across

views, the extended features of the pick/drop paradigm, the visual

configuration choices, and the implicit Boolean operations.

6.1 Spreading data across views

Within FromDaDy, there is a single line per trajectory instance:

trajectories are not duplicated, but spread across views. The

advantage of this technique is twofold. Firstly, it enables the user to

remove data from a view (and drop them on to the destination view).

The fly-over view enables the user to decide rapidly if the revealed

data (previously hidden by the picked one) are interesting. Secondly,

it makes it possible to build a data subset incrementally. In this case,

the user can immediately assess the quality of the selection, by

seeing it in the “fly-over” view. Furthermore, by removing data from

the first view, the user makes it less cluttered, and makes it easier for

him to pick data again from the first view and drop them on to the

second view.

6.2 Picking, transition, and visual configuration picker

The rolling dice animation is also used when the user moves a picked

set of trajectories around. When moving over an existing view, the

visual configuration of the view may be different from the picked

view. In order to prevent sudden changes, FromDaDy animates the

transition: the colors, size, pan and zoom change until they reach the

parameter of the view under the mouse pointer. This animation is

easy to understand and helps the user to figure out the selection

layout in the new view before dropping. This enables users to re-

assess the quality of the selection, as it allows them to forecast the

result of the drop. Furthermore, this interaction acts as a visual

configuration picker. The user may want to pick trajectories and

apply the visual configuration of another view. To do so, the user

brushes and picks trajectories, moves the picked trajectories over the

view with the desired visual configuration, sees FromDaDy apply the

configuration to the picked trajectories, and drops the trajectories

into an empty cell.

Fig. 7. Union Boolean operation

Fig. 8. Intersection Boolean operation

6.3 Line and brush combination for efficient selection

Trajectories are displayed as dots connected by a line. Other design

choices may have been envisaged: one color, shape or size per

trajectory. Because trajectories are too numerous, lines remain the

only suitable design to separate them visually.

As said above, brushing selects entire trajectory instead of single

plots. Line brushing has significant advantages: in a very dense area

the brushing of a specific trajectory is difficult, whereas the user can

select the same trajectory in a less dense area (for example, the

surroundings). The zoom is not always a suitable solution to address

the problem of selection in a dense area, since the user often needs a

complete view on the trajectories. This design choice may lead to

false interpretation as the system connects two non-consecutive

plots: the line may hide radar detection loss. This kind of data error

can be visually detected when trajectories are straight over a long

distance.

Trajectory exploration requires more complex selection shapes than

a simple rectangle box, and a configurable selection shape, as

supported by FromDaDy is more important than, i.e. a movable one.

Unlike many visualization systems, FromDaDy employs a simple

brushing tool: the user is able to add brush strokes, and remove parts

of them. There is no “erase-data” mode, as pick and drop into a trash

cell does the same thing. Though simple to master, FromDaDy

allows for complex geometrical queries that other visualization

software cannot easily perform.

6.4 Implicit specification of Boolean operations

Boolean operations are cumbersome to produce, even with an astute

interface, as results are difficult to foresee [20]. FromDady reduces

this drawback, since any operation of the interaction paradigm

(brushing, picking and dropping) implicitly performs Boolean

operations. The following two examples illustrate the union,

intersection and negation Boolean operations. With these three basic

operations the user can perform any kind of Boolean operation:

AND, OR, NOT, XOR…

Fig. 7, the user wants to select trajectories that pass through region

A or through region B. He or she just has to brush the two desired

regions and Pick/Drop the selected tracks into a new view. The

resulting view contains his or her query, and the previous one

contains the negation of the query. In Fig. 8 the same process is used

to find the tracks that pass through A and B. By sequencing two

“pick and drop” operations, the user formulates his or her request.

6.5 Seamless view navigation

FromDaDy gives the user partial control over the organization of the

workspace. There are no windows to create and manipulate, and

there is only a single layout available (juxtaposed views). This

enables quick back and forth pick and drop operations between two

views, with rough brushing to unveil hidden trajectories followed by

precise brushing to restore some of them. The visual configuration

tool is always available and allows for rapid representation change.

Hence the user never has to interrupt the exploration process to cope

with secondary manipulation.

Furthermore, when exploring a query, the user can arrange the

workspace, so as to lay out successive steps. This results in a kind of

a storyboard that helps visualize the procedure (and not only the

data). Thus, in the middle of an unsuccessful exploration, the user

can quickly check intermediate views to figure out why the

procedure is incorrect.

7 SCENARIOS

This section presents two scenarios that underline FromDaDy's

assets. This first scenario illustrates how users can explore a dataset

and interactively refine their visual queries. The second scenario is a

real case, where FromDaDy was used to extract trajectories for a

training simulator for Air Traffic Controllers.

