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Abstract We provide in this paper a link between
two methods of edge detection: edge detection using

scale-space analysis, and edge detection using topolog-

ical asymptotic analysis. More precisely, we show that

the topological gradient associated with an image u is

given by a combination of the gradients of two smoothed
versions of the image u at two different scales, namely

ϕ ⋆ u and (ϕ ⋆ ϕ) ⋆ u, where ϕ is the fundamental so-

lution of the elliptic restoration equation. In the same

setting we propose a new edge detector based on the
maximization of the variance of the image. Then we

generalize our approach to Gaussian kernels consider-

ing a topological asymptotic analysis of the parabolic

heat equation. A numerical comparison of these detec-

tors together with the Canny edge detector is presented.

Keywords Edge detection · Topological gradient ·
Heat equation · Scale space

1 Introduction

Edge detection using topological asymptotic analysis

was introduced in [7] and applied to image restoration.

It lead to numerous variants and applications such as in-
painting [5], color image restoration [6], super-resolution

and demosaicking [12]. This approach provides a non

linear edge detector that is based on the elliptic restora-

tion equation (1) below. Topological asymptotic anal-
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ysis provides the asymptotic variation of a cost func-
tion associated with the solution of a partial differen-

tial equation when the domain is modified by an in-

finitesimal topology perturbation [15,20,21,14]. When

an insulating edge segment is inserted, the asymptotic

variation of the cost function was first derived in [1] for
the Laplace equation and extended to the restoration

equation (1) in [7].

Given an image f defined on a rectangular domain

Ω, let u0 be the solution of the elliptic restoration equa-
tion:
{
−div(c∇u) + u = f in Ω,
∇u.n = 0 on ∂Ω.

(1)

The solution of (1) provides a regularized version u0 of

the image f that is the minimizer of

j(u) =
1

2

∫

Ω

|u− f |2 + 1

2

∫

Ω

c|∇u|2. (2)

−

n

σε+

Fig. 1 The domain Ω, the crack σǫ and the normal vector n.
The jump convention is the following: [v] = v+ − v−.

The perturbed domain Ωǫ is obtained by the inser-

tion at some point x0 of an insulating crack σǫ of length
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2ǫ, see Figure 1. The perturbed solution uǫ is the solu-

tion of the perturbed equation:




−div(c∇uǫ) + uǫ = f in Ωǫ,

∇uǫ.n = 0 on ∂Ω,

∇uǫ.n = 0 on σǫ.

(3)

The italic letter n stands for the normal to the bound-

ary of the domain Ω. The bold letter n will denote the

normal vector to the crack.

The main result in [7] is the following: the variation
of the cost function

j1(ǫ) = J1,ǫ(uǫ) =

∫

Ωǫ

|∇uǫ|2

when an insulating crack of length 2ǫ is inserted at the

point x0 with a normal vector n is equivalent when
ǫ→ 0 to g1(x0,n)ǫ

2 with

g1(x0,n) = −cπ(∇u0(x0).n)(∇p(x0).n)−π|∇u0(x0).n|2,
(4)

where the adjoint state p solves
{
−div(c∇p) + p = 2∆u0 in Ω,

∇p.n = 0 on ∂Ω.
(5)

Alternatively, we have g1(x0,n) = −nTM1(x0)n with

the matrix

M1(x0) =
1

2
cπ

(
∇u0(x0)∇p(x0)T +∇p(x0)∇u0(x0)T

)

+ π∇u0(x0)∇u0(x0)T .

Therefore the optimal direction of the normal of the

crack at the point x0 (the direction where the cost func-

tion j1 decreases the most) is the eigenvector associ-
ated with the largest eigenvalue of M1, and the con-

tours are likely to be located at the points where this

largest eigenvalue is maximal. The largest eigenvalue of

the matrix M1 is then an edge detector that we denote
g1(x0).

When a segment is inserted in an image, the process

can be iterated and a union of disjoint segments can be

added and form a curve, whose length is the sum of

the lengths of the segments. A series of works based on
the refinement of this simple idea was initiated in [17].

When an insulating curveK is inserted in a domain and

the restoration equation is applied then the solution is

the minimizer of

JK(u) =
1

2

∫

Ω

|u− f |2 + 1

2

∫

Ω\K

c|∇u|2.

Among the curves of given length, this is exactly the

minimizer of Mumford-Shah functional [16]:

JK(u) =
1

2

∫

Ω

|u− f |2 + 1

2

∫

Ω\K

c|∇u|2 + βH1(K),

Table 1 Polarization tensor for different inclusions. The con-
ductivity of the background is c, the normal of the rectan-
gle/crack is n and the tangent is t.)

Inclusion Polarization tensor

Insulating disk πc Id

Disk w. conductivity κc πc
1− κ

1 + κ
Id

Rectangle w. conductivity κc 2c(1 − κ)(
1

κ
nnT + ttT )

Insulating crack πcnnT

where H1(K) is the one-dimensional Hausdorff mea-

sure of the set K. This connection between the in-

sertion of segments and the Mumford-Shah functional
is rigourously detailed in [10]. A family of function-

als Jǫ,κ is defined, and if ǫ → 0 and simultaneously

κ = κ(ǫ) = o(ǫ) then the functional Jǫ,κ(ǫ) Γ -converges

to Mumford-Shah functional. The perturbation of the
domain considered in [17,10] is a circular inclusion with

an almost insulating material of conductivity κc, which

is not the same as the perfectly insulating crack con-

sidered in [7]. We also mention [8] where the case of a

rectangular inclusion with sides ǫ× ǫ2 and conductivity
κc with 0 < κ < 1 is addressed. The approach of [17,

10] provides a self-adjoint problem, and the topological

gradient related to the insertion of a disk/crack is

g2(x0,n) = −∇uT0 (x0)P∇u0(x0), (6)

where P is the polarization tensor of the inclusion. We

summarize in Table 1 examples of polarization tensors

for different inclusions. In order to present a unified

approach, we shall in this work adapt the results of [17,

10] by replacing the circular/rectangular inclusion with
different conductivity by a perfectly insulating crack.

We review in detail these results in section 2. We

also define a new cost function j3(ǫ) associated with the

perturbed problem (3), which amounts to maximizing
the variance of the perturbed image. The associated

topological gradient is denoted by g3.

