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Research Article
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This study focuses on the possibilities and the limits of a prospective GIS land

cover modelling applied to two case studies (France and Spain). The

methodology, based on available GIS tools, consists of using earlier land cover

maps and relevant environmental factors (calibration data) to model actual,

known land cover to validate the model. The model aggregates Markov chain

analysis for time prediction and multi-critera evaluation, multi-objective

evaluation and cellular automata to perform spatial contiguity of modelled land

cover scores. The first results give an accurate, pixel by pixel prediction rate of

approximately 75%. An important issue of this study consists of analysing

prediction residues to improve the model.

Keywords: GIS; Land cover; modelling

1. Introduction

This paper focuses on prospective, fine resolution, land cover modelling applied to

two Mediterranean mountain regions (19 and 25m grid cells, respectively). This

means extrapolation over space and time in the context of complex social and

environmental systems. In this frame the principal problems are non linear system

behaviour, a high number of relevant criteria but a low number of available data

and variable inertia of land cover to human activities and natural factors spread out

in space.

Basically land cover modelling means time interpolation or extrapolation when

the modelling exceeds the known period. Prospective modelling is the prediction of a

future state. Applied to only spatial problems, the geostatistics such as variogramme

analysis and kriging offer improved tools which are commonly implemented in GIS.

Tools for time modelling only appeared in GIS during recent years and should be

considered as interesting and experimental algorithms rather than improved and

operational instruments for decision support. At the same time the social supply for

decision support and modelling tools is increasing quickly so as to be able to assist

different management tasks like risk prevention, land planning and environmental

management.
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Among methodological approaches for prospective modelling of high resolution

land cover data we can make a distinction between automatic and supervised models.

We call automatic a model of which the algorithm analyses the relationship among

calibration data, i.e. land cover training maps and land cover relevant criteria also

coming from time t0 of before (training period), to carry out a reasonable time

projection with spatial localization. In the case of a supervisedmodel this relationship

has to be performed by the geographer to get information about the suitability or the

probability of spatial location and time transition. The results of this thematic analysis

assist the modelling process so that this approach is similar to decision support. In

practice many models, like our approach, mix automatic and supervised aspects. The

presented model uses an automatic (markovian) procedure to compute time transition

probabilities but a geographic supervised analysis to establish land cover suitability

used for spatial location of predicted time transitions. In this context we can mention

various methods based on fuzzy logic(Zadeh 1988) often used in the context of GIS

(Mezzadri-Centeno 1998) and based on remote sensing data (Selleron and Mezzadri-

Centeno 2002).Othermodels are predominantly automatic withmanual supervising of

algorithms optimization. This is the case of statistical approaches by neural networks

(Bishop 1995, Parlitz and Merkwirth 2000), particularly networks with one or more

hidden layers. During the training phase of themodel theweights of the hidden layer(s)

are chosen to minimize the quadratic error of the data set. These neural multi-layer

networks (perceptrons) are able to approach with a chosen precision any function

(universal approximation) (Hornik 1993). Non linear parametric models are another

interesting approach based on a special case of logistic regression: polychotomous

regressionwhere qualitative responsemayhavemore than twomodalities (Kooperberg

et al. 1997). The polychotomous regression also needs a training phase to optimize the

generally used Newton-Raphson algorithm.

The authors of this article intend to contribute to advances in GIS based on

prospective modelling. We use Markov chain analysis to perform land cover time-

transition probabilities. The model also calls on multi-criteria evaluation to

calculate land cover suitability useful for spatial allocation of predicted probability

rates. The spatial integration of land cover categorical specific results is obtained by

multi-objective evaluation assisted by cellular automata. This approach is easy to

apply because all algorithms are implemented in available GIS software. The model

may be considered as semi-automatic: Markov chain analysis automatically

performs time transition probabilities. However, the spatial allocation of predicted

probabilities is supervised by multi-criteria evaluation.