7.1 Iterative exploration

The visualization shown in Fig. 9 displays air traffic over France

during one day. The user wants to display transatlantic aircraft that

landed or took off at Roissy airport during one day (Roissy is at the

main intersection of the lines). To answer this query, the user first

devises a procedure composed of two ordered steps. He or She

initially decides to filter aircraft that flew over the Atlantic Ocean.

To do so, the user brushes the left hand area of the visualization

which selects aircraft that flew over the ocean (Fig. 9, right).

Fig. 9. One day traffic (left), transatlantic selection (right). The thicker

polygon is the outline of France.

For the second step, the user changes the view configuration to a

vertical view (altitude, latitude) and selects aircraft that have a very

low altitude at the latitude of the airport (Fig. 10). The user then

changes back the view configuration to a top view (X:latitude,

Y:longitude). He or She picks the selected data and starts dragging it.

Then the user discovers that trajectories from a second airport, close

to Roissy, is part of the selection, and that trajectories landing at

Roissy still exist in the view with unpicked data. Furthermore, an

intruder aircraft stands out (on the bottom right of Fig. 11). This

aircraft performed an unexpected transit flight through Lyon airport,

which was not requested.

Fig. 10. One day traffic vertical view (left), bottom selection (right).

Fig. 11. Resulting selection with one intruder (left), zoomed (right)

The result of the visual selection is effectively inaccurate: the

selection misses trajectories that did not end at a low altitude

(erroneous data due to radar detection loss or to the 4 minute

sampling rate). Furthermore, the vertical view forces the user to

select all trajectories with a low altitude at the same longitude of the

selected airport (the two main airports in France have the same

longitude but not the same latitude).

Hence, the user has to revise the formulation of the query. He or she

performs many tentative explorations and finally finds an additional

statement: “aircraft that land at this airport do not overshoot it”. The

user selects aircraft that flew over the ocean, and deletes the ones

that overshoot the airport, by using a filter-out brushing operation.

He or she thus obtains the required result.

Fig. 12. Selection of non overshooting items (left), Zoom out (right).

This example illustrates how iterative exploration allows the user to

find out the correct procedure to use and how the user modified the

query to find the correct result. It also illustrates how unexpected

data can be easily removed.

7.2 Specific trajectory extraction for ATC controller
training purposes

In this section, we detail in an actual scenario, in which FromDaDy

was used to carry out a data exploration task. The user is a specialist

in the Air Traffic Control field. His task was to extract specific

aircraft fulfilling the following criteria. Aircraft must pass exactly

over specific beacons (corresponding to referenced Flight Routes).

Their vertical profile must correspond to a constant climbing

trajectory: there should be no continuous horizontal flight. Finally,

aircraft must be sorted by their main departure direction.

Aircraft do not always follow standard Flight Routes. Air Traffic

Controllers can shorten a trajectory for optimization reasons.

Furthermore, an aircraft can deviate from its trajectory if it

overshoots beacons. The user has to filter out this kind of data, even

though the criteria that specify them are fuzzy.

Fig. 13. Original aircraft trajectories (left), landing aircraft trajectories

(right) and standard procedures (right hand figure, outlined trajectories

are the published Flight Routes by the air transportation authority)

7.2.1 Step by step actions

The system first displayed a specific view (longitude->X, latitude-

>Y) (Fig. 13). As explained above, the data are linked by the “Track

ID name”, the user can group and join them with a line on the screen,

in order to display the different trajectories. Thus, each trajectory

concerns a single aircraft.

The user has a rough idea of the position of the standard trajectories

and immediately detects them: as they are superposed, they merge

into darker lines. The trajectories that surround them are either

trajectories shortened by the controller or trajectories that deviated

from the initial plan. The user eliminates these trajectories by

brushing them and dragging them into a trash cell. FromDaDy also

displays two numbers that correspond to the cursor position in the

data dimension of the visualization. This enables the user to position

the brush precisely at the longitude of the last beacon, and brushes all

trajectories that overshoot it, in order to drag them into the trash cell.

Fig. 14. Trajectories that follows the standard procedures (center),

sorted trajectories (corners)

At this stage, the user creates as many views as identified aircraft

procedures (two North, one East, and one South departure). To do so,

he selects, picks and drops each trajectory into their corresponding

view (sorting stage: Fig. 14).

The final step is the selection of the correct vertical profile (Fig. 15).

The user changed the visual configuration to a “vertical view”

(latitude->X, altitude->Y). The user wanted a constant vertical

profile: no aircraft with a continuous flat altitude. Thus the user

began to dismiss more aircraft in one view. However, he noticed that

he would have been obliged to do so with the three other views. He

thus retracted to the previous step by recreating the cell with

unsorted trajectories. He applied the vertical profile filtering, and did

the sorting step again, thus optimizing his procedure. By organizing

the layout of temporary views, the user has been able to target

rapidly which steps to retract to.