Considering a crack with optimal orientation the

edge detector g2 is exactly the squared norm of the
gradient of the image u0 which is a smoothed version

of the original image f . We provide in section 3 a link

between the edge detectors g1 and g3 on one hand, and

a scale-space approach [22,11,13,18] on the other hand.

Specifically, the topological gradients g1 and g3 can be
identified as combinations of the gradients of the im-

age f smoothed at two different scales. The smooth-

ing kernel is the fundamental solution ϕ of the elliptic

restoration equation (1). It is given by a modified Bessel
function which presents a singularity at the origin.

Standard scale-space theory uses Gaussian kernels,

which are smooth at the origin in contrast to the kernel
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ϕ. In order to emphasize the link with scale-space rep-

resentations and to interpret the results obtained with

smooth kernels, we extend in section 4 the approach

presented above to the parabolic restoration equation




∂tu = ∆u in Ω × [0, T ],
∇u.n = 0 on ∂Ω × [0, T ],

u(t = 0) = f.

(7)

This is natural since the fundamental solution of the

parabolic restoration equation (7) is a Gaussian with

standard deviation
√
2t. Different cost functions asso-

ciated with the perturbation of equation (7) by an in-

finitesimal crack are presented in Section 4. This exten-

sion allows to define new edge detectors h1, h3, h4. The

Canny edge detector denoted h2, as a sort of parabolic
counterpart of g2, will serve as a reference.

All the theoretical results are illustrated in Section

5, where the different edge detectors g1, g2, g3 are pre-
sented as well as the detectors h1, h2, h3, h4 derived

from parabolic restoration. We also provide a quanti-

tative comparison of these detectors based on the eval-

uation of the noise level reduction and of the spatial
resolution.

2 Topological asymptotics for elliptic

restoration

In this section we review known results for the per-

turbation of the restoration equation by an insulating

crack, and propose a new cost function that allows to

design a new edge indicator.

We consider a bounded domain Ω, and a line seg-

ment σǫ of length 2ǫ located at the point x0 ∈ Ω with

unit normal vector n. The elliptic restoration problem
is equation (1) and the perturbed problem is equation

(3). For well-posedness we assume that f ∈ L2(Ω). We

present here topological asymptotics results in a par-

ticular case appropriate to edge detection. For a more
general framework the reader is referred to [1,2].

The variational formulation of (1) reads

{
Find u ∈ H1(Ω) s.t.

∀v ∈ H1(Ω), a(u, v) = ℓ(v),

where

a(u, v) =

∫

Ω

c∇u.∇v + uv and ℓ(v) =

∫

Ω

fv.

The variational formulation of the perturbed problem

(3) reads

{
Find u ∈ H1(Ωǫ) s.t.
∀v ∈ H1(Ωǫ), aǫ(u, v) = ℓ(v),

where

aǫ(u, v) =

∫

Ωǫ

c∇u.∇v + uv.

We consider a cost function j(ǫ) = J(uǫ) that satis-

fies the following hypotheses:

(H1) J(uǫ) − J(u0) = L(uǫ − u0) + ǫ2δJ + o(ǫ2), with

L ∈ L(H1(Ω),R) and δJ ∈ R,

(H2) (aǫ − a0)(u0, pǫ) = ǫ2δa + o(ǫ2), where the adjoint

state pǫ solves: pǫ ∈ H1(Ωǫ) and

∀v ∈ H1(Ωǫ), aǫ(v, pǫ) = −Lv.

Theorem 1 Under these hypotheses, the variation of

the cost function j(ǫ) when ǫ → 0 is given by the fol-

lowing asymptotic expansion:

j(ǫ) = j(0) + ǫ2(δa+ δJ) + o(ǫ2).

Proof This calculation is standard [3]:

j(ǫ)− j(0) = J(uǫ)− J(u0)

= L(uǫ − u0) + ǫ2δJ + o(ǫ2)

= −aǫ(uǫ − u0, pǫ) + ǫ2δJ + o(ǫ2)

= (aǫ − a0)(u0, pǫ) + ǫ2δJ + o(ǫ2)

= ǫ2(δa+ δJ) + o(ǫ2).

Theorem 2 Under the hypotheses above it holds

δa = −∇u0(x0)TP∇p0(x0),

where the polarization tensor is given by P = cπnnT .

Proof An integration by parts shows that

(aǫ − a0)(u0, pǫ) =

∫

Ωǫ

c∇u0.∇pǫ + u0pǫ

−
∫

Ω

c∇u0.∇pǫ + u0pǫ

= c

∫

∂σǫ

∂nu0pǫ

= −c
∫

σǫ

∇u0.n[pǫ],

where [pǫ] = p+ǫ − p−ǫ , see Figure 1 for the sign conven-
tion. Using a double layer potential representation of

an approximation of pǫ in the free space, it is shown in

[1] that an equivalent of the above quantity when ǫ→ 0

is given by

−cǫ2π(∇u0.n)(∇p0.n).
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3 Connection between elliptic restoration and

two-scale edge detection

3.1 Different cost functions

We consider the following three cost functions for which
we will derive the associated topological gradients:

J̃1,ǫ(u) =

∫

Ωǫ

f.u− u2,

J̃2,ǫ(u) =

∫

Ωǫ

−f.u,

J̃3,ǫ(u) = −
∫

Ωǫ

u2.

Since Ωǫ coincides with Ω up to a negligible set, these

cost functions do not explicitly depend on ǫ. Henceforth

they will be simply denoted by J̃1, J̃2, J̃3, respectively.

Let us note that

J̃1(uǫ) =

∫

Ωǫ

f.uǫ − u2ǫ =

∫

Ωǫ

−c∆uǫ.uǫ = c

∫

Ωǫ

|∇uǫ|2,

which is, up to a constant scaling, the cost function

J1,ǫ(uǫ) introduced in [7]. The minimization of the topo-

logical gradient g1 associated wih J̃1 amounts to mini-

mize the H1-semi-norm of the perturbed image.

We provide now a connection with another cost func-

tion defined in the literature. In [10] the perturbation
that is considered is not a crack, and the considered

cost function, which depends on two parameters (ǫ, κ),

is shown to Γ -converge to the Mumford-Shah functional

for a suitable choice κ = κ(ǫ). We adapt the framework

of [10] to a crack-shaped perturbation. Therefore we
consider the energy cost function:

J2,ǫ(uǫ) =

∫

Ωǫ

c|∇uǫ|2 + |uǫ − f |2

=

∫

Ωǫ

−c∆uǫ.uǫ + |uǫ − f |2

=

∫

Ωǫ

f.uǫ − u2ǫ + |uǫ − f |2

=

∫

Ωǫ

f2 −
∫

Ωǫ

f.uǫ,

which is up to an additive constant the cost function
J̃2(uǫ).

