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Abstract

The inclusion-exclusion principle is a well-known property in probability theory, and

is instrumental in some computational problems such as the evaluation of system relia-

bility or the calculation of the probability of a Boolean formula in diagnosis. However,

in the setting of uncertainty theories more general than probability theory, this prin-

ciple no longer holds in general. It is therefore useful to know for which families of

events it continues to hold. This paper investigates this question in the setting of belief

functions. After exhibiting original sufficient and necessary conditions for the principle

to hold, we illustrate its use on the uncertainty analysis of Boolean and non-Boolean

systems in reliability.

Keywords. belief function, inclusion-exclusion principle, reliability analysis, boolean

formula, independence

1. Introduction

Probability theory is the most well-known approach to model uncertainty. How-

ever, even when the existence of a single probability measure is assumed, it often

happens that its distribution is only partially known. This is particularly the case in

the presence of severe uncertainty (few samples, imprecise or unreliable data, etc.) or

when subjective beliefs are elicited (e.g., from experts). Some authors use a selection

principle that brings us back to a precise distribution (e.g., maximum entropy [23]).

But other ones [28, 26, 16] have argued that in some situations involving imprecision or

incompleteness, uncertainty cannot be modelled faithfully by a single probability mea-

sure. The same authors have advocated the need for frameworks accommodating im-

precision, their efforts resulting in different frameworks such as possibility theory [16],

belief functions [26], imprecise probabilities [28], info-gap theory [4], etc. that are for-

mally connected [29, 17]. Regardless of interpretive issues, the formal setting of belief

functions offers a good compromise between expressiveness and calculability, as it is
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more general than probability theory, yet in many cases remains more tractable than

imprecise probability approaches.

Nevertheless using belief functions is often more computationally demanding than

using probabilities. Indeed, its higher level of generality prevents the use of some

properties, valid in probability theory, that help simplify calculations. This is the case,

for instance, for the well known and useful inclusion-exclusion principle (also known

as the Sylvester-Poincaré equality).

Given a space X , a probability measure P over this space and any collection An =
{A1, . . . ,An|Ai ⊆ X } of measurable subsets of X , the inclusion-exclusion principle

states that

P(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1P(∩A∈I A) (1)

where |I | is the cardinality of I . This equality allows us to easily compute the prob-

ability of ∪n
i=1Ai, when the events Ai are stochastically independent, or when their

intersections are disjoint. This principle has been applied to numerous problems, in-

cluding the evaluation of the reliability of complex systems. It does not hold for belief

functions, and only an inequality remains. However, it is useful to investigate whether

or not an equality can be restored for specific families An of events, in particular the

ones encountered in applications to diagnosis and reliability. The main contribution of

this paper is to give a positive answer to this question and to provide conditions char-

acterizing the families of events for which the inclusion-exclusion principle still holds

in the belief function setting.

This paper is organized as follows. First, Section 2 provides sufficient and nec-

essary conditions under which the inclusion-exclusion principle holds for belief func-

tions in general spaces; it is explained why the question may be more difficult for the

conjugate plausibility functions. Section 3 then studies how the results apply to the

practically interesting case where events Ai and focal elements are Cartesian products

in a multidimensional space. Section 4 investigates the particular case of binary spaces,

and considers the calculation of the degree of belief and plausibility of a Boolean for-

mula expressed in Disjunctive Normal Form (DNF). Section 5 then shows that specific

events described by means of monotone functions over a Cartesian product of totally

ordered discrete spaces meet the conditions for the inclusion-exclusion principle to

hold. Section 6 is devoted to illustrative applications of the preceding results to the

field of reliability analysis (both for the binary and non-binary cases), in which the

use of belief functions is natural and the need for efficient computation schemes is

an important issue. Finally, Section 7 compares our results with those obtained when

assuming stochastic independence between ill-known probabilities, displaying those

cases for which these results coincide and those for which they disagree.

This work extends the results concerning the computation of uncertainty bounds

within the belief function framework previously presented in [22, 1]. In particular, we

provide full proofs as well as additional examples. We also discuss the application of

the inclusion/exclusion principle to plausibilities, as well as a comparison of our ap-

proach with other types of independence notions proposed for imprecise probabilities

(two issues not tackled in [22, 1]).
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2. General Additivity Conditions for Belief Functions

After introducing some notation and the basics of belief functions (Section 2.1),

we explore in Section 2.2 general conditions for families of subsets for which the

inclusion-exclusion principle holds for belief functions. We then look more closely

at the specific case where the focal elements of belief functions are Cartesian products

of subsets. Readers not interested in technical details and familiar with belief functions

may directly move to Section 3.

2.1. Setting

A mass distribution [26] defined on a (finite) space X is a mapping m : 2X → [0,1]
from the power set of X to the unit interval such that m( /0) = 0 and ∑E⊆X m(E) = 1.

A set E that receives a strictly positive mass is called a focal element, and the set

of focal elements of m is denoted by Fm. The mass function m can be seen as a

probability distribution over sets, in this sense it captures both probabilities and sets:

any probability p can be modelled by a mass m such that m({x}) = p(x) and any set

E can be modelled by the mass m(E) = 1. In the setting of belief functions, a focal

element is understood as a piece of incomplete information of the form x ∈ E for some

parameter x of interest. Then m(E) can be understood as the probability that all that is

known about x is that x ∈ E; in other words, m(E) is a probability mass that should be

divided over elements of E but is not, due to a lack of information.

From the mapping m are usually defined two set-functions, the belief and the plau-

sibility functions, respectively defined for any A ⊆ X as

Bel(A) = ∑
E⊆A

m(E), (2)

Pl(A) = ∑
E∩A 6= /0

m(E) = 1−Bel(Ac), (3)

with Ac the complement of A. They satisfy Bel(A)≤ Pl(A). The belief function, which

sums all masses of subsets that imply A, measures how much event A is certain, while

the plausibility function, which sums all masses of subsets consistent with A, measures

how much the event A is possible. Within the so-called theory of evidence [26], belief

and plausibility functions are interpreted as confidence degrees about the event A, and

are not necessarily related to probabilities. However, the mass distribution m can also

be interpreted as the random set corresponding to an imprecisely observed random

variable [12], and the measures Bel and Pl can be interpreted as describing a set of

probabilities, that is, we can associate to them a set P(Bel) such that

P(Bel) = {P|∀A,Bel(A)≤ P(A)≤ Pl(A)}

is the set of all probabilities bounded by Bel and Pl. The belief function can then

be computed as a lower probability Bel(A) = infP∈P(Bel) P(A) and the plausibility

function likewise as an upper probability. Note that, since Bel and Pl are conjugate

(Bel(A) = 1−Pl(Ac)), we can restrict our attention to one of them.
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Consider now a collection of events An = {A1, . . . ,An|Ai ⊆ X } of subsets of X

and a mass distribution m from which a belief function Bel can be computed. For any

collection An the inequality [26]

Bel(∪n
i=1Ai)≥ ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (4)

is valid. This property is called order-n supermodularity, and belief functions are

super-modular for any n > 0. While the inclusion-exclusion property (1) of proba-

bilities is a mere consequence of the additivity axiom (for n = 2), supermodularity of

order n does not imply supermodularity of order n+1; and the supermodularity prop-

erty valid at any order is characteristic of belief functions.

If Equation (4) is an equality for some family An, we say that the belief function is

additive for this collection, or An-additive, for short. Equation (4) is to be compared to

Equation (1). Note that in the following we can assume without loss of generality that

for any i, j, Ai 6⊆ A j, i.e, there is no pairwise inclusion relation between the sets of An

(otherwise Ai can be suppressed from Equation (4)). Then the family An is said to be

proper.

2.2. General necessary and sufficient conditions

In the case of two events A1 and A2, neither of which is included in the other, the

basic condition for the inclusion-exclusion law to hold is that focal elements in A1 ∪A2

should only lie (be included) in A1 or A2. Indeed, otherwise, if there exists an event

E ⊆ A1 ∪A2 with E 6⊆ A1, E 6⊆ A2 and m(E)> 0, then

Bel(A1 ∪A2)≥ m(E)+Bel(A1)+Bel(A2)−Bel(A1 ∩A2)

> Bel(A1)+Bel(A2)−Bel(A1 ∩A2).

This means that, in order to ensure {A1,A2}-additivity, one must check that

Fm ∩2A1∪A2 = Fm ∩
(
2A1 ∪2A2

)
(5)

where 2C denotes the set of subsets of C. So, one must check that for all events E ∈Fm

such that E ⊆ (A1 ∪A2), either E ⊆ A1 or E ⊆ A2, or equivalently

Lemma 1. A belief function is additive for {A1,A2} if and only if for all events E ⊆
A1 ∪A2 such that (A1 \A2)∩E 6= /0 and (A2 \A1)∩E 6= /0 then m(E) = 0.

Proof. Immediate, as E overlaps A1 and A2 without being included in one of them if

and only if (A1 \A2)∩E 6= /0 and (A2 \A1)∩E 6= /0.

Note that if {A1,A2} is not proper, the belief function is trivially additive for it.