2. Test areas and data sets: common characteristics but regional specificities

The Mediterranean mountains are going through a deep social and economic

reorganization visible by major landscape changes. In the French test area reform

that began around 1850 with the decline of the traditional agro pastoral economy

and an important rural exodus. Cropland was transformed into pastures and later it

often became colonized back by forests. The Spanish site shows, with a century gap,

the same decrease but also a more substantial economic reorganization. To

minimize the influence of a specific data set, we analysed two test areas: Garrotxes

(France) and Alta Alpujarra Granadina (Spain) (Paegelow and Camacho Olmedo

2003).

Garrotxes is a 8 750 ha catchment located in the western part of the department of

Eastern Pyrenees (France). The difference of height between the major summit at
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the north extremity (Madrès, 2 469m) and the confluence of the Cabrils, draining the

basin, with the valley of Têt river (650m) on the SE limit is important. On the right

side, characterized by a ponderous geomorphologic relief based on granite, are

situated almost all earlier terrace cultivations and coniferous forests (Pinus

uncinata)—a space characterized by a quick speed of vegetation changes. The left

bank forms a large, steep and south facing side on schist used as pasture. The

demographic maximum (1820/30) meant intensive use of all natural resources. In

1826 25% of the whole area were developed as crop terraces (Napoleon cadastre of

1826). The population pulled down from 1832 inhabitants in 1826 to 92 inhabitants

in 1999. Crop terraces were transformed to pastures and later became bushes or

forests. Actually, the crops are completely marginal and the near future probably

depends on the intensity of pastoral activity and management which will determine

the extent of spontaneous forest spreading.

Alta Alpujarra Granadina (34 500 ha) forms the western part of the south side of

Sierra Nevada (Spain); a region with a characteristic landscape (Camacho Olmedo

et al. 2002a, 2002b, 2002c, Camacho Olmedo 2003) which historical evolution is

documented up from the 15th century (Carcı́a Martı́nez 1999). The important

difference of height (2 900m) partially compensates the latitudinal shift to the

Pyrenees. The southern limit (600m) is close to Guadelfeo, a river separating the test

area from Contraviesa. The northern limit is formed by the highest summits of the

Iberian Peninsula: Mulhacen (3 479m) and Veleta (3 396m). In 40 years, the

population pulled down from 4 200 to 1 200 today. The proximity to urban centres

(Granada, Alméria or Malaga) explains an important development of rural tourism.

The maximal use of natural resources occurred at the end of the 19th century

followed by a progressive decrease in agriculture. It only stopped during the 1940s

(period of economic autarky). Up from the beginning of the 1960s the rural exodus

became general in Spanish mountains with a successive surrender of not irrigated

land and irrigated land located on high altitude. This process is followed by

surrender or a semi surrender of irrigated land which is located on a lower level. The

transformation of cropland into fallow land contributed to a landscape homo-

genizing. In the regional context, Alta Alpujarra Granadina is a significant example

for this intensive process of surrender.

The GIS database includes available land cover layers and maps which deal

with relevant environmental and social factors: elevation, slope, orientation,

accessibility cost maps, hydrographs, geomorphology, administrative limits and

information about management status of particular areas (public forests, pasture

management, etc.).

Land cover layers have different origins (Napoleon cadastre, aerial photographs

and terrain on the French site; aerial photographs, thematic maps and terrain in

Spain) and mark out the historical evolution as far as possible: 6 land cover maps in

Garrotxes (1826, 1942, 1962, 1980, 1989, 2000), 4 in Alta Alpujarra (1957, 1974,

1987, 2001).

Land cover changes in considered periods are dramatic as shown in fig. 2 and 3. In

Garrotxes we can notice that crops (terrace cultivating), occupying 25% in 1826,

almost disappeared in the early 1980s. They first became pastures then also scrubs

and forests. In Alta Alpujarra Granadina the cultivated land pulled down from

21.9% in 1957 to 7.1% today. Irrigated land decreased from 14.6% to 5.8% but

proportionally increased from 66.7% to 81.7% of the overall agricultural activities.