The interpretation of the cost function J̃3 is the fol-

lowing. The average of uǫ does not depend on ǫ and is
the same as the average of u0, since
∫

Ωǫ

uǫ − u0 =

∫

Ωǫ

(f + c∆uǫ)− (f + c∆u0)

=

∫

∂Ωǫ

c∂n(uǫ − u0) =

∫

∂σǫ

−c∂nu0 = 0.

This implies that J̃3,ǫ(u) is (up to an additive constant)
equal to the opposite of the variance of uǫ given by

J3,ǫ(u) = −
∫

Ωǫ

|u− ū|2, ū =
1

|Ω|

∫

Ωǫ

u.

The value of the topological gradient g3 associated with

J3 indicates the decrease of the variance of the image
induced by the insertion of an infinitesimal insulating

crack. Therefore the minimization of the topological

gradient g3 amounts to the maximization of the vari-

ance of the perturbed image.

3.2 Topological gradients

As shown in [1,2], for the cost functions J̃1,ǫ, J̃2,ǫ and

J̃3,ǫ, hypothesis (H1) holds with L taken as the Fréchet

derivative of the considered functional and δJ = 0.

Therefore it follows from Theorem 2 that the topolog-
ical gradients of the cost functions J1, J2 and J3 are

respectively given by:

g1(x0,n) = −πc(∇u0(x0).n)(∇p1(x0).n),

g2(x0,n) = −πc(∇u0(x0).n)(∇p2(x0).n),
g3(x0,n) = −πc(∇u0(x0).n)(∇p3(x0).n),

where the adjoint states solve:
{
−div(c∇p1) + p1 = −f + 2u0 in Ω,
∇p1.n = 0 on ∂Ω,

(8)

p2 = u0,
{
−div(c∇p3) + p3 = 2u0 in Ω,

∇p3.n = 0 on ∂Ω.
(9)

3.3 Link with two-scale edge detection

Denoting by u00 the solution of
{
−div(c∇u00) + u00 = u0 in Ω,

∇u00.n = 0 on ∂Ω,

we infer by linearity that p1 = −u0 + 2u00 and p3 =

2u00.

We will now reformulate these expressions in terms

of convolutions. The concept of fundamental solution
is used when the domain is the entire plane R2, while

the topological asymptotic analysis assumes that the

domain Ω is bounded. However in the case of an im-

age defined in a rectangular domain, the image can be
extended by symmetry and periodization to the entire

plane R2. We denote by f ♯ the symmetric and periodic

extension of f to R2.



Edge detection using topological gradients: a scale-space approach 5

The fundamental solution ϕ of the elliptic restora-

tion equation can be expressed using the modified Bessel

function of the second kind K0:

ϕ(x) =
1

2π
K0(|x|/

√
c).

It should be noted that (unlike the fundamental solu-

tion for the parabolic heat equation) ϕ presents a sin-

gularity at the origin. The kernel ϕ is obtained by radial

symmetry from the one-dimensional kernel
1

2π
K0

(
x√
c

)
.

The variance of this one-dimensional kernel is

∫ +∞

−∞

x2ϕ(x) dx = 2c.

Standard arguments yield

u0 = f ♯ ⋆ ϕ.

Likewise it holds

p1 = (−f ♯ + 2u0) ⋆ ϕ = −u0 + 2u0 ⋆ ϕ,

and

p3 = 2u0 ⋆ ϕ.

These results are summarized in the following proposi-

tion.

Proposition 1 Let us denote by u00 := f ♯ ⋆ ϕ ⋆ ϕ the

image f smoothed twice with the kernel ϕ. The different

topological gradients can be expressed as follows:

g1(.,n) = −πc(∇u0.n)(∇(2u00 − u0).n),

g2(.,n) = −πc(∇u0.n)(∇u0.n),

g3(.,n) = −2πc(∇u0.n)(∇u00.n).

The interpretation of g2 and g3 are straightforward:

up to the minus sign and a scaling constant,

• g2 is the squared norm of the gradient of a smoothed
version of the image f , projected along the direction

n,

• g3 is the product of the projections along the direc-

tion n of the gradient of the image f smoothed at

two different scales.

The interpretation of g1 is less straightforward: it is

a combination of the two previous quantities. However

for small values of c we can estimate the behavior of

p1 = f ♯ ⋆ (2ϕ ⋆ ϕ − ϕ) by a glance at the kernel ψ =
2ϕ ⋆ ϕ− ϕ in the Fourier domain. From

ϕ̂(ξ) =
1

1 + c|ξ|2 ,

one obtains

ψ̂(ξ) =
2

(1 + c|ξ|2)2 − 1

1 + c|ξ|2 =
1− c|ξ|2

1 + 2c|ξ|2 + c2|ξ|4 .

For a discretized image, the frequencies ξ are bounded
above in the Fourier domain, and when c→ 0 the quan-

tity c|ξ|2 also tends to 0. We can then write for small

c:

ψ̂(ξ) =
1

1 + 3c|ξ|2 + o(c|ξ|2) ,

and the kernel ψ is close to the kernel of the elliptic
restoration equation with a constant 3c instead of c.

For small values of c, the quantity 2u00 − u0 appearing

in the expression of the adjoint p1 is thus close to a

smoothed version of f with the parameter 3c.

Since g3 combines the gradients of the image at the

scales σ =
√
2c and

√
2σ it is likely to be more robust

with respect to noise than g2, which only involves the
scale σ. Similarly, for small values of c, the quantity g3
combines the gradients of the image at the scales σ =√
2c and

√
3σ hence the same conclusion is expected

to be true. This will be confirmed by our numerical
experiments reported in sections 5.2 and 5.4.

4 Topological gradients for the parabolic heat

equation and edge detectors associated with

Gaussian kernels

4.1 The parabolic heat equation

We consider the following parabolic heat equation:




∂tu = ∆u in Ω × [0, T ],

∇u.n = 0 on ∂Ω × [0, T ],

u(t = 0) = f.