Fig. 15. Trajectories with flat level vertical profile (left), trajectories

without flat level (right).

During the vertical profile filtering, the user noticed that the

animated transition could have helped him if the views had been

correctly arranged. He copied the vertical view under the top view,

so that the animation between the top view (longitude, latitude) and

the vertical view (longitude, altitude) helped to filter the requested

flights: the longitude is common to the two views, therefore the user

could focus on the longitude of the last beacon of the Flight Plan

and, during the view transition, he could pick out aircraft that had a

constant climbing rate up to this longitude (the user can keep the

focus on a specific longitude). Again, the ability to organize the

workspace rapidly allowed him or her to emphasize the animation

feature.

8 TECHNOLOGICAL CONSIDERATIONS

FromDaDy is built in C# with the .Net framework 3.0 for interface

implementation and DirectX 10 for GPU programming. The

brushing technique with 5 millions points is technologically

challenging. Therefore we had to take full advantage of modern

graphic card features. FromDaDy uses a fragment shader and the

render-to-texture technique [10]. Each trajectory has a unique

identifier. A texture (stored in the graphic card) contains the Boolean

selection value of each trajectory, false by default. When the

trajectory is brushed its value is set to true. The graphic card uses

parallel rendering which prevents reading and writing in the same

texture in a single pass. Therefore we used a two-step rendering

process (Fig. 16) : firstly we test the intersection of the brushing

shape and the point to be rendered to update the selected identifier

texture, and, secondly, we draw all the points with their

corresponding selected attribute (gray color if selected, visual

configuration color otherwise) (Fig. 16). We also implemented the

rendering of points and lines with geometry shaders.

Thanks to these techniques, FromDaDy can display up to 5 million

points in real time (frame rates of over 20 FPS) with 2009 computer

generation and a 2009 graphic card (8800GTX).

0 10 N

Selected Items Texture

0 0 0

Ids

Values 0 10

Selected Items Texture

0 1 0

Ids

Values

N

Fig. 16. Brushing technique GPU implementation

9 CONCLUSION

FromDaDy is a multidimensional visualization tool making it

possible to explore large sets of aircraft trajectories. FromDaDy uses

a minimalist interface: a desktop with a matrix of cells, and a

dimension-to-visual variables connection tool. Its interactions are

also minimalist: brushing, picking, and dropping. Nevertheless the

combination of these interactions permits numerous functions: the

creation and destruction of working views, the initiation and

refinement of selections, the filtering of sub-datasets, the application

of Boolean operations, the creation of relevant steps during the

exploration process, and the organization of the desktop layout to

create a storyboard and visualize the query building procedure.

Through two scenarios, we showed how FromDaDy supports

iterative queries and the extraction of trajectories in a dataset that

contains up to 5 million data points with errors and uncertainties. As

such, FromDaDy, meets the need for a rapid, flexible and accurate

exploration of numerous trajectories in the ATC field.

Our contribution is not a new interaction technique but rather a

carefully reasoned justification of how existing techniques can be

usefully combined to perform trajectory extraction. The cornerstone

of FromDaDy is the trajectory spreading across views with a simple

brush/pick/drop paradigm.

We plan to assess FromDaDy with practitioners in traffic analysis.

This will enable us to provide longitudinal studies of other tasks.

FromDaDy is not limited to displaying aircraft trajectories. It can use

different types of data; we plan to perform further experiments with

other datasets, such as GPS tracking.

10 ACKNOWLEDGEMENTS

The authors thank Stéphane Chatty, Jean-Luc Vinot, Jean-Daniel

Fekete and Pierre Dragicevic for their invaluable discussions and

suggestions. The authors add a special thank you to Jean-Paul

Imbert, the very first user of FromDaDy.

11 REFERENCES

[1] Ahlberg, C. 1996. Spotfire: an information exploration environment.

SIGMOD Rec. 25, 4 (Dec. 1996), 25-29.

[2] Ahlberg, C., Williamson, C., and Shneiderman, B. 1992. Dynamic

queries for information exploration: an implementation and evaluation.

In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (Monterey, California, United States, May 03 - 07,

1992). P. Bauersfeld, J. Bennett, and G. Lynch, Eds. CHI '92. ACM,

New York, NY, 619-626.

[3] Baudel, T. 2004. Browsing through an information visualization design

space. In CHI '04 Extended Abstracts on Human Factors in Computing

Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04. ACM, New

York, NY, 765-766.

[4] Becker, R. A., Cleveland, W. S., Brushing scatterplots. Technometrics

(1987) , Vol. 29, No. 2. (1987), pp. 127-142.

[5] Bertin, J., Graphics and Graphic Information Processing de Gruyter

Press, Berlin, (1977).

[6] Card, S.K., Mackinlay, J.D., Shneiderman, B., Readings in Information

Visualization: Using Vision to Think. San Francisco, California:

Morgan-Kaufmann, (1999).