Figure 1 provides an illustration of a focal element that makes a belief function non-

additive for events A1 and A2. This result can be extended to the case where An =
{A1, . . . ,An|Ai ⊆ X } in a quite straightforward way:

Proposition 1. Fm ∩ 2A1∪...∪An = Fm ∩
(
2A1 ∪ . . .∪2An

)
⇔ ∀E ⊆ (A1 ∪ . . .∪An), if

E ∈ Fm then 6 ∃Ai,A j with (Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.
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A1 A2E

Figure 1: Focal element E of non-additive belief function for {A1,A2}

Proof. Fm ∩2A1∪...∪An = Fm ∩
(
2A1 ∪ . . .∪2An

)

if and only if 6 ∃E ∈ Fm ∩
(
2A1∪...∪An \

(
2A1 ∪ . . .∪2An

))

if and only if 6 ∃E ⊆ (A1 ∪ . . .∪An),E ∈ Fm such that ∀i = 1, . . . ,n,E 6⊆ Ai

if and only if 6 ∃i 6= j,E ∈ Fm,E 6⊆ Ai,E 6⊆ A j,E ∩Ai 6= /0,E ∩A j 6= /0

if and only if 6 ∃i 6= j,E ∈ Fm, with (Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0

So, based on Proposition 1, we have:

Theorem 2. The equality

Bel(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (6)

holds if and only if for all E ⊆ (A1 ∪ . . .∪An), if m(E)> 0 then there is no pair Ai,A j

with (Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.

Theorem 2 shows that going from A2-additivity to An-additivity is straightforward,

as ensuring An-additivity comes down to checking the conditions of A2-additivity for

every pair of subsets in An. This feature makes the verification of the property rather

inexpensive. Finally, note that if the family An is not proper, it means A j ⊆ Ai for some

i 6= j and it is then impossible that ∃E,(Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0. So, we

can dispense with checking the condition for those pairs of sets.

2.3. Inclusion-exclusion for plausibilities

Note that by duality one also can write a form of inclusion-exclusion property for

plausibility functions:

Pl(∩n
i=1Bi) = ∑

I⊆Bn

(−1)|I |+1Pl(∪B∈I B) (7)

for a family of sets Bn = {Ac
i : Ai ∈ An} where An satisfies the condition of Propo-

sition 1. Although Equation (7) provides us with a kind of inclusion-exclusion prop-

erty for plausibilities, it does not provide insight about the conditions under which the

equality

Pl(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1Pl(∩A∈I A) (8)

holds. In this section, we will investigate this issue, concluding that the case of plausi-

bility functions is harder to deal with, and less practically interesting than the case of

belief functions.
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A1 A2
E

Figure 2: Focal element E of non-additive plausibility function for {A1,A2}

Let us first deal with two events A1 and A2. In this case, any focal element E over-

lapping A1 ∪A2 should not overlap A1 and A2 without overlapping A1 ∩A2, otherwise

let E be the non-empty set of focal elements that overlap A1 and A2 without overlapping

A1 ∩A2. It is then clear that Pl is strictly submodular, i.e.:

Pl(A1 ∪A2)+ ∑
E∈E

m(E) = Pl(A1)+Pl(A2)−Pl(A1 ∩A2).

and additivity fails. This leads us to the following condition for a plausibility function

to be A2-additive.

Lemma 2. A plausibility function is A2-additive for A2 = {A1,A2} if and only if ∀E ∩
(A1 ∪A2) 6= /0 such that E ∩ (A1 \A2) 6= /0, E ∩ (A2 \A1) 6= /0 and E ∩ (A1 ∩A2) = /0,

then m(E) = 0.

It should be noted that this condition is similar to, but quite different from the one in

Lemma 1, as any set overlapping A1 ∩A2 but not included in A1 ∩A2 can receive a pos-

itive mass without leading to a violation of A2-additivity for the associated plausibility

function. This is not the case for belief functions: for instance, the focal element of

Figure 1 is not in contradiction with Lemma 2 (plausibility could still be A2-additive).

Figure 2 pictures a focal element that would make the plausibility not A2-additive.

Nevertheless, the condition for A2-additivity in Lemma 2 can be equivalently ex-

pressed as follows

Fm ∩2(A
c
1∪Ac

2) = Fm ∩
(

2Ac
1 ∪2Ac

2

)

,

which can be deduced from Equation (5), using the fact that for two subsets A1,A2, the

A2-additivity of a plausibility function is equivalent to the A2-additivity of the dual

belief function for Ac
1,A

c
2 (clearly, Pl(A1 ∪A2) = Pl(A1)+Pl(A2)−Pl(A1 ∩A2) is the

same equation as Bel(Ac
1 ∪Ac

2) = Bel(Ac
1)+Bel(Ac

2)−Bel(Ac
1 ∩Ac

2)).
However, the situation for plausibility functions is more involved than the one for

belief functions, and Lemma 2 cannot be straightforwardly extended to the case of n

events, as the A3-additivity of a plausibility function for A1,A2,A3 :

Pl(A1 ∪A2 ∪A3) = ∑
Ai

Pl(Ai)

︸ ︷︷ ︸

term 1

− ∑
Ai,A j

Pl(Ai ∩A j)

︸ ︷︷ ︸

term 2

+Pl(A1 ∩A2 ∩A3)
︸ ︷︷ ︸

term 3

. (9)
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A1

A2A3

3.a

A1

A2A3

3.b

A1

A2A3

3.c

Figure 3: Plausibility A3-additivity illustration

is no longer equivalent to A3-additivity for the conjugate belief function for Ac
1,A

c
2,A

c
3.

For one, the two equations are no longer the same. Moreover, the condition

Fm ∩2(A
c
1∪Ac

2∪Ac
3) = Fm ∩

(

2Ac
1 ∪2Ac

2 ∪2Ac
3

)

no longer ensures the A3-additivity of the plausibility function. For instance if E =
(A1 \ (A2 ∪A3))∪ (A2 \ (A1 ∪A3)), a subset of Ac

3 pictured in Figure 3.a, is focal, the

mass of this element is counted once in the left-hand side of Equation (9), twice in term

1 and zero times in terms 2 and 3 of the right-hand side, so A3-additivity fails for this

plausibility function on these sets.

Also, in the case of plausibility functions, we cannot expect An-additivity to follow

from A2-additivity between all pairs of events. Consider indeed the following possible

focal elements:

• E is included in ((A1 ∩A2)\A3)∪((A2 ∩A3)\A1) (pictured in Figure 3.b): such

an element is counted once in the left-hand side of Equation (9), thrice in term 1,

twice in term 2 and zero times in term 3 of the right-hand side, hence we can have

m(E)> 0 without violating A3-additivity. Yet, set E is such that E ∩ (A1 \A3) 6=
/0, E ∩ (A3 \ A1) 6= /0 and E ∩ (A1 ∩ A3) = /0, showing that it does not satisfy

Lemma 2 for the pair A1,A3, and that this feature does not forbid A3-additivity

to hold for plausibilities;

• E is included in ∪i6= j 6=k ((Ai ∩A j)\Ak) (pictured in Figure 3.c): such an element

is counted once in the left-hand side of Eq. (9), thrice in term 1, thrice in term

2 and zero times in term 3 of the right-hand side, hence A3-additivity does not

hold if m(E)> 0. But E satisfies Lemma 2 for all three pairs, which proves not

sufficient to ensure A3-additivity for plausibilities.

This suggests that obtaining easy-to-check conditions for An-additivity to hold for

plausibility in a general setting will be difficult, if not impossible. Of course, one can

check for a given collection An that every focal element E ∈ Fm overlapping ∪A∈An
A

is counted once in the right- and left-hand side of (8), yet such a tedious verification

would defeat the purpose of using the inclusion-exclusion principle as a practical means

to achieve efficient computations.

For this reason, we shall not deal with general conditions for the inclusion-exclusion

principle to hold for plausibility functions. Yet we will mention those cases (which turn
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Figure 4: Two possible decompositions of an event A into rectangular subsets

out to be often met in practice) when the conjugacy Equation (3) with respect to belief

functions can be exploited to compute Pl(∪n
i=1Ai).

3. When focal elements are Cartesian products

The previous section has formulated general conditions for An-additivity to hold for

a given family of sets. In this section, we investigate a practically important particular

case where focal elements and events Ai, i = 1, . . . ,n are Cartesian products. That is,

we assume that X = X 1 × . . .×X D := X 1:D is the product of finite spaces X i,

i = 1, . . . ,D. We will call the spaces X i dimensions. We will denote by xi the value of

a variable (e.g., the state of a component, the value of a propositional variable) on X i.

Given A ⊆ X , we will denote by Ai the projection of A on X i. Let us call rectan-

gular a subset A ⊆X that can be expressed as the Cartesian product A = A1× . . .×AD

of its projections (in general, only A ⊆ A1 × . . .×AD holds for all subsets A). A rectan-

gular subset A is completely characterized by its projections.

In the following, we derive conditions for the n-additivity property over families An

containing rectangular sets only, when the focal elements of mass functions defined on

X are also rectangular (to simplify the proofs, we will also assume that all rectangular

sets are focal elements).