(10)

In the simplified case where Ω = R2 is the entire space,

the heat kernel is a Gaussian with standard deviation√
2t. The widely used Canny edge detector [9] is based

on the convolution of the image f with a Gaussian of

standard deviation σ, which amounts to consider the

solution u(T ) of (10) at time T =
1

2
σ2. We propose

in this section new edge detectors based on Gaussian

kernels that generalize the elliptic edge detectors. The

elliptic edge detectors were interpreted using two pos-
sible viewpoints: topological gradients of different cost

functions associated with the perturbation of the ellip-

tic equation on one hand (1) (see section 2), and com-

binations of gradients of the image f convolved with
the fundamental solution ϕ on the other hand (see sec-

tion 3). We extend these concepts to the parabolic case

along the following steps.
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i) We define cost functions associated with the solu-

tion of the parabolic equation (10) in a perturbed

domain, and calculate the perturbation induced by

an infinitesimal insulating crack,

ii) The edge detectors we obtain are expressed in terms
of integrals involving the image smoothed at differ-

ent scales. The calculation of these integrals using a

quadrature method provides the numerical versions

of these edge detectors. Owing to a priori estimates
of the time behavior of the integrands in the regions

of interest, we also propose to evaluate these inte-

grals using a single quadrature point, which results

in an edge detector involving the image smoothed

at two different scales.

The analysis of step i) is presented in sections 4.2 through

4.5, and step ii) is developed in section 4.6 where we also

recall the definition of the Canny edge detector which
will be used for comparison purposes.

4.2 Variational formulation of the heat equation

We address in this section the continuous-time restora-
tion equation. For a given T > 0 the state u0 = u0(x, t)

is the solution of the evolution problem:



∂tu0 −∆u0 = 0 in Ω × [0, T ],

u0|t=0 = f in Ω,

∇u0.n = 0 on ∂Ω × [0, T ].

(11)

The image u0(T ) is the analysis of the original image

f at the spatial scale
√
2T . We will say that T is the

temporal scale of the image u0(T ).
For ǫ > 0, let again Ωǫ = Ω \σǫ, where σǫ is the line

segment of length 2ǫ located at the point x0 and with

unit normal vector n. The perturbed state uǫ solves



∂tuǫ −∆uǫ = 0 in Ωǫ × [0, T ],

uǫ|t=0 = f in Ωǫ,
∇uǫ.n = 0 on σǫ × [0, T ],

∇uǫ.n = 0 on ∂Ω × [0, T ].

(12)

We define the following standard function spaces:

Zǫ = H1(Ωǫ),

Xǫ,T = L2([0, T ], Zǫ) ∩H1([0, T ], Z ′
ǫ),

Xf
ǫ,T = {u ∈ Xǫ,T |u(., 0) = f}.

The variational formulation of problem (12) reads
{
uǫ ∈ Xf

ǫ,T ,

Aǫ,T (uǫ, v) = 0 ∀v ∈ Xǫ,T ,
(13)

with the bilinear form

Aǫ,T (u, v) =

∫ T

0

〈∂tu, v〉+
∫ T

0

∫

Ωǫ

∇u.∇v.

Above, the notation 〈., .〉 stands for the duality pairing

between Z ′
ǫ and Zǫ.

4.3 Gradient-free cost function

For mathematical reasons which will become clear later,

we first address the parabolic counterpart of J̃3, con-

sidering the time at which the image is analyzed as a
variable. Thus, for an arbitrary τ ∈ [0, T ] we consider

the cost function:

Jǫ(τ) = −1

2

∫

Ωǫ

|uǫ(x, τ)|2dx. (14)

The scaling constant 1/2 will prove useful for subse-

quent simplifications. Note that, since uǫ ∈ C([0, T ], L2(Ωǫ))

(see [19,23]), it follows that Jǫ ∈ C([0, T ]).

Theorem 3 Assume that f ∈ H6(Ω). It holds for all

τ ∈ [0, T ]:

Jǫ(τ) − J0(τ) = ǫ2G(τ) + o(ǫ2), (15)

with

G(τ) = −
∫ τ

0

∇u0(x0, t)TP∇u0(x0, 2τ − t)dt.

Above, u0 ∈ Xf
0,2τ is the solution of (11) over the (pos-

sibly extended) time interval [0, 2τ ]. The polarization

matrix is the same as in the elliptic case, i.e. P =
πnnT .

Proof We begin by the expansion

Jǫ(τ) − J0(τ) = −1

2

∫

Ω

(
|uǫ(x, τ)|2 − |u0(x, τ)|2

)
dx

= −
∫

Ω

u0(x, τ)(uǫ − u0)(x, τ)dx

−1

2

∫

Ω

|(uǫ − u0)(x, τ)|2dx.

Then we define the adjoint state vǫ,τ solution of




vǫ,τ ∈ Xǫ,τ ,

Aǫ,τ (ϕ, vǫ,τ ) =

∫

Ω

u0(x, τ)ϕ(x, τ)dx ∀ϕ ∈ X0
ǫ,τ .

(16)

In strong form, this reads





−∂tvǫ,τ −∆vǫ,τ = 0 in Ωǫ × [0, T ],

vǫ,τ |t=τ
= u0|t=τ in Ωǫ,

∇vǫ,τ .n = 0 on σǫ × [0, T ],

∇vǫ,τ .n = 0 on ∂Ω × [0, T ].

(17)

In particular, for ǫ = 0, we infer by uniqueness

v0,τ (x, t) = u0(x, 2τ − t). (18)
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Choosing ϕ = uǫ − u0 in (16) we obtain

Jǫ(τ) − J0(τ) = −Aǫ,τ (uǫ − u0, vǫ,τ )

− 1

2

∫

Ω

|(uǫ − u0)(x, τ)|2dx.

From (13) we have Aǫ,τ (uǫ, vǫ,τ ) = 0. In addition the

Green formula yields

Aǫ,τ (u0, vǫ,τ ) =

∫ τ

0

〈∂tu0, vǫ,τ 〉+
∫ τ

0

∫

Ωǫ

∇u0.∇vǫ,τ

=

∫ τ

0

〈∂tu0, vǫ,τ 〉+
∫ τ

0

∫

Ωǫ

−∆u0vǫ,τ

+

∫ τ

0

∫

σǫ

∂nu0[vǫ,τ ]

=

∫ τ

0

∫

σǫ

∂nu0[vǫ,τ ],

where again [vǫ,τ ] stands for the jump of vǫ,τ through

σǫ, see Figure 1. We arrive at

Jǫ(τ)−J0(τ) =
∫ τ

0

∫

σǫ

∂nu0[vǫ,τ ]−
1

2

∫

Ω

|(uǫ−u0)|t=τ |2.