Because the vegetal recolonization is very slow, the fallows became a constitutional
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part of the landscape. Another important evolution concerns coniferous reforesta-

tion which increased twofold on high elevation sides.

3. Methodology

The principal aim of this work is to establish and validate a GIS based model for

prospective land cover changes. To do so we intend to use available GIS software

components and a restrictive list of criteria so that the methodology would be easy

to apply to other terrains (Paegelow et al. 2002). The validation will be performed by

modelling a known land cover state, the last available date (t1). For model

calibration we use as training data the two earlier land cover layers (t
21 and t0) and

known and relevant environmental and social criteria coming from this training

Figure 1. Location of the test areas: Garrotxes (at the top) and Alta Alpujarra Granadina.
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period. (To intend prospective modelling we consider only the last 3 dates—the

earlier dates clearly do not match contemporary economic and social conditions,

particularly in Garrotxes where the first land cover layers reflect the situation at the

beginning of the 19th and 20th century.) For the French test area calibration data

come from 1980 and 1989; the validation date is 2000. For the Spanish test area we

used 1957 and 1987 as calibration data and 2001 as the validation date. In 1974 a

fine resolution cartography allowed us to distinguish between cropland and fallows

Figure 3. Land cover net quantity changes in Alta Alpujarra Granadina (Spain): 1957–2001
(no data available for Mosaic of cropland and fallows in 1974).

Figure 2. Land cover net quantity changes in Garrotxes (France): 1826–2000.
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also for micro parcels. For all other dates, original data (aerial photographs) do not

permit correct interpretation of micro parcels. They were regrouped in a special type

called ‘mosaic of cropland and fallows’.

The chosen approach may be considered as a ‘supervised’ model with manual

establishment of a knowledge base in comparison with the two other ‘automatic’

approaches actually performed. (Work in progress: statistical approaches by non

linear parametric model and neural networks.) The land cover model calls on a

chain of different tools implemented in Idrisi 32: Markovian chain analysis (MCA)

to compute time transition probabilities, multi-criteria evaluation (MCE) to assist

spatial implementation of predicted time transitions by suitability maps, multi-

objective evaluation (MOLA) to integrate predicted land cover specific probability

maps and a cellular automata (CA) introducing the principle of spatial contiguity.

3.1 Construction of a knowledge base—the ‘rules’ of land cover dynamics in time and

space

The knowledge about former dynamics is essential to attempt the prediction of the

future evolution or to build prospective scenarios. Therefore, any model has to be

supplied with values of initial conditions (calibration). The used values are the two

training land cover maps (depending variable) used to perform time transition

probabilities (cf. 3.2) and land cover relevant criteria (independent variable)

correlated to land cover. The statistical tests (logistic regression, PCA) helped us to

choose the criteria. On the other hand we only use easily available data to facilitate

model generalization.

The criteria were split up into Boolean constraints (a specific land cover is

possible or not) which simply mask space, and factors (weighted and allowed to

trade off each other) which express a land cover specific degree of suitability,

variable in space.

In the French data set one of the used constraints was applied regardless of land

cover type. Using 19m grid cells the extension and localization of developed areas

(villages) nether changed in the last two centuries. We consider these 0.23% of area

stable also for the next decades. All the following model validation statistics exclude

this category. The other constraints are land cover specific (e.g. elevation limits for

forests, distance to roads for crops, accessibility level for grassland or masking of

public woods for pasture suitability).

Among high resolution available data a set of six factors express the degree of

suitability for each land cover (cf. table 1). Elevation, slope and aspect are important

physical factors. The accessibility to roads and villages is a cost factor expressing

Table 1. Used factors and involved techniques to process suitability.