Assuming focal elements to be rectangular is a restrictive assumption, as they can-

not be freely manipulated and decomposed in different ways, but we discuss in Sec-

tion 3.3 those (many) practical situations where such focal elements will appear. How-

ever, assuming that the collection of sets An = {A1, . . . ,An} over which the belief value

Bel(∪n
i=1An) must be evaluated is not very restrictive, at least in the finite case. Indeed,

any such set Ai ⊆ X can then be decomposed into a (non-unique) finite union of (not

8



necessarily disjoint) rectangular subsets. To see this, note that there exists an elemen-

tary way to always achieve such a decomposition: one can always decompose A as the

union of its singletons, each of them being a degenerate rectangular subset. Figure 4

illustrates two possible decompositions of the same subset A. However, we shall see

that such a decomposition is not always very interesting for applying the inclusion-

exclusion principle. The results of this section also provide conditions under which

such a decomposition will allow one to apply the inclusion-exclusion principle.

3.1. Two sets, two dimensions

Let us first explore the case n = 2 and D = 2, that is A2 = {A1,A2} with Ai =
A1

i × A2
i for i = 1,2. The main idea in this case is that if A1 \ A2 and A2 \ A1 are

rectangular with disjoint projections, then 2-additivity holds for belief functions, and

this property is characteristic.

Lemma 3. If A1 and A2 are rectangular and have disjoint projections on dimensions

X 1,X 2, then there is no rectangular subset of A1 ∪A2 overlapping both A1 and A2.

Proof. Consider C =C1×C2 overlapping both A1 and A2. So there is (a1,a2)∈ A1∩C

and b1 × b2 ∈ A2 ∩C. Since C is rectangular, (a1,b2) and (b1,a2) ∈ C. However if

C ⊆ A1 ∪A2 then (a1,b2) ∈ A1 ∪A2 and either b2 ∈ A2
1 or a1 ∈ A1

2. Since a1 ∈ A1
1 and

b2 ∈ A2
2 by assumption, it would mean that projections of A1 and A2 are not disjoint,

which leads to a contradiction.

We can now characterise under which conditions 2-additivity holds for belief func-

tions

Theorem 3. 2-additivity applied to a proper family A2 = {A1,A2} of rectangular sets

holds for belief functions having rectangular focal elements if and only if one of the

following conditions holds

1. A1
1 ∩A1

2 = A2
1 ∩A2

2 = /0

2. A1
1 ⊆ A1

2 and A2
2 ⊆ A2

1 (or A1
1 ⊇ A1

2 and A2
2 ⊇ A2

1, changing both inclusion direc-

tions).

Proof. First note that inclusions of Condition 2 can be considered as strict, as we have

assumed A1,A2 to not be included in each other, in which case the result immediately

follows from A1 ∪A2 = A1 if A1 ⊆ A2 or from A1 ∪A2 = A2 if A2 ⊆ A1.

⇐:

1. If A1
1∩A1

2 =A2
1∩A2

2 = /0, A1 and A2 are disjoint, as well as their projections. Then

by Lemma 3, all rectangular subsets included in A1 ∪A2 are either included in

A1 or in A2, hence Lemma 1 applies and 2-additivity holds for belief functions.

2. A1
1 ⊂A1

2 and A2
2 ⊂A2

1 imply that A1\A2 =A1
1×(A2

1\A2
2) and A2\A1 =(A1

2\A1
1)×

A2
2. As A1\A2 and A2\A1 are rectangular and have disjoint projections, Lemma 3

and Lemma 1 apply (as above) and 2-additivity holds for belief functions.

⇒:
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Figure 5: Situations satisfying Theorem 3
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Figure 6: Situations not satisfying Theorem 3

1. Suppose A1 ∩A2 = /0 with A1
1 ∩A1

2 6= /0. Then (A1
1 ∩A1

2)× (A2
1 ∪A2

2) is rectan-

gular, not contained in A1 nor A2 but contained in A1 ∪ A2, showing that the

focal element (A1
1 ∩A1

2)× (A2
1 ∪A2

2) does not satisfy Lemma 1 and therefore that

2-additivity does not hold.

2. Suppose A1
1 ⊂ A1

2 but A2
2 6⊂ A2

1. Again, (A1
1 ∩A1

2)× (A2
1 ∪A2

2) = A1
1 × (A2

1 ∪A2
2)

is rectangular, neither contained in A1 nor A2 but contained in A1 ∪A2, hence

2-additivity does not hold.

Figure 5 and 6 show various situations where conditions of Theorem 3 are satisfied

and not satisfied, respectively.

3.2. The multidimensional case

We can now proceed to extend Theorem 3 to the case of any number D of dimen-

sions. However, this extension will not be as straightforward as going from Lemma 1

to Proposition 1, and we need first to characterize when the union of two singletons is

10



rectangular. We will call such rectangular unions minimal rectangles. A singleton is a

degenerate example of a minimal rectangle.

Lemma 4. Let a = (a1, . . . ,aD) and b = (b1, . . . ,bD) be two distinct elements in X .

Then, {a,b} forms a minimal rectangle if and only if there is only one i ∈ [1 : D] such

that ai 6= bi

Proof. ⇒: If ai 6= bi for only one i, then {a,b} = {a1}× . . .×{ai,bi}× . . .{aD} is

rectangular.

⇐: Let us now consider the case where ai 6= bi and a j 6= b j for i 6= j. In this case,

{a,b}= {(a1, . . . ,ai, . . . ,a j, . . . ,aD),(a1, . . . ,bi, . . . ,b j, . . . ,aD)}.

The projections of {a,b} on the dimensions of X are {ak,bk}, and we know that

{ai,bi} as well as {a j,b j}, do not reduce to singletons. Hence, the Cartesian product

of the projections of {a,b} contains the set {a1}× . . .×{ai,bi}×{a j,b j}× . . .×{an},

that contains elements not in {a,b} (e.g. (a1, . . . ,bi, . . . ,a j, . . . ,aD)). Since {a,b} is

not characterised by its projections on dimensions Xi, it is not rectangular, and this

finishes the proof.

As mentioned before, any set can be decomposed into rectangular sets, and in par-

ticular any rectangular set can be decomposed into minimal rectangles. Also, any rect-

angular set that is not a singleton will at least contain one minimal rectangle, implying

that there always exist at least two singletons of a rectangular set forming a minimal

rectangle (we will use this in subsequent proofs). Let us now show how Theorem 3 can

be extended to D dimensions.

Theorem 4. 2-additivity holds for a proper family A2 = {A1,A2} of rectangular sets

for belief functions having rectangular focal elements if and only if one of the following

conditions holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that A
p
1 ∩A

p
2 = A

q
1 ∩A

q
2 = /0

2. ∀i ∈ {1, . . . ,D} either Ai
1 ⊆ Ai

2 or Ai
2 ⊆ Ai

1

Proof. Again, we can consider that there is at least two distinct p,q ∈ {1, . . . ,D} such

that inclusions A
p
1 ⊂ A

p
2 and A

q
2 ⊂ A

q
1 of Condition 2 are strict, as we have assumed

A1,A2 to not be included in each other (as in Theorem 3 and for the same reasons).

⇐:

1. Any two a1 ∈ A1 and a2 ∈ A2 will be such that ai
1 ∈ Ai

1 and ai
2 ∈ Ai

2 must be

distinct for i = p,q since A
p
1 ∩ A

p
2 = A

q
1 ∩ A

q
2 = /0. By Lemma 4, this means

that there is no pair a1 ∈ A1 and a2 ∈ A2 forming a minimal rectangle. This

implies that there is no minimal rectangle included in A1 ∪A2, and therefore no

rectangular subset. It follows that each rectangular subset included in A1 ∪A2 is

either included in A1 or in A2, hence Lemma 1 applies and 2-additivity holds for

belief functions.

2. Let us denote by P the set of indices p such that A
p
1 ⊂ A

p
2 and by Q the set of

indices q such that A
q
2 ⊂ A

q
1. Now, let us consider two singletons a1 ∈ A1 \A2 and

a2 ∈ A2 \A1. Then

11



• ∃p ∈ P such that a
p
1 ∈ A

p
1 \A

p
2 , otherwise a1 is included in A1 ∩A2

• ∃q ∈ Q such that a
q
2 ∈ A

q
2 \A

q
1, otherwise a2 is included in A1 ∩A2

but since a
q
1 ∈ A

q
1 and a

p
2 ∈ A

p
2 by definition, a1 and a2 must differ at least on two

dimensions, hence by Lemma 4 one cannot form a minimal rectangle outside

A1 ∩A2, that is, by picking pairs of singletons in A1 \A2 and A2 \A1. As above,

this implies that Lemma 1 is satisfied and that 2-additivity holds.

⇒:

1. Suppose A1∩A2 = /0 with A
q
1∩A

q
2 6= /0 only for q. Then the following rectangular

set contained in A1 ∪A2

(A1
1 ∩A1

2)×·· ·× (Aq−1
1 ∩A

q−1
2 )× (Aq

1 ∪A
q
2)× (Aq+1

1 ∩A
q+1
2 ) . . .× (AD

1 ∩AD
2 )

is neither contained in A1 nor A2, so 2-additivity will not hold (by Lemma 1)

2. suppose A1 ∩A2 6= /0 and A
q
1 6⊆ A

q
2, A

q
1 6⊇ A

q
2 for some q. Again,

(A1
1 ∩A1

2)×·· ·× (Aq−1
1 ∩A

q−1
2 )× (Aq

1 ∪A
q
2)× (Aq+1

1 ∩A
q+1
2 ) . . .× (AD

1 ∩AD
2 )

is rectangular, neither contained in A1 nor A2 but contained in A1 ∪A2, so 2-

additivity will not hold (by Lemma 1).