(19)

Combining results from [4] and [1] we obtain the fol-

lowing:

‖uǫ,τ − u0,τ‖L∞([0,τ ],L2(Ω)) = o(ǫ), (20)

∫ τ

0

∫

σǫ

∂nu0[vǫ,τ ]

= −ǫ2
∫ τ

0

∇u0(x0, t)P∇v0,τ (x0, t)dt+ o(ǫ2). (21)

Specifically, counterparts of these results are proven in

[4] in the case of an inclusion. The adaptation to the
crack case can be achieved using arguments from the

static problem addressed in [1]. The reader may also re-

fer to [2] for connections between cracks and inclusions

in the topological asymptotic framework. In [4] the con-

ditions u0, v0,τ ∈ L2([0, τ ], H6(Ω)) ∩ H3([0, τ ], L2(Ω))
are assumed. Standard parabolic regularity results [4,

19,23] show that the condition on u0 is fulfilled pro-

vided that ∆jf ∈ L2(Ω) for every j ∈ {0, 1, 2, 3}. The
relation (18) shows that v0,τ enjoys the same regularity
(in fact it has even more since 2τ − t is always posi-

tive). Combining (19), (20), (21) and (18) leads to the

claimed result.

4.4 Gradient-based cost function

We now turn to the counterpart of J̃1 given by

J̇ǫ(τ) =

∫

Ωǫ

|∇uǫ(x, τ)|2dx. (22)

Hille-Yosida’s theory shows that uǫ ∈ C((0, T ], H1(Ωǫ)),

whereby J̇ǫ ∈ C((0, T ]). Our notation is justified by the

following identity.

Lemma 1 For all τ ∈ (0, T ] it holds

J̇ǫ(τ) =
d

dτ
Jǫ(τ).

Proof Starting from

J̇ǫ(τ) =
d

dτ

∫ τ

0

∫

Ωǫ

|∇uǫ(x, t)|2dxdt

and using the variational formulation (13) we arrive at

J̇ǫ(τ) = − d

dτ

∫ τ

0

〈∂tuǫ, uǫ〉.

Assuming for simplicity that uǫ(., t) ∈ H1([0, T ], L2(Ωǫ))

(the general case follows by density), the above duality
pairing is actually an integral, and

J̇ǫ(τ) = − d

dτ

∫ τ

0

∫

Ωǫ

∂tuǫuǫ = −1

2

d

dτ

∫ τ

0

∫

Ωǫ

∂t
(
|uǫ|2

)
.

Fubini’s theorem yields

J̇ǫ(τ) = −1

2

d

dτ

(∫

Ωǫ

|uǫ(x, τ)|2dx −
∫

Ωǫ

|uǫ(x, 0)|2dx
)
,

and the proof is complete.

Theorem 4 Assume that f ∈ H8(Ω). It holds for all
τ ∈ (0, T ]:

J̇ǫ(τ) − J̇0(τ) = ǫ2Ġ(τ) + o(ǫ2), (23)

with

Ġ(τ) =−∇u0(x0, τ)TP∇u0(x0, τ)

− 2

∫ τ

0

∇u0(x0, t)TP∂τ∇u0(x0, 2τ − t)dt.

Proof We denote by Sǫ(f) the solution uǫ of the heat

equation (12) with initial condition f . This defines an

operator Sǫ ∈ L(L2(Ω), Xǫ,T ). By uniqueness, (17) im-
plies that, for all t ∈ [0, τ ],

vǫ,τ (., t) = Sǫ(u0(., τ))(τ − t).

Our assumptions entail that u0 ∈ C1([0, T ], L2(Ω)), see

[19,23]. It follows that the map τ ∈ (0, T ) 7→ vǫ,τ ∈
Xǫ,T is differentiable, with derivative

v̇ǫ,τ (., t) = Sǫ(∂tu0(., τ))(τ − t) + ∂tSǫ(u0(., τ))(τ − t).
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By linearity, one has Sǫ(∂tu0(., τ)) = ∂tSǫ(u0(., τ)),

hence

v̇ǫ,τ (., t) = 2∂tSǫ(u0(., τ))(τ − t) = −2∂tvǫ,τ (., t).

In other words, v̇ǫ,τ is the solution of





−∂tv̇ǫ,τ −∆v̇ǫ,τ = 0 in Ωǫ × [0, T ],

(v̇ǫ,τ )|t=τ = 2(∂tu0)|t=τ in Ωǫ,

∇vǫ,τ .n = 0 on σǫ × [0, T ],
∇vǫ,τ .n = 0 on ∂Ω × [0, T ].

(24)

Next, in view of Lemma 1 and (19), we obtain

J̇ǫ(τ) − J̇0(τ) =

∫

σǫ

(∂nu0[vǫ,τ ])|t=τ

+

∫ τ

0

∫

σǫ

∂nu0[v̇ǫ,τ ]−
∫

Ω

((uǫ − u0)∂t(uǫ − u0))|t=τ .

(25)

Similarly to Theorem 3, we have

∫ τ

0

∫

σǫ

∂nu0[v̇ǫ,τ ]

= −ǫ2
∫ τ

0

∇u0(x0, τ)P∇v̇0,τ (x0, τ)dt+ o(ǫ2). (26)

Likewise we have for all τ ∈ [0, T ] (see again [4,1])

∫

σǫ

(∂nu0[vǫ,τ ])|t=τ = −ǫ2∇u0(x0, τ)P∇v0,τ (x0, τ)+o(ǫ2).

(27)

By uniqueness from (24), or directly from (18), we infer

v̇0,τ (x, t) = 2∂tu0(x, 2τ − t).

The Cauchy-Schwarz inequality yields

∣∣∣∣
∫

Ω

((uǫ − u0)∂t(uǫ − u0))|t=τ

∣∣∣∣ ≤

‖(uǫ − u0)(., τ)‖L2(Ω)‖(∂tuǫ − ∂tu0)(., τ)‖L2(Ω).