Factor Technique to process suitability

Elevation Manual recoding based on significant (99% and
99.9% level) differences between real and
theoretic distribution

Slope
Aspect
Accessibility to roads and villages (cost
distance)
Probability for land cover change Stretching of observed transitions during t

21–t0
Proximity to existing land cover features
(distance)

Fuzzy function based on observed distance
parameters for border and spontaneous
appearances
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time used to have access to any place. In test areas transport is exclusively road

based and people live in grouped residential areas. The accessibility map results

from a cost distance analysis where Euclidean distance is weighted by the quality of

roads. The proximity to existing land cover features is the measured distance

(average and standard variation) of each land cover to borders of the same type into

the training period. It takes into account border dynamics and spontaneous, not

border induced appearances. This factor is important in rural and mountainous

regions where spontaneous forest spreading is a widespread process. The probability

for land change cover is worked out by cross tabulation of observed land cover

dynamics into the training period.

Because each factor is expressed in proper units they have to be standardized to

become comparable. Standardization signifies the recoding of original values

(degrees, meters, per cent) to suitability values on a common scale reaching from 0

(lowest suitability) to 255 (best suitability). The factor standardization is processed

in different ways. The suitability of elevation, slope, aspect and accessibility is

carried out by analysing the statistical significance of the spatial distribution of a

real land cover type related to one factor versus a null hypothesis (cf. table 2). Not

significant differences (less than 99% level) means average suitability (128).

Significantly lesser land cover as expected pulls down suitability and vice versa.

Probability for land cover change means observed net quantity change between

the two calibration land cover maps. The proportional values are stretched on

suitability range (linear stretch of matrix values on 0–255 range). The last factor,

proximity to existing land covers features, takes into account the gain of each land

cover category during t
21 to t0 related to the distance (average and standard

deviation) to the nearest land cover feature of the same category at t0.

The factors, once standardized, are weighted by pairs using Saaty matrix (Saaty

1977). This matrix gives a relative importance to factors by pair comparison. Up

from the set of pair comparisons Saaty matrix calculates the eigenvector of each

factor, his final weight.

Used weights for elevation, slope, aspect and accessibility come from the number

and strength of significant differences between real land cover specific area by factor

classes and null hypothesis (cf. table 2). For most land cover categories probability

for land cover change and proximity are considered as dominant factors (about 50%

of overall weight). The weight of proximity depends essentially on the balance

between border dynamics and spontaneous appearance.

Multi-criteria evaluation (MCE) with ordered weighted averaging (OWA)

(Eastman et al. 1993) allows choice of risk and trade off levels. ‘Trade off’ means

the possibility to compensate a low suitability score of one factor by a high

suitability score of another factor. The allowed amount of trade off is related to

assumed risk level (cf. fig. 4) of which extremities are Boolean And (risk adverse)

and Boolean OR (maximum risk). The axis of risk level is called andness. The

number of order weights is equal to the number of factors; the weights sum to 1.

Order weights are calculated for each pixel. The first order weight is assigned to the

factor with the lowest weighted suitability. The last order weight is assigned to the

highest suitability among the weighted factors for the considered pixel.

To give whole weight to the first order weight means a risk adverse decision

without any factor trade off, while the opposite means a high risk strategy because

we only consider the factor the highest suitability score; an approach that also does

not allow trade off (Yager 1988). We choose a strategy which may be considered as
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low risk taking with some trade off as shown in figure 4. Results of multi-criteria

evaluation with ordered weighted averaging (MCE2OWA) are expressed as land

cover specific suitability maps: one for each caption.

Figure 4. Decision strategy space and chosen approach in MCE-OWA. Used order weights:
0.45, 0.20, 0.15, 0.10, 0.07, 0.03.

Table 2. Significantly differences between real land cover specific area by factor classes and
null hypothesis (land cover extent equal to extent of the factor class)a.