Using Proposition 1, the extension to n-additivity in D dimensions is straightfor-

ward:

Theorem 5. n-additivity holds for a proper family An = {A1, . . . ,An} of rectangular

sets for belief functions having rectangular focal elements if and only if, for each pair

Ai,A j, one of the following conditions holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that A
p
i ∩A

p
j = A

q
i ∩A

q
j = /0

2. ∀ℓ ∈ {1, . . . ,D} either Aℓ
i ⊆ Aℓ

j or Aℓ
j ⊆ Aℓ

i

Note that the second condition is insensitive to set-complements, hence the follow-

ing result:

Corollary 6. n-additivity holds on both An = {A1, . . . ,An} and A −
n = {Ac

1, . . . ,A
c
n}

for belief functions whenever for each pair Ai,A j, ∀ℓ ∈ {1, . . . ,D} either Aℓ
i ⊆ Aℓ

j or

Aℓ
j ⊆ Aℓ

i .

3.3. On the practical importance of rectangular focal elements

While limiting ourselves to rectangular subsets in A is not especially restrictive,

the assumption that focal elements have to be restricted to rectangular sets may seem

restrictive (as we are not free to cut any focal element into rectangular subsets). How-

ever, such mass assignments actually appear in many practical situations. They can

12



result for example from the combination of marginal masses mi defined on each di-

mension X i, i = 1, . . . ,D under an assumption of (random set) independence [10]. In

this case, the joint mass assigned to each rectangular set E is

m(E) =
D

∏
i=1

mi(E i). (10)

Additionally, the random set independent assumption makes the computation of the

belief and plausibility functions of any rectangular set A easier, as they factorize in the

following way:

Bel(A) =
D

∏
i=1

Beli(Ai), (11)

Pl(A) =
D

∏
i=1

Pli(Ai), (12)

where Beli,Pli are the belief/plausibility measures induced by mi.

An interesting fact is that since the proofs of Section 3 only require focal elements

and events to be Cartesian products, they also apply to the cases of unknown or partially

known dependence, as long as these latter cases can be expressed by linear constraints

imposed on the joint mass [2]. Considering more generic models than belief functions

is also possible, e.g. lower probabilities. Then the positivity of the mass functions

mi no longer holds, but the approach can be carried out without modifying our results

since the product of (possibly negative) masses in such approaches preserves the ap-

proximation properties of random set independence [13].

The following sections explore and discuss specific cases of interest where the

inclusion-exclusion property applies.

4. The case of Boolean formulas

In this section, we explore the case where spaces X i are binary. In particular,

conditions are laid bare for applying the inclusion-exclusion property to Boolean for-

mulas expressed in Disjunctive Normal Form (DNF). We also discuss the problem of

estimating plausibilities of Boolean formulas using the inclusion-exclusion property.

In propositional logic, each dimension X i is of the form {xi,¬xi}. It can be as-

sociated to a Boolean variable also denoted by xi, and X 1:D is also called the set of

interpretations of the propositional language generated by the set of variables xi. In this

case, xi is understood as an atomic proposition, while ¬xi denotes its negation. An ele-

ment of X i is called a literal (xi is a positive one and ¬xi a negative one). Any rectan-

gular set A ⊆X 1:D can then be interpreted as a conjunction of literals (it is often called

a partial model), and given a collection of n such partial models An = {A1, . . . ,An}, the

event A1 ∪ . . .∪An is a Boolean formula expressed in Disjunctive Normal Form (DNF

- a disjunction of conjunctions). All Boolean formulas can be written in such a form.

A convenient representation of a partial model A is in the form of an orthopair [8]

(P,N) of disjoint subsets of indices of variables P,N ⊆ [1 : D] such that A(P,N) =
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∧

k∈P xk ∧
∧

k∈N ¬xk. Then an element in X 1:D is of the form
∧

k∈P xk ∧
∧

k∈Pc ¬xk,

i.e. corresponds to an orthopair (P,Pc).
We consider belief functions generated by focal elements having the form of partial

models. To this end, we consider that the uncertainty over each Boolean variable xi

is described by a belief function Beli. As X i is binary, its mass function mi only

needs two numbers to be defined. Indeed, it is enough to know li = Beli({xi}) and

ui = Pli({xi})≥ li (for instance a probability interval [11]) to characterise the marginal

mass function mi since:

• Beli({xi}) = li = mi({xi});

• Pli({xi}) = 1−Beli({¬xi}) = ui =⇒ mi({¬xi}) = Beli({¬xi}) = 1−ui;

• The sum of masses is mi({xi})+mi({¬xi})+mi(X i) = 1, so mi(X i) = ui − li.

Given D independent marginal masses mi on X i, i = 1, . . . ,D, the joint mass m

on X 1:D can be computed as follows for any partial model A(P,N), applying Equation

(10):

m(A(P,N)) =

(

∏
i∈P

li

)(

∏
i∈N

(1−ui)

)(

∏
i/∈P∪N

(ui − li)

)

. (13)

We can then give explicit expressions for the belief and plausibility of conjunctions or

disjunctions of literals in terms of marginal mass functions:

Proposition 7. The belief of a conjunction C(P,N) =
∧

k∈P xk ∧
∧

k∈N ¬xk, and that of

a disjunction D(P,N) =
∨

k∈P xk ∨
∨

k∈N ¬xk of literals forming an orthopair (P,N) are

respectively given by:

Bel(C(P,N)) = ∏
i∈P

li
∏
i∈N

(1−ui), (14)

Bel(D(P,N)) = 1−∏
i∈P

(1− li)∏
i∈N

ui. (15)

Proof. Bel(C(P,N)) can be obtained by applying Equation (11) to C(P,N).

For Bel(D(P,N)), we have

Pl(C(N,P)) = Pl(∧i∈Nxi ∧∧i∈P¬xi)

= ∏
i∈N

(1− li)∏
i∈P

ui

= 1− (1−∏
i∈N

(1− li)∏
i∈P

ui)

= 1−Bel(∨i∈N¬xi ∨∨i∈Pxi)

= 1−Bel(D(P,N))

with the second equality following from Equation (12).

Using the fact that Bel(C(N,P)) = 1−Pl(D(P,N)), we can deduce

Pl(D(P,N)) = 1−∏
i∈P

li
∏
i∈N

(1−ui).
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We can particularize Theorem 5 to the case of Boolean formulas, and identify con-

ditions under which the belief or the plausibility of a DNF can be easily estimated

using the inclusion-exclusion Equality (1). Let us see how the conditions exhibited in

this theorem can be expressed in the Boolean case.

Consider the first condition of Theorem 5

∃p 6= q ∈ {1, . . . ,D} such that A
p
i ∩A

p
j = A

q
i ∩A

q
j = /0.

Note that when spaces are binary, A
p
i = {xp} (if p ∈ Pi), or A

p
i = {¬xp} (if p ∈ Ni),

or yet A
p
i = X i (if p 6∈ Pi ∪Ni). Ai ∩A j = /0 therefore means that for some index p,

p ∈ (Pi ∩N j)∪ (Pj ∩Ni) (there are two opposite literals in the conjunction).

The condition can thus be rewritten as follows, using orthopairs (Pi,Ni) and (Pj,N j):

∃p 6= q ∈ {1, . . . ,D} such that p,q ∈ (Pi ∩N j)∪ (Pj ∩Ni).

Example 1. Consider the equivalence connective x1 ⇔ x2 = (x1 ∧ x2)∨ (¬x1 ∧¬x2) so

that A1 = x1∧x2 and A2 =¬x1∧¬x2. We have P1 = {1,2},N1 = /0,P2 = /0,N2 = {1,2}.
So, p = 1 ∈ P1 ∩N2,q = 2 ∈ P1 ∩N2, hence the condition is satisfied and Bel(x1 ⇐⇒
x2) = Bel(x1 ∧ x2)+Bel(¬x1 ∧¬x2) (the remaining term is Bel( /0)).

Likewise, the exclusive or : x1 ⊕x2 = (x1 ∧¬x2)∨ (¬x1 ∧x2) so that A1 = x1 ∧¬x2

and A2 = ¬x1 ∧ x2. We have P1 = {1},N1 = {2},P2 = {2},N2 = {2}. So, p = 1 ∈
P1 ∩N2,q = 2 ∈ N1 ∩P2 and Bel(x1 ⊕ x2) = Bel(x1 ∧¬x2)+Bel(¬x1 ∧ x2) (again, the

remaining term is Bel( /0)).

The second condition of Theorem 5 reads

∀ℓ ∈ {1, . . . ,D} either Aℓ
i ⊆ Aℓ

j or Aℓ
j ⊆ Aℓ

i

and the condition Aℓ
i ⊆ Aℓ

j can be expressed in the Boolean case as:

ℓ ∈ (Pi ∩Nc
j )∪ (Ni ∩Pc

j )∪ (Pc
i ∩Nc

i ∩Pc
j ∩Nc

j ).