We have already seen that ‖uǫ − u0‖L∞([0,τ ],L2(Ω)) =
o(ǫ). Under the appropriate regularity condition, the

same estimate holds for ‖∂tuǫ−∂tu0‖L∞([0,τ ],L2(Ω)) since

∂tuǫ solves the same heat equation as uǫ with the initial

condition ∂tuǫ|t=0 = ∆f . It follows that

∣∣∣∣
∫

Ω

((uǫ − u0)∂t(uǫ − u0))|t=τ

∣∣∣∣ = o(ǫ2). (28)

Plugging (26), (27) and (28) in (25) leads to the claimed

result.

4.5 Edge indicators associated with the parabolic

restoration equation

Using the topological asymptotic analysis of the parabolic

heat equation (Theorems 3 and 4), we can derive ex-

tensions of the edge indicators g1 and g3. This involves

the following cost functions:

K1,ǫ =

∫

Ω

|∇uǫ(x, T )|2dx,

K3,ǫ = −
∫

Ω

|uǫ(x, T )|2dx.

The minimization ofK1 amounts to minimizing theH1-

semi-norm of the restored image. The minimization of

K3 amounts to maximizing the variance of the restored

image, as it is straightforwardly proved that the average
of uǫ(., T ) is equal to the average of f .

We assume that f is smooth enough (namely f ∈
H6(Ω) or f ∈ H8(Ω)). It follows from Theorems 3 and

4 that the topological gradients associated with the cost
functions K1 and K3 are respectively given by

h1(x0,n) = −∇u0(x0, T )TP∇u0(x0, T )

− 2

∫ T

0

∇u0(x0, t)TP∂t∇u0(x0, 2T − t) dt, (29)

h3(x0,n) = −2

∫ T

0

∇u0(x0, t)TP∇u0(x0, 2T − t) dt,

(30)

with P = πnnT .

Note: These results were proved in the case where f is

very smooth, which is not the case of interest in prac-

tice, since noisy images are not much more regular than

L2 in general. We however believe that the same results

hold true for more general hypotheses on f , but the
proofs require a thorough regularity analysis which is

out of the scope of the present work.

There is no direct counterpart of the cost function

J̃2 in the parabolic framework. However, looking at the

expression of g2 given in Proposition 1, it is natural to
define

h2(x0,n) = −π|∇u0(x0, T ).n|2, (31)

whose minimization with respect to n simply gives

h2(x0) = −π|∇u0(x0, T )|2.

This is, up to the scaling constant π, the Canny edge

detector, which will serve as a reference for our com-

parisons.
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We denote by Gt the heat kernel at time t, i.e.,

the two-dimensional Gaussian kernel with standard de-

viation
√
2t. Defining f ♯ as in section 3.3, we have

u0(., t) = Gt ⋆ f
♯ and ∇u0(., t) = ∇Gt ⋆ f

♯. Using this

latter expression in (29), (31) and (30) provides the for-
mulations of h1, h2 and h3 in terms of convolutions.

4.6 Approximation schemes for the time integrals

The numerical evaluation of h1 and h3 requires the com-

putation of the integrals

I1(x) =

∫ T

0

∇u0(x, t)∂t∇u0(x, 2T − t)T dt, (32)

I3(x) =

∫ T

0

∇u0(x, t)∇u0(x, 2T − t)T dt. (33)

This has to be done carefully since, on one hand,∇u0(x, t)
admits a singularity at t = 0 as soon as f is not smooth

at x, and, on the other hand, the evaluation of ∇u0 at

too many time steps would lead to a prohibitive com-
puter load. We propose two techniques.

i) The first one relies on the observation that ∇u0 can
be explicitly integrated, while the other factor in each

integral is smooth. Taking the Fourier transform of (11)

leads to

û0(ξ, t) = f̂ ♯(ξ)e−t|ξ|2 .

Setting

Û0(ξ, t) =

∫ t

0

f̂ ♯(ξ)e−s|ξ|2ds =
f̂ ♯(ξ)

|ξ|2
(
1− e−t|ξ|2

)
,

one obtains by inverse Fourier transform an antideriva-

tive U0(x, .) of u0(x, .). Next we consider a regular sub-

division t0, ..., tn of [0, T ] with t0 = 0 and tn = T . We
approximate I3(x) by

I3(x) ≈
n−1∑

i=0

1

ti+1 − ti

(∫ ti+1

ti

∇u0(x, t)dt
)

×
(∫ ti+1

ti

∇u0(x, 2T − t)T dt

)
.

With the help of the antiderivative∇U0(x, .) of∇u0(x, .),
the above integrals are easily computed. One obtains a

numerical approximation of I3, and proceed similarly
for I1.

ii) We will now give a very simple approximation of I3,
using a single quadrature point thanks to an a priori

knowledge of the behavior of the function to be in-

tegrated. The same idea would apply to I1, but our

numerical tests showed that only I3 was worth this in-

vestigation. If x is close to a jump of f , say of height h

and normal n = (1, 0), then

∇u0(x, t).n ≈ h(Gt ⋆ χ[x1<0])(x)

with χ[x1<0](x) = 1 if x1 < 0 and χ[x1<0](x) = 0 other-

wise. For x1 > 0 one finds

∇u0(x, t).n ≈ −h√
4πt

exp(−x1
4t

).

In particular, if x belongs to the jump set, then∇u0(x, t).n ≈
α(x)/

√
t, for some real number α(x). Plugging this ex-

pression into (33) entails

[I3(x)]nn ≈ π

2
α(x)2. (34)

Computing now [I3(x)]nn by the rectangle rule with

evaluation point t∗ results in

T (∇u0(x, t∗).n)(∇u0(x, 2T − t∗).n) ≈ Tα(x)2√
t∗
√
2T − t∗

.

(35)

Matching the right hand sides of (34) and (35) leads to

t∗ = βT, with β = 1−
√
1− 4

π2
≈ 0.229. (36)

One derives a two-scale approximation of h3(x), de-

noted h4, given by

h4(x,n) = −2Tu0(x, βT )
TP∇u0(x, (2 − β)T ).