[7] Derthick, M., Kolojejchick, J., and Roth, S. F. 1997. An interactive

visual query environment for exploring data. In Proceedings of the 10th

Annual ACM Symposium on User interface Software and Technology

(Banff, Alberta, Canada, October 14 - 17, 1997). UIST '97. ACM, New

York, NY, 189-198.

[8] Elmqvist, N.; Dragicevic, P.; Fekete, J.-D., Rolling the Dice:

Multidimensional Visual Exploration using Scatterplot Matrix

Navigation Visualization, IEEE Transactions on Volume 14, Issue 6,

Nov.-Dec. 2008 Page(s):1539 – 1148.

[9] Fekete, J. 2004. The InfoVis Toolkit. In Proceedings of the IEEE

Symposium on information Visualization (October 10 - 12, 2004).

INFOVIS. IEEE Computer Society, Washington, DC, 167-174.

[10] Harris, M. 2005. Mapping computational concepts to GPUs. In ACM

SIGGRAPH 2005 Courses (Los Angeles, California, July 31 - August

04, 2005). J. Fujii, Ed. SIGGRAPH '05. ACM, New York, NY, 50.

[11] Hochheiser, H. and Shneiderman, B. 2004. Dynamic query tools for

time series data sets: timebox widgets for interactive exploration.

Information Visualization 3, 1 (Mar. 2004), 1-18.

[12] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D.,

Lawande, S., Myllymaki, J., and Wenger, K. 1997. DEVise: integrated

querying and visual exploration of large datasets. SIGMOD Rec. 26, 2

(Jun. 1997), 301-312.

[13] Martin, A. R. and Ward, M. O. 1995. High Dimensional Brushing for

Interactive Exploration of Multivariate Data. In Proceedings of the 6th

Conference on Visualization '95 (October 29 - November 03, 1995).

IEEE Visualization. IEEE Computer Society, Washington, DC, 271.

[14] Rekimoto, J. 1997. Pick-and-drop: a direct manipulation technique for

multiple computer environments. In Proceedings of the 10th Annual

ACM Symposium on User interface Software and Technology (Banff,

Alberta, Canada, October 14 - 17, 1997). UIST '97. ACM, New York,

NY, 31-39.

[15] Shneiderman, B. 1987. Direct manipulation: A step beyond

programming languages. In Human-Computer interaction: A

Multidisciplinary Approach, R. M. Baecker, Ed. Morgan Kaufmann

Publishers, San Francisco, CA, 461-467.

[16] Stolte, C. and Hanrahan, P. 2000. Polaris: A System for Query, Analysis

and Visualization of Multi-Dimensional Relational Databases. In

Proceedings of the IEEE Symposium on information Vizualization 2000

(October 09 - 10, 2000). INFOVIS. IEEE Computer Society,

Washington, DC, 5.

[17] Swayne, D. F., Lang, D. T., Buja, A., and Cook, D. 2003. GGobi:

evolving from XGobi into an extensible framework for interactive data

visualization. Comput. Stat. Data Anal. 43, 4 (Aug. 2003), 423-444.

[18] Ward, M. O. 1994. XmdvTool: integrating multiple methods for

visualizing multivariate data. In Proceedings of the Conference on

Visualization '94 (Washington, D.C., October 17 - 21, 1994). D.

Bergeron and A. Kaufman, Eds. IEEE Visualization. IEEE Computer

Society Press, Los Alamitos, CA, 326-333.

[19] Wilkinson, L., The grammar of Graphics. New York: Springer Verlag

(1999).

[20] Young, D. and Shneiderman, B. 1993. A graphical filter/flow

representation of Boolean queries: a prototype implementation and

evaluation. J. Am. Soc. Inf. Sci. 44, 6 (Jul. 1993), 327-339.

	1 Introduction
	Related work
	2.1 The dataflow model
	2.2 Simple filtering and selection
	2.3 Defining filtering and selection
	2.4 Multiple filtering and selections, Boolean operations
	2.5 Views organization and navigation

	3 design requirements
	Radar Dataset
	5 System description
	5.1 Visual configuration
	5.2 Brushing interaction and incremental selection
	5.3 “Pick and drop” paradigm
	5.4 The organization of Views
	5.5 Rolling dice animation

	6 initial observed benefits
	6.1 Spreading data across views
	6.2 Picking, transition, and visual configuration picker
	6.3 Line and brush combination for efficient selection
	6.4 Implicit specification of Boolean operations
	6.5 Seamless view navigation

	7 SCENARIOS
	7.1 Iterative exploration
	7.2 Specific trajectory extraction for ATC controller training purposes
	7.2.1 Step by step actions

	8 Technological considerations
	9 Conclusion
	10 Acknowledgements
	11 References