The condition can thus be rewritten as follows, using orthopairs (Pi,Ni) and (Pj,N j):

Pi ∩N j = /0 and Pj ∩Ni = /0

Example 2. Consider the disjunction x1 ∨ x2, where A1 = x1 and A2 = x2, so that

P1 = {1},P2 = {2},N1 = N2 = /0. So Bel(x1 ∨ x2) = Bel(x1)+Bel(x2)−Bel(x1 ∧ x2).
Likewise for implication, x1 → x2 =¬x1∨x2, where A1 =¬x1 and A2 = x2, so that N1 =
{1},P2 = {2},P1 = N2 = /0. So Bel(x1 → x2) = Bel(¬x1)+Bel(x2)−Bel(¬x1 ∧ x2).

We can summarize the above results as

Proposition 8. The set of partial models An = {A1, . . . ,An} satisfies the inclusion-

exclusion principle if and only if, for any pair Ai,A j one of the two following conditions

is satisfied:

• ∃p 6= q ∈ {1, . . . ,D} such that p,q ∈ (Pi ∩N j)∪ (Pj ∩Ni).

• Pi ∩N j = /0 and Pj ∩Ni = /0
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This condition tells us that for any pair of partial models, :

• either conjunctions Ai,A j contain at least two opposite literals,

• or events Ai,A j have a non-empty intersection and have a common model.

As a consequence we can compute the belief of any logical formula that obeys the

conditions of Proposition 8 in terms of the belief and plausibilities of atoms xi.

Example 3. Consider the formula (x1∧¬x2)∨(¬x1∧x2)∨x3, with A1 = x1∧¬x2, A2 =
¬x1 ∧ x2, A3 = x3. We have P1 = {1},N1 = {2},P2 = {2},N2 = {1},P3 = {3},N3 = /0.

Thus it satisfies Proposition 8, and

Bel((x1 ∧¬x2)∨ (¬x1 ∧ x2)∨ x3)

= Bel(x1 ∧¬x2)+Bel(¬x1 ∧ x2)+Bel(x3)−Bel(x1 ∧¬x2 ∧ x3)−Bel(¬x1 ∧ x2 ∧ x3)

(other belief values are equal to 0 since referring to contradictory Boolean expressions)

=l1(1−u2)+(1−u1)l2 + l3(1− l1(1−u2)− (1−u1)l2)

The conditions of Proposition 8 allow us to check, once a formula has been put

in DNF, whether or not the inclusion-exclusion principle applies. Important particular

cases where it applies are disjunctions of partial models Ci having only positive (resp.

negative) literals, of the form C1 ∨ ...∨Cn, where N1 = . . .= Nn = /0 (resp. P1 = . . .=
Pn = /0). This is the typical Boolean formula obtained in fault tree analysis, where

elementary failures are modelled by positive literals, and the general failure event is due

to the simultaneous occurrence of some subsets of elementary failures (see Section 6.1).

Namely, we have

Bel(C1 ∨ ...∨Cn) =
n

∑
i=1

Bel(Ci)−
n−1

∑
i=1

n

∑
j=i+1

Bel(Ci ∧C j)

+
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

Bel(Ci ∧C j ∧Ck)− ...+(−1)m+1Bel(C1 ∧ ...∧Cn),

(16)

where the terms on the right-hand side can be computed from belief values of atoms as

Bel(C(P, /0)) = ∏i∈P li as per Proposition 7.

More generally, the inclusion-exclusion principle applies to disjunctions of partial

models which can, via a renaming, be rewritten as a disjunction of conjunctions of

positive literals: namely, whenever a single variable never appears in a positive and

negative form in two of the conjunctions. This is equivalent to the second condition of

Proposition 8. Then, of course, values 1− ui must be used in place of li for negative

literals.

For such Boolean formulas, the inclusion-exclusion principle can also be used to

also estimate the plausibility of C1∨ ...∨Cn. Indeed, consider the formula ∨i∈[1:n]

(
∧k∈Pi

xi
)

possibly obtained after a renaming, then

¬
(
∨i∈[1:n]

(
∧k∈Pi

xi
))

= ∧i∈[1:n]¬
(
∧ j∈Pi

x j
)

= ∧i∈[1:n]∨ j∈Pi
¬x j

= ∨~k∈P1×···×Pn
∧ j∈[1:n]¬xk j
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using distributivity, where ~k ranges on n-tuples of indices (one component per con-

junction Ci). Namely, starting with a DNF involving conjunctions of positive literals,

∧i∈[1:n]∨ j∈Pi
¬x j is turned into a DNF with only negative literals, to which the second

condition of Proposition 8 applies, and

Pl
(
∨i∈[1:n]

(
∧k∈Pi

xi
))

= 1−Bel
(

∨~k∈P1×···×Pn]
∧ j∈[1:n]¬xki

)

.

On the other hand, it is not always possible to put the complement of every formula

satisfying the second condition of Proposition 8 in a DNF form that also satisfies Propo-

sition 8.

Example 4. Consider the equivalence formula between three elements, that is the for-

mula F = (¬x1 ∧¬x2 ∧¬x3)∨ (x1 ∧ x2 ∧ x3). It satisfies Proposition 8, but its negation

¬F = (x1 ∧¬x2)∨ (x2 ∧¬x3)∨ (x3 ∧¬x1), (17)

once put in DNF form, does not satisfy Proposition 8 (each pair of conjunctions pos-

sesses only one variable with opposite literal). However, the negation of other formulas

such as logical equivalence between two elements possesses a DNF form ¬(x1 ⇔ x2) =
(x1 ∧¬x2)∨ (¬x1 ∧ x2) that satisfies Proposition 8.

Example 5. As another example where the inclusion-exclusion principle cannot be

applied, consider the formula x1 ∨ (¬x1 ∧ x2) (which is just the disjunction x1 ∨ x2

we already considered above). It does not hold that Bel(x1 ∨ (¬x1 ∧ x2)) = Bel(x1)+
Bel(¬x1 ∧ x2) = l1 +(1− u1)l

2. Indeed the latter sum neglects m(x2) = (u1 − l1)l2,

since x2 is a focal element that implies x1 ∨ x2 but neither x1 nor ¬x1 ∧ x2. However,

computing Bel(x1 ∨ x2) is obvious as 1− (1− l1)(1− l2) from Proposition 7.

The last remark suggests that normal forms that are very useful to compute the

probability of a Boolean formula efficiently, such as BDD [6] may be useless to speed

up the computation of its belief and plausibility degrees. For instance, x1 ∨ (¬x1 ∧ x2)
is a binary decision diagram (BDD) for the disjunction, and this form prevents Bel(x1∨
x2) from being properly computed by standard methods as the inclusion-exclusion prin-

ciple fails in this case. The question whether any Boolean formula can be re-expressed

in a form satisfying Proposition 8 is answered to the negative by Formula (17), which

provides a counterexample to this claim.

5. The case of events defined by monotone functions

In this section, we show that the inclusion-exclusion principle can be applied to

evaluate some events of interest defined by means of monotone functions on Cartesian

products of discrete linearly ordered spaces. Such functions are commonly used in

problems such as multi-criteria decision making [20], reliability assessments [14] or

optimization problems [19].

We assume that we have some function φ : X 1:D → Y where variables x j, j =

1, . . . ,D take their values on a finite linearly ordered space X j = {x
j
1, . . . ,x

j
k j
} of k j

elements. We denote by ≤ j the order relation on X j and assume (without loss of

generality) that elements are indexed such that x
j
i < j x

j
k iff i < k. We also assume that
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the output space Y is ordered and we denote by ≤Y the order on Y , assuming an

indexing such that yi <Y yk iff i < k. Given two elements x,z ∈X 1:D, we simply write

x ≤ z if x j ≤ j z j for j = 1, . . . ,n, and x < z if moreover x j < j z j for at least one j.

We assume that the function is non-decreasing in each of its variables x j, that is

φ(x1
i1
, . . . ,xℓiℓ , . . . ,x

D
iD
)≤Y φ(x1

i1
, . . . ,xℓi′ℓ

, . . . ,xD
iD
) (18)

iff iℓ ≤ i′ℓ. Note that a function monotone in each variable x j can always be transformed

into a non-decreasing one, since if φ is decreasing in Xi, it becomes non-decreasing in

xi when considering the reverse ordering of ≤ j (i.e., x
j
i < x

j
k iff k < i).

We now consider the problem where we want to estimate the uncertainty of some

event {φ ≥ d} (or {φ < d}, that can be obtained by duality). Evaluating the uncertainty

over such events is instrumental in a number of applications, from checking whether

a threshold can be trespassed in risk analysis [3] to computing level sets when solving

the Choquet integral, e.g., in multi-criteria decision making [20]. Given a value d ∈Y ,

let us define the concept of minimal path and minimal cut vectors.

Definition 1. A minimal path (MP) vector p for value d, induced by a function φ , is

an element p ∈ X 1:D such that φ(p)≥ d and φ(y)< d for any y < p.

Definition 2. A minimal cut (MC) vector c for value d, induced by a function φ , is an

element c ∈ X 1:D such that φ(c)< d and φ(y)≥ d for any y > c.