5 Numerical results

5.1 Spatial discretization

We use quadrangular finite elements withQ1 basis func-
tions for the discretization of the Laplace operator. We

denote by K the corresponding stiffness matrix. If uV

and u♯ stand for the vector representation and the sym-

metric and periodic representation, respectively, of an
image u, one has

KuV = (k ⋆ u♯)V ,

where ⋆ is the discrete two-dimensional convolution and
k is the appropriate kernel. This convolution is effi-

ciently computed using the fast Fourier transform (FFT)

and its inverse. This provides fast methods for solving

our elliptic and parabolic restoration equations, and
subsequently for computing our edge detectors. Note

that, as they involve∇u, these latters are actually com-

puted at the centroids of the elements.
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5.2 Elliptic restoration

We implemented the computation of the different topo-

logical gradients g1, g2 and g3. These were applied to a

synthetic image with different levels of noise (see Fig-
ure 2), and to real images with and without texture (see

Figure 4).

Since we aim at detecting edges, we applied a post-
processing algorithm analogous to the Canny edge de-

tector [9]. More precisely, we applied algorithm 1 below.

Data: Image f

Result: Detected edges
1- Compute the topological gradient gi and the
corresponding crack orientation;
2- Select the points corresponding to local maxima of
gi in the normal direction n to the crack;
3- Apply a hysteresis thresholding, with a high
threshold TH and a low threshold TL defined using
percentiles of gi;

Algorithm 1: Edge detection from gi

We observe the following from the synthetic image

experiment (Figure 3): at small noise level and small

value of c, the edge detectors gi are almost similar. At

medium and large noise values and larger values of c,

the detector g1 presents artifacts since it doubles the
edges. The detector g2 presents more noisy values out-

side the edges, which may not be removed by threshold-

ing. Visual inspection shows that g3 provides the best

detection of edges.

A possibility to reduce the noise would be to smooth

the edge detectors gi before detecting the edges. We

did not choose this option in order to highlight the dif-
ferences between the edge detectors. Moreover, for an

enhanced noise reduction outside the edges the method

of choice would be to use the parabolic heat equation,

see section 5.3.

The topological gradients and detected edges for the

cameraman image are presented in Figure 5. The topo-

logical gradients and detected edges for Barbara’s im-
age are presented in Figure 6. For those images the

detectors g1, g2 and g3 behave relatively similarly. This

comes from the fact that our real images were not per-

turbed by noise. However, differences can be noted for

images presenting small details like Barbara. The de-
tector g2 finds the edges at the smallest scale. This is

coherent with the fact that g2 is the squared norm of

the gradient of the image smoothed by the kernel ϕ,

while g3 involves the gradients of the image smoothed
once and twice by the kernel ϕ, and g1 roughly involves

the gradients of the image smoothed at scale c and 3c,

since c can be considered as small here. The edge detec-

Table 2 The different values of T used in the parabolic
restoration experiments.

image synthetic synthetic synthetic Lena
noise η = 0.1 η = 0.3 η = 1 no noise
value of T T = 0.5 T = 2 T = 8 T = 2

tors g1 and g3 are less sensitive to noise, and therefore

the small details are smoothed out by these detectors,

especially by g1.

5.3 Parabolic restoration

We implemented the computation of the different topo-
logical gradients h1 and h3, together with the Canny

detector h2 and the two-scale detector h4. The inte-

grals appearing in h1 and h3 were discretized using the

scheme described in section 4.6 i), where the interval

[0, T ] was subdivided in 10 subintervals.
The quantities h1, h2, h3, h4 were computed for a

synthetic image with different levels of noise (see Figure

2), and the image of Lena, see Figure 4 right. Different

values of T were chosen accordingly to the noise level,
see Table 2. In order to provide results that are visu-

ally comparable, we replaced T by T/2 for the detector

h2, see the discussion in section 5.4. The quantities hi
are displayed in Figures 7 and 8. Since these quantities

aim at detecting the edges, we applied the same algo-
rithm as in section 5.2 for non-maxima suppression and

thresholding.

We observe that the quantity h1 is not adapted to

edge detection, since it presents a multiple response to
edges. The quantities h3 and h4 are compared with the

reference Canny detector h2. In Figure 7 the detectors

h3 and h4 appear to be less noisy than h2. This comes

from the fact that they combine the gradients at differ-

ent time scales. The detector h4 appears to be slightly
less noisy than h3, because it does not involves gradi-

ents at very small time scales. Therefore it seems to be

the method of choice in the case of medium and large

noise level, providing a good compromise between spa-
tial accuracy and noise reduction.

The detectors were applied to a real image in Figure

8 with T = 2, which corresponds to a smoothing kernel

with standard deviation σ = 2. In the absence of noise,

the three detectors h2, h3 and h4 behave similarly.
As a preliminary conclusion the detector h4 pro-

posed here seems to outperform the Canny edge de-

tector in the case of moderate or high noise level. It

presents a trade-off between noise reduction and spa-
tial resolution that overtakes the other detectors stud-

ied here. This observation is quantitively analyzed in

the next section.
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Original image f Original image f Original image f

Fig. 2 The synthetic image is the indicator function of a square, perturbed with an additive gaussian random noise of variance
η. We have used the following values (from left to right): η = 0.1, η = 0.3, η = 1. The SNR of the images are (from left to
right): 11.9dB, 2.3dB, −8.1dB.
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Fig. 3 The topological gradients g1, g2 and g3 for the low noise case η = 0.1 (top), the medium noise case η = 0.3 (middle),
the high noise case η = 1 (bottom). The values of c are respectively c = 0.5, c = 2, c = 8 which correspond to a spatial variance
of the kernel of resp. σ = 1, σ = 2, σ = 4.

5.4 Quantitative comparison

All the edge detectors that were presented depend on

a smoothing parameter (c for elliptic detectors, T for
parabolic detectors) which should be adjusted depend-

ing on the noise level. For a given noise level, different

values of the parameter provide more or less smoothed

versions of the images which in turn lead to edge detec-

tors having different noise levels and localization accu-

racy [9]. An oversmoothed filter eliminates fluctuations

of the detector due to noise, whereas the localization
of the edges becomes less precise. We propose here to

evaluate the compromise between noise level and spatial

localization of the edge detectors under consideration.
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Original image f Original image f Original image f

Fig. 4 The cameraman image (left), the Barbara image (center), the Lena image (right).
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Fig. 5 The topological gradients g1, g2 and g3 (top) and the detected edges (bottom) for the cameraman image.

We consider a synthetic image with two regions sep-

arated by a vertical boundary (1 on the left, 0 on the

right), degraded by an additive Gaussian noise with
variance η, see Figure 9 (left). The edge detectors are

computed for various values of the parameter (c or T ),

each parameter value allows to estimate a noise level

and a spatial resolution which measures the uncertainty
in the localization of the edge. These quantities are de-

fined below.