Elevation (m)

Null hypothesis: extent
of coniferous forest equal
to extent of elevation

classes (%)
Real coniferous
forest area (%) R–N Suitability score

600–700 0.283 0.000 20.283 128
700–800 0.961 0.000 20.961 128
800–900 1.712 0.000 21.712 128
900–1000 2.259 0.000 22.259 128
1000–1100 2.970 0.001 22.969 85
1100–1200 4.053 0.516 23.537 42
1200–1300 5.350 1.769 23.581 42
1300–1400 6.434 2.499 23.935 42
1400–1500 7.460 3.556 23.904 42
1500–1600 9.283 6.413 22.869 85
1600–1700 12.070 12.112 0.042 128
1700–1800 13.261 21.983 8.721 255
1800–1900 14.197 26.478 12.281 255
1900–2000 9.391 16.872 7.481 255
2000–2100 3.566 4.094 0.528 128
2100–2200 2.192 1.709 20.483 128
2200–2300 2.382 1.826 20.556 128
2300–2400 2.017 0.172 21.845 128
2400–2500 0.160 0.000 20.160 128
Total 100.000 100.000
Standard
deviation

4.529

99% level 2.676
99.9% level 3.419

aThe table shows an example for Garrotxes: the elevation related distribution of coniferous
forest. The fourth column from the left indicates the statistical significance of the difference
between the real land cover distribution and the null hypothesis. Numbers in bold are
significant at the 99.9% level. Underlined numbers are significant at the 99% level. All other
numbers are considered as not differing significantly. The rightmost column shows the
resulting suitability score: 128 (average) if the difference is not significant; 85/171 at 99% level;
42/213 at 99.9% level and 0/255 if the difference is twice the 99.9% level.
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3.2 Computing time transition probabilities

To perform land cover extrapolation, we use Markov chain analysis (MCA), a

discrete process with discrete time for which values at instance t1 depend on values

at instances t0 and t
21 (Markov order 2). The prediction is given as an estimation of

transition probabilities.

MCA produces a transition matrix recording the probability that each land cover

category will change to every other category and the number of pixels expected to

change. The algorithm also generates conditional probability maps for each land

cover showing the probability with which it would be found at each pixel after a

specified number of time units. The set of Markovian probability maps may be

integrated in only one map by stochastic choice (Flamm and Turner 1994). To do

so, the algorithm evaluates the conditional probabilities of each land cover for each

pixel against a random probability distribution; the land cover category exceeding

random threshold is assigned to the evaluated pixel (Eastman 2001). Stochastic

based integration generally gives a rather poor idea of predicted land cover because

it neither includes suitability knowledge nor spatial contiguity.

3.3 Spatial allocation of predicted land cover probabilities using suitability maps

The integrating step, combining knowledge about likely spatial distribution (MCE),

time transition probabilities (MCA) as well as multi-objective land allocation, is

performed in the chosen software by CA_Markov, an aggregated module. It

performs a spatial distribution of transition probabilities, computed by MCA, for

each land cover using MCE results. A multi-objective evaluation (MOLA) then

integrates the set of predicted land cover maps. The land cover prediction procedure

finally adds an element of spatial contiguity. The applied cellular automaton is

based on a standard contiguity filter (565) to down-weight the suitability of pixels

that are distant from existing instances of the land cover type under consideration.

The algorithm is iterative so as to match with time distances between t
21–t0 and

between t0–t21.

The inputs are: land cover maps at instances t
21 and t0, land cover suitability

maps resulting from multi-criteria evaluation and area transition probabilities

performed by MCA. The output is a prospective, modelled, land cover map for

instance t1. It thus allows the testing of the model by comparing it to reality. All

modelling steps are resumed in figure 5.

4. Results

To validate the land cover prospective model, we applied it to model known land

cover (2000—Garrotxes; 2001—Alta Alpujarra Granadina) based on information

about two earlier land cover layers.

4.1 Suitability maps performed with MCE-OWA

The resulting probability maps (MCE-OWA) express our calibration knowledge of

specific suitability for each land cover. This knowledge includes land cover

distribution at each training date, land cover dynamics into this training period and

land cover relevant criteria as described in section 3.1.

The suitability of the majority of land cover types fit to reality