Let {p1, . . . , pn} be the set of all minimal path vectors of some function φ for a

given threshold demand d. We denote by Api
= {x ∈ X 1:D|x ≥ pi} the event corre-

sponding to the set of configurations dominating the minimal path vector pi and by

An = {Ap1
, . . . ,Apn} the set of events induced by minimal path vectors. Note that each

set

Api
=×D

j=1{x j|x j ≥ j p
j
i } (19)

is rectangular, hence we can use results from Section 3.

Lemma 5. The collection of rectangular sets An induced by minimal path vectors

satisfies Theorem 5

Proof. Consider two events Api
, Ap j

induced by minimal path vectors and a dimension

ℓ, then clearly either {xℓ ≥ℓ pℓi } ⊆ {xℓ ≥ℓ pℓj} (Aℓ
pi
⊆ Aℓ

p j
) or {xℓ ≥ℓ pℓi } ⊇ {xℓ ≥ℓ pℓj}

(Aℓ
pi
⊇ Aℓ

p j
).

It can be checked that {x ∈ X 1:D|φ(x)≥ d}=∪n
i=1Api

. We can therefore write the

inclusion-exclusion formula for belief functions:

Bel(φ(x)≥ d) = Bel(Ap1
∪ . . .∪Apn) = ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)< d)
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Under the assumption of random set independence, computing each term simplifies

into

Bel(Ap j
) =

D

∏
i=1

Bel({xi ≥ pi
j})

Bel(Ap j
∩ . . .∩Apk

) =
D

∏
i=1

Bel({xi ≥ max(pi
j, . . . , pi

k)})

The computation of Bel(φ(x) < d) can be carried out similarly by using minimal

cut vectors. Let c1, . . . ,cm be the set of all minimal cut vectors of φ for threshold d.

Then Aci
= {x ∈ X 1:D|x ≤ ci} = ×D

j=1{x j|x j ≤ j c
j
i } is rectangular and we have the

following result, whose proof is similar to the one of Lemma 5.

Lemma 6. The collections of rectangular sets Am induced by minimal cut vectors

satisfy Theorem 5

Denoting Am = {Ac1
, . . . ,Acm} the set of events induced by minimal cut vectors,

we have that {x ∈ X 1:D|φ(x)< d}= ∪m
i=1Aci

, hence applying the inclusion-exclusion

formula for belief functions gives

Bel(φ(x)< d) = Bel(Ac1
∪ . . .∪Acm) = ∑

I⊆Am

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)≥ d).

This also shows that the inclusion-exclusion formula can be used to estimate both belief

and plausibilities of events of the type {φ ≥ d} and {φ < d} when φ is monotone.

6. Application in reliability analysis

In this section, we illustrate how our results can be used in the particular field of

reliability analysis, as this field is typically concerned with monotone and potentially

large systems for which marginal uncertainty models are specified on components. We

first deal with binary systems before addressing the case of Multi-State Systems (MSS).

6.1. Reliability of binary systems

In classical system reliability, X i are the states of some component, and the system

state depends on the joint state of elements. We will consider the most common case in

which X i = {xi,¬xi} is binary, xi being a Boolean variable meaning that component

i works, ¬xi that it failed. The structure function φ : X → {0,1} specifies when the

system works (φ = 1) and when it does not. The problem is then to evaluate, from

the joint mass m, the values Bel(φ−1(1)) = 1−Pl(φ−1(0)) and Bel(φ−1(0)) = 1−
Pl(φ−1(1)). This is a special case of the one addressed in Section 4.

In the binary case, a minimal path p can be expressed as a subset Sp ⊆ [1 : D]
(the counterpart of a minimal vector path in Section 5). It indicates a minimal set of

elements that must be in working state, in the sense that if only those components are

working, then the system is guaranteed to work but will fail if one of them fails. For

19



•

1

4

2

5

3 •

Figure 7: Bridge system

example, Sp = {1,2} states that φ(x1,x2, . . .) = 1 whatever the values of the other

components. Note that two minimal paths p1 and p2 are such that Sp1
6⊆ Sp2

and

Sp2
6⊆ Sp1

, otherwise one of the two is not minimal.

A minimal path p specifies a partial model (a conjunction of literals) Ap with no

negative literal (an orthopair (P,N) = (Sp, /0) in the notations of Section 4). If p1, . . . , pn

are the minimal paths of a system, then φ−1(1) is the disjunction Ap1
∨ . . .∨Apn . This

means that computing our belief in the fact that a system will work is given by

Bel(φ−1(1)) = Bel(Ap1
∨ . . .∨Apn). (20)

That Ap1
∨ . . .∨Apn satisfies Proposition 8 is immediate, as only positive literals appear

in the formulas.

The same reasoning can be carried out for minimal cuts c to obtain Bel(φ−1(0)).
In this case we can specify a set of m minimal cuts, a minimal cut c being encoded

as a subset Sc ⊆ [1 : D] indicating a minimal set of components such that, if all of

them fail, then the system is guaranteed to fail. For example, Sc = {1,2} states that

φ(¬x1,¬x2, . . .) = 0 whatever the values of the other components. As for minimal

paths, a minimal cut c specifies partial models (P,N) such that P = /0 and N = Sc.

Given the minimal paths p1, . . . , pn and cuts c1, . . . ,cm of a system, the whole reli-

ability of the system can be computed as

Bel(φ−1(1)) = ∑
I⊆[1:n]

(−1)|I |+1Bel(∩i∈I Api
), (21)

Bel(φ−1(0)) = ∑
I⊆[1:m]

(−1)|I |+1Bel(∩i∈I Aci
) (22)

These equations are particularly easy to evaluate using Equation (14).

Example 6. Let us take the example of a bridge system, pictured in Figure 7. Note that

this system is complex, in the sense that it cannot be reduced to a set of parallel and

series connections.

The minimal paths and cuts of this system are the following (we only write pi for

Spi
, etc.):

p1 = {1,2} c1 = {1,4}

p2 = {4,5}] c2 = {2,5}

p3 = {1,3,5} c3 = {1,3,5}

p4 = {2,3,4} c4 = {2,3,4}
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x1 x2 x3 x4 x5

Pl(xi) 0.72 0.79 0.88 0.92 0.91

Bel(xi) 0.70 0.75 0.80 0.85 0.90

Table 1: Binary reliability uncertainty.

The uncertainty information on component states is given in Table 1. Equations

(21) and (22) can then be computed efficiently. For example, the degree of belief

associated to the event Ap1
∩Ap2

induced by the minimal paths p1, p2 is

Bel(Ap1
∩Ap2

) = Bel({x1})Bel({x2})Bel({x4})Bel({x5}).

The final reliability of the bridge system is [Bel(φ−1(1)),Pl(φ−1(1))] = [0.92,0.96]
using the results of the two previous sections.

6.2. Multi-State Systems (MSS) reliability

In the previous subsection, we made the usual assumption in system reliability

analysis that components can assume 2 states: failed or working. Multi-State Systems

(MSS) reliability goes beyond this assumption. It allows each component to be in one

of multiple (exclusive) states. For example, a power station may have four different

states corresponding to generating electricity at 0, 25, 50, 75 and 100 percent of its full

capacity.

In recent years, multi-state system reliability analysis has received considerable

attention, yet less than binary systems. The complexity in MSS analysis is due to

the non-binary nature of the system and its components. There are many solutions

to reduce this complexity, such as Markov methods [27, 7], discrete event simulation,

among others. We refer to Lisnianski and Levitin [25] for a detailed review of the

problem. MSS analysed in this section are such that

• the components are s-independent, meaning that the occurrence of one compo-

nent state change event has no influence on the occurrence of the other state

change event;

• the states of each component of the MSS are mutually exclusive, i.e. at any time,

any component is in one of its states;

• the MSS is coherent (if one state component efficiency increases, the overall

efficiency increases).

Let us now show that for such systems, we can define minimal path sets and minimal

cut sets that satisfy the inclusion-exclusion principle.

6.2.1. Minimal path sets and minimal cut sets of MSS

In reliability analysis, variables x j, j = 1, . . . ,D correspond to the D components

of the system and the value x
j
i is the ith state of component j. Typically, states are

ordered according to their performance rates, hence we can assume the spaces X j
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Figure 8: Flow transmission system

to be ordered. X 1:D corresponds to the system states and Y = {y1, . . . ,y|Y |} is the

ordered set of global performance rates of the system.

The structure function φ : X 1:D → Y maps the system states to the global system

performance. Our assumption that the system is coherent means that the function φ is

non-decreasing, in the sense of Equation (18). Note that, in this work and for simplicity,

the term “multi-state system” is used to designate systems where both components and

system performance take several possible states (such systems being usually called

multi-state systems with multi-state components).

As the structure function of a MSS is monotone, we can directly apply the results

from Section 5 to estimate uncertainty bounds about the event {φ ≥ d}, where d ∈ Y .

Estimating such an uncertainty is a typical task in multi-state reliability analysis, as it

amounts to estimating the degree of certainty that a system will guarantee a level d of

performance. This is illustrated in the next section.

6.2.2. Example

Let us now illustrate our approach on a complete example, inspired from Ding and

Lisnianski [15]. The results of the belief function approach will be compared to the

ones obtained using the UGF1 probability interval approach proposed by Li et al. [24]2.