Let us consider an edge detector d. This detector is

normalized so that its average value along the edge is

1. In practice this normalization is performed by con-
sidering the maximum value of the detector along each

horizontal line, and averaging these maximum values to

obtain a quantity A. The detector is normalized so that

A = 1.

Noise: In the homogeneous regions, where no edge

is present, an ideal edge detector should provide the

value 0. The quadratic average of d in the homogeneous

region gives an estimate of the variance σ2 of the error

on the detector d induced by noise. The noise level is

measured in SNR via the formula −10 log10(σ
2).

Spatial resolution: When moving through a segment

orthogonal to the edge, the detector presents a peak

(normalized to 1). We compute an average of the pro-

files of this peak over all the horizontal segments in
the image, see Figure 9 (right) for an example. Loosely

speaking, the more thin is the peak, the more precise

is the edge localization. The spatial resolution of the

detector d is defined to be the Full Width at Half Max-

imum (FWHM) of this peak.

For a given detector, when the smoothing parameter

(c or T ) increases, the noise level decreases (the SNR

increases) while the localization becomes less accurate

(the spatial resolution increases). The trade-off between
noise and spatial resolution is thus presented as a curve

that gathers the points obtained for different values of

the smoothing parameter.
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Fig. 6 The topological gradients g1, g2 and g3 (top rows) and the detected edges (bottom rows) for Barbara’s image. We also
present zooms of the results in order to show the details close to the scarf. The value c = 0.5 ensures that the variance of the
filter is σ2 = 2c = 1

One experiment of the perturbed synthetic image al-

lows to compare the trade-off between noise and spatial

resolution for the different detectors g1, g2, g3, h1, h2, h3,

and h4 by comparing the curves associated with the dif-
ferent detectors. The lower is the curve, the better is the

detector since for a given noise level, the best detector

has the smallest localization error.

The results are presented in Figure 10. We can ob-
serve that at low noise level (η = 0.1) the best perfor-

mance is obtained by the detectors h4 and g1 as well as,

for small values of the SNR, h1. When the noise level in-

creases, the best performance is still achieved by h4, the

performances of g1 and h1 degrade (due to edge dou-

bling) and the second and third competitors become h3
and g3. Most of the proposed detectors outperform the
Canny edge detector in terms of compromise between

noise and spatial resolution.

Conclusions

We have presented a detailed study of existing edge

detection methods based on topological asymptotics.
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Fig. 7 The parabolic edge detectors h1, h2, h3 and h4 for the low noise case η = 0.1 (top row), the medium noise case η = 0.3
(middle row), the high noise case η = 1 (bottom row).

We have proposed a new detector associated with the

maximization of the variance of the smoothed image
using the elliptic restoration equation. This new de-

tector outperforms the two other elliptic detectors in

the case of high noise level. We have also extended

our approach to the parabolic framework, whose one
of the main differences compared to the elliptic set-

ting is that it involves smooth convolution kernels. We

have proposed two new edge detectors based on the

topological asymptotic analysis of the parabolic heat

equation. These detectors extend the elliptic edge de-
tectors in the sense that they are associated with similar

cost functions. The integrals appearing in these detec-

tors may be tedious to compute, thus another detector

has been proposed, relying on the use of a single well-
chosen quadrature point. Numerical experiments show

that this latter detector is the most robust. It combines

smoothed versions of the image at scales
√
βσ ≈ 0.48σ

and
√
2− βσ ≈ 1.33σ. Therefore it is a two-scale edge

detector, where the ratio between the scales stems from
our theoretical study.
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30 35 40 45
1.2

1.4

1.6

1.8

2

2.2

SNR (dB)

S
pa

tia
l r

es
ol

ut
io

n 
(p

ix
el

s)

Noise vs spatial resolution, η=0.1

 

 

g1
g2
g3
h1
h2
h3
h4

15 20 25 30 35

1.5

2

2.5

3

3.5

4

SNR (dB)

S
pa

tia
l r

es
ol

ut
io

n 
(p

ix
el

s)

Noise vs spatial resolution, η=0.3

 

 

g1
g2
g3
h1
h2
h3
h4

10 15 20 25

3

4

5

6

7

8

9

10

SNR (dB)

S
pa

tia
l r

es
ol

ut
io

n 
(p

ix
el

s)

Noise vs spatial resolution, η=1

 

 

g1
g2
g3
h1
h2
h3
h4

Fig. 10 Trade-off between noise and spatial resolution for the different edge detectors. From left to right: η = 0.1, η = 0.3, η = 1.

13. Lindeberg, T. Scale-space theory in computer vision.
Springer, 1993.

14. Masmoudi, M. The topological asymptotic, in Computa-
tional Methods for Control Applications, H. Kawarada and
J. Periaux, eds, GAKUTO Internat. Ser. Math. Sci. Appli.
Gakkotosho, Tokyo. (2002)

15. Maz’ia, V., Nazarov, S., Plamenevskij, B.: Asymptotic
theory of elliptic boundary value problems in singularly per-
turbed domains: Vol. 1, Springer (2000)

16. Mumford, D., Shah, J.: Optimal approximations by piece-
wise smooth functions and associated variational problems,
Comm. Pure Appl. Math., 42, 577–685 (1989)

17. Muszkieta, M.: Optimal edge detection by topological
asymptotic analysis, Mathematical Models and Methods in
Applied Sciences 19, 2127–2143 (2009)

18. Nielsen, M., Deriche, R.: Regularization, scale-space, and
edge detection filters, Journal of Mathematical Imaging and
Vision 7, 291–307 (1997)

19. Renardy, M., Rogers, R., An introduction to partial dif-
ferential equations, Springer-Verlag, New York (2004)

20. Schumacher, A.: Topologieoptimierung von Bauteil-
strukturen unter Verwendung von Lopchposition-
ierungkrieterien (Doctoral dissertation, thesis, Universitat-
Gesamthochschule-Siegen) (1995)

21. Sokolowski, J., Zochowski, A.: Topological derivatives for
elliptic problems, Inverse problems 15, 123–134 (1999)

22. Witkin, A.: Scale-space filtering: A new approach to
multi-scale description, IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’84) 9

(1984)
23. Wloka, J.: Partial differential equations, Cambridge Uni-
versity Press (1987)