In this example, we aim to evaluate the availability of a flow transmission system

design presented in Figure 8 and made of three pipes. The flow is transmitted from left

to right and the performance of a pipe is measured by its transmission capacity (tons

per minute). It is supposed that elements 1 and 2 have three states: a state of total

failure corresponding to a capacity of 0, a state of full capacity and a state of partial

failure. Element 3 only has two states: a state of total failure and a state of full capacity.

All performance levels are precise.

The state performance levels and the state probabilities of the flow transmitter sys-

tem are given in Table 3. In Li et al. [24], these probabilities are obtained with the

imprecise Dirichlet model [5]. We aim to estimate the availability of the system when

d = 1.5.

The minimal paths are

p1 = {x1
1,x

2
2,x

3
2}= {0,1.5,4}, p2 = {x1

3,x
2
1,x

3
2}= {1.5,0,4}.

1Universal Generating Function
2A comparison of Li et al. [24] and Ding and Lisnianski [15] can be found in Li et al. [24]
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x1 0 0 0 0 0 0 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5
x2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2

x3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

y = φ(x1,x2,x3) 0 0 0 1.5 0 2 0 1 0 2.5 0 3 0 1.5 0 3 0 3.5

Table 2: Performance rates of the oil transmission system

The set Ap1
and Ap2

of vectors a such that a ≥ p1, b ≥ p2 are

Ap1
= {0,1,1.5}×{1.5,2}×{4} and Ap2

= {1.5}×{0,1.5,2}×{4},

and their intersection Ap1
∩Ap2

of vectors c such that c ≥ p1 ∧ p2 (with ∧= min) is

Ap1
∩Ap2

= {1.5}×{1.5,2}×{4}.

Applying the inclusion-exclusion formula for a demand level d = 1.5, we obtain

Bel(φ ≥ 1.5) = Bel(Ap1
)+Bel(Ap2

)−Bel(Ap1
∩Ap2

)

For example, we have

Bel(Ap1
) = Bel({0,1,1.5}×{1.5,2}×{4})

= Bel({0,1,1.5}) ·Bel({1.5,2}) ·Bel({4})

= 1 ·0.895 ·0.958

= 0.8574

and Bel(Ap2
), Bel(Ap1

∩Ap2
) can be computed similarly. Finally we get

Bel(φ ≥ 1.5) = 0.8574+0.7654−0.6851 = 0.9377

and by duality with Bel(φ < 1.5), we get

Pl(φ ≥ 1.5) = 1−Bel(φ < 1.5) = 0.9523.

The availability As of the flow transmission system for a demand level d = 1.5 is given

by As = [0.9377,0.9523]. The use of the interval UGF method proposed by Li et al.

[24] leads to As
IUGF = [0.9215,0.9855]. Note that we always have [Bel(A),Pl(A)] ⊆

As
IUGF , as the Li et al. approach uses an interval arithmetic approach, which is known

to provide quite conservative approximations in the presence of repeated variables (as

is often the case when using the inclusion-exclusion principle).

7. Comparison with strong independence

It should be noticed, as shown by Jacob et al. [22], that using random set indepen-

dence should not be confused with an assumption of stochastic independence between

ill-known probabilities. In this section, we will compare the previously used notion of

random set independence to the one of strong independence, which can be interpreted

as a robust version (i.e., applied to sets of probabilities) of the notion of stochastic inde-

pendence. We will then discuss the effects of using one independence notion in place

of the other in the previously treated problems.
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Component G j 1 2 3

p
j
1 [0.096,0.106] [0.095,0.105] -

p
j
2 [0.095,0.105] [0.195,0.205] [0.032,0.042]

p
j
3 [0.799,0.809] [0.7,0.71] [0.958,0.968]

g
j
1 0 0 -

g
j
2 1 1.5 0

g
j
3 1.5 2 4

Table 3: Parameters of the flow transmission system

7.1. Two distinct independence notions

So far, we have mainly considered that the joint mass over X 1:D was obtained by

combining marginal masses mi using Equation (10). It corresponds to the notion of

random set independence. Yet, within the imprecise probabilistic literature, there are

many other notions of independence available [10, 9], and it is out of the scope of this

paper to discuss all of them. In this section, we will compare our results with those that

would be obtained using a robust version of stochastic independence, usually called

strong independence.

If P(Beli) denotes the set of probabilities compatible with mi on dimension i,

then the joint model PSI obtained by applying stochastic independence to elements of

P(Beli), i = 1, . . . ,n is

PSI = {
D

∏
i=1

Pi|Pi ∈ P(Beli)}. (23)

Assuming strong independence consists in representing our knowledge by means of

the convex hull of PSI , that we will denote by PSI . Particularly interesting elements

of PSI are its extreme points, that are obtained by computing the product of extreme

points of P(Beli), i = 1, . . . ,n (hence extreme points of PSI are also in PSI).

In the particular case where a probability set P(Bel) is induced by a mass function

m on 2X , its extreme points can be obtained in the following way: specify (select),

for each focal element A ∈ Fm, an element sA ∈ A and take the probability measure P

such that P({x}) = ∑A∈Fm
m(A)1(sA=x) . This comes down to taking a convex mixture

of Dirac measures located at sA ∈ A, weighted by masses m(A).
Let us denote by P(Bel1:D) the set of probabilities induced by considering the

joint mass m1:D obtained by Equation (10). This corresponds to the random set in-

dependence assumption. To build extreme points P(Bel1:D), a D-tuple sE has to be

specified (selected) in each set E = ×D
i=1E i with E i ∈ Fmi , while to build extreme

points of PSI , one has to specify elements sE i within each marginal model mi, then

take the product of corresponding probabilities. One can check [18] that the latter
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construction is more constrained than the former, hence PSI ⊆ P(Bel1:D) (already in

Couso et al. [9]). Among other things, this implies that the lower probabilities

PSI(A) = inf
P∈P

SI

P(A) and Pm1:D(A) = Bel1:D(A) = inf
P∈P(Bel1:D)

P(A)

are such that PSI(A)≥ Pm1:D(A) for any A ⊆ X 1:D, meaning that random set indepen-

dence can be used to outer-approximate strong independence. Also recall that such

lower probabilities are obtained for extreme points of the set, hence for such inferences

working with PSI or its convex closure PSI makes no difference.

The two notions also have different interpretations: random set independence can

be associated to an independence of sources providing the uncertainty, making no claim

about the possible interaction between variables of different marginal spaces, while

strong independence can be interpreted as an extension of stochastic independence

between random variables when probabilities are partially known. The next example

illustrates the inequality PSI(A) ≥ Pm1:D(A) as well as how the selection process to

obtain a probability reaching the lower bound is different in the two cases.

Example 7. Let X 1 = {x1,¬x1} and X 2 = {x2,¬x2} be two Boolean frames with

[l1,u1] = [0.6,0.8] and [l2,u2] = [0.2,0.4] corresponding to the masses

m1(x1) = 0.6, m1(¬x1) = 0.2, m1(X 1) = 0.2,

m2(x2) = 0.2, m2(¬x2) = 0.6, m2(X 1) = 0.2,

which themselves induce probability sets P(Bel1) and P(Bel2). Consider now the

problem of finding the lower probability of the event E = {(x1,¬x2),(¬x1,x2)} (corre-

sponding to the Boolean formula (x1 ∧¬x2)∨ (¬x1 ∧ x2)). In the case of strong inde-

pendence, this comes down to find the extreme points within P(Bel1) and P(Bel2)
whose stochastic product induces the lowest value on P(E). This is obtained by con-

sidering p1(x1) = l1 = 1− p1(¬x1) = 0.6 and p2(x2) = u2 = 1− p2(¬x2) = 0.4 that

induce

PSI(E) = p1(x1) · p2(¬x2)+ p1(¬x1) · p2(x2) = 0.6 ·0.6+0.4 ·0.4 = 0.52.

Within the focal elements of m1 and m2, these two extreme points corresponds to se-

lections

• sX 1 = ¬x1 that transfers m1(X 1) to ¬x1 and

• sX 2 = x2 that transfers m2(X 2) to x2.

When considering random set independence, one first have to build the joint random

set m1:2 such that

m1:2(x1 × x2) = 0.12, m1 : 2(¬x1 × x2) = 0.04, m1 : 2(X 1 × x2) = 0.04,

m1:2(x1 ×¬x2) = 0.36, m1 : 2(¬x1 ×¬x2) = 0.12, m1 : 2(X 1 ×¬x2) = 0.12,

m1:2(x1 ×X
2) = 0.12, m1 : 2(¬x1 ×X

2) = 0.04, m1 : 2(X 1 ×X
2) = 0.04,

and that induces the credal set P(Bel1:2). We have Pm1:2(E)=Bel1:2(E)=m1:2({x1}×
{¬x2})+m1(¬x1 ×{x2}) = 0.4 and we indeed have PSI(E)> Pm1:D(E). The extreme

point of P(Bel1:2) whose probability P(E) = Pm1:2(E) is obtained for the selection
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• sx1×X 2 = (x1,x2) that transfers m1:2(x1 ×X 2) to (x1,x2),

• s¬x1×X 2 = (¬x1,¬x2) that transfers m1:2(¬x1 ×X 2) to (¬x1,¬x2),

• sX 1×x2 = (x1,x2) that transfers m1:2(X 1 × x2) to (x1,x2),

• sX 1×¬x2 = (¬x1,¬x2) that transfers m1:2(X 1 ×¬x2) to (¬x1,¬x2) and

• sX 1×X 2 = (x1,x2) that transfers m1:2(X 1 ×X 2) to (x1,x2).

The joint probability p1:2 resulting from this selection is

p1:2(x1 × x2) = 0.32, p1:2(¬x1 × x2) = 0.04,

p1:2(x1 ×¬x2) = 0.36, p1:2(¬x1 ×¬x2) = 0.28,

which cannot be expressed as a product of extreme points of P(Bel1) and P(Bel2),
and is therefore not included in PSI .

Example 7 clearly shows the difference of meaning between the two notions: in the

strong independence case, fixing the element of X 1 does not influence the selection

on X 2, while in the random set independence case, obtaining the lower bound im-

plies considering a very strong relation between the selections (e.g., fixing x1 implies

selecting x2 whenever possible).

7.2. Consequences for Boolean formulas

Assume we have a formula F in DNF A1∨ . . .∨An with Ai∧A j =⊥, i.e. the sets of

models of Ai,A j are disjoint. Such formulas, in the form of a disjunction of exclusive

conjunctions of literals (it can be at worst, just the disjunction of models of F) can be

obtained by using the Shannon decomposition of F (the basic notion from which BDDs

are derived). In this case, assuming stochastic independence between variables/atoms,

the probability of F reads

P(A1 ∨ . . .∨An) = P(F) =
n

∑
i=1

[∏
j∈Pi

P(x j) ∏
j 6∈Ni

(1−P(xi))]. (24)

When the probabilities P(xi)∈ [li,ui] of atoms are incompletely known, bounds [P∗(F),P∗(F)]
for P(F) can be obtained by interval analysis of (24) [21]. As Equation (24) is a mul-

tilinear function3, it is locally monotone in each of its variables (it is either increasing

or decreasing in P(xi) once the probabilities of other atoms are fixed). This means that

each bound P∗(F),P∗(F) is attained for some vertex of the hypercube ×n
i=1[l

i,ui]. We

have that [P∗(F),P∗(F)] = [PSI(F),PSI(F)], since selecting the right vertices comes

down to making the right selection for each marginal, selection li corresponding to

sX i = ¬xi and ui to sX i = xi.

This also means that, in practice, we will have [P∗(F),P∗(F)] = [PSI(F),PSI(F)]⊆
[Bel1:D(F),Pl1:D(F)]. However, a noticeable exception is when each variable will al-

ways appear either in a positive or negative way in the expression of a Boolean formula.

3A multivariate function is multilinear if it is linear in each of its variables.

26



Proposition 9. If the logical expression F is a disjunction of conjunctive terms {A1, . . . ,An}
such that ∀i 6= j,Pi∩N j = /0 and Pj∩Ni = /0, then [Bel1:D(F),Pl1:D(F)] = [PSI(F),PSI(F)]

Proof. Without loss of generality, assume that all variables appear in a positive way

(we just have to rename those appearing in a negative way). Consider the case of

two dimensions, then the lower bound PSI(F) is reached by selecting sX i = ¬xi for

i = 1,2. Similarly, the extreme point reaching Bel1:2(F) for any joint set E = E1 ×E2

is obtained by selecting negative literals whenever possible.

A similar reasoning can be used for higher dimensions and for the upper bounds.

Such a situation occurs for connectives like the conjunction, disjunction or impli-

cation, and more generally for all expressions that obey condition 2 of Proposition 8.

In such cases the choice of the dependency assumption (between variables or sources)

has no influence on the output interval. The fact that in such cases the same results are

obtained by both approaches does not make the belief function analysis redundant: it

shows that the results induced by the stochastic independence assumption are valid

even when this assumption is relaxed (the independence assumption of mass functions

is indeed weaker), for some kinds of Boolean formulas.

On the contrary, expressions satisfying condition 1 of Proposition 8 correspond to

non-monotonic functions, like for the Equivalence and the Exclusive Or [21]. In this

case, an exhaustive computation for all combinations of interval boundaries must be

carried out in the case of interval analysis and strong independence, while the compu-

tation of the belief and plausibility are still very simple, but provably less precise than

the result of interval analysis.

Example 8. Namely, consider the Exclusive Or x1 ⊕ x2 = (x1 ∧¬x2)∨ (¬x1 ∧ x2) and

P(x1) ∈ [0.3,0.8], P(x2) ∈ [0.4,0.6]. Then

Bel(x1 ⊕ x2) = l1(1−u2)+ l2(1−u1) = 0.2

Pl(x1 ⊕ x2) = 1−Bel(x1 ⇐⇒ x2) = u1 +u2 − l1l2 −u1u2 = 0.8

P∗(x
1 ⊕ x2) = min(l1(1−u2)+u2(1− l1), l1(1− l2)+ l2(1− l1),

u1(1−u2)+u2(1−u1), l2(1−u1)+ l1(1−u2)) = 0.44

P∗(x
1 ⊕ x2) = max(l1(1−u2)+u2(1− l1), l1(1− l2)+ l2(1− l1),

u1(1−u2)+u2(1−u1), l2(1−u1)+ l1(1−u2)) = 0.56

Example 7 is also of this kind.

7.3. Extension to the multivariate case

Let us now deal with the non-binary case and with conditions of Theorem 5. Using

the fact that PSI ⊆ P(Bel1:D) and Example 7, it is clear that bounds computed using

PSI and P(Bel1:D) will not coincide if events in An satisfy condition 2 of Theorem 5,

as they already fail to coincide in the binary case. In the case of the first condition,

however, we can give a result similar to Proposition 9.
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Proposition 10. Let An be a collection of events satisfying condition 2 of Theorem 5.

Then, the following equality

[Bel1:D(
n⋃

i=1

Ai),Pl1:D(
n⋃

i=1

Ai)] = [PSI(
n⋃

i=1

Ai),PSI(
n⋃

i=1

Ai)]

holds, with Bel1:D,Pl1:D and PSI ,PSI the lower/upper bounds obtained using, respec-

tively, the joint models P(Bel1:D) and PSI .

Proof. If An satisfies condition 2 of Theorem 5, we have that

Bel1:D(
n⋃

i=1

Ai) = ∑
I⊆An

(−1)|I |+1Bel(∩A∈I A) = ∑
I⊆An

(−1)|I |+1
D

∏
j=1

Bel j(∩A∈I A j).

(25)

Given the relation recalled in Section 7.1 between random set independence and strong

independence, this expression coincides with PSI(
⋃n

i=1 Ai) if and only if the lower

bounds Bel j(∩A∈I A j) on a given dimension X j are all be obtained using the same

extreme point of the marginal model P(Bel j), irrespectively of the subset I . This

comes down to showing that these lower bounds can be attained, for any subset I , by

a unique selection sEk
in the focal elements Ek ∈ Fm j of m j.

Consider a given dimension j. According to condition 2 of Theorem 5, the sets A
j
i

are nested (since for a given j and two i,k ∈ [1 : D] either A
j
i ⊆ A

j
k or A

j
i ⊇ A

j
k). Let us

re-order them increasingly according to the permutation denoted by () so that

/0 = A
j

(0)
⊆ A

j

(1)
⊆ . . .⊆ A

j

(n)
⊆ A

j

(n+1)
= X

j

Consider now a focal element Ek of Fm j , then there is some i such that A
j

(i)
⊂ Ek ⊆

A
j

(i+1)
, and we then choose a selection sEk

∈ A
j

(i+1)
\A

j

(i)
. This implies that sEk

∈ A(i) if

and only if Ek ⊆ A(i). If we do such a selection for any Ek and take the corresponding

probability measure P j, we have that

P j(A j
i ) = ∑

sEk
∈A

j
i

m j(Ek) = ∑
Ek⊆A

j
i

m j(Ek) = Bel j(A j
i ).

Since P j corresponds to a single extreme point of P(Bel j) that does not depend on the

subset I , this finishes the proof.

Although such a situation will not always appear, this result directly applies to

the case of monotone functions φ treated in Section 5, showing that in this particular

case, choosing between assumptions of random set independence or of strong indepen-

dence will not change our inferences about events of the kind {φ ≥ d} and {φ < d}.

In practice, this means that in those cases we can either use tools originating from

evidence theory, imprecise probability theory or interval analysis to carry out compu-

tations (whichever is the most suited to the situation).
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8. Conclusion

In this work, we have studied families of events for which the principle of exclu-

sion/inclusion applies to belief functions. Although the framework we have retained

may look restrictive at first glance, it can be applied to a number of practical situations,

and we have shown that one particular application is the evaluation of system reliability

(both in the binary and multi-state cases).

Such results facilitate computations and are particularly useful when probabilistic

data are imprecise. An interesting perspective to this study is to look for conditions

under which other uncertainty theories (e.g., general lower probabilities) satisfy the

exclusion/inclusion principle. Further potential applications of our results include the

study of other problems of reliability analysis, such as importance measures used to

detect critical components.
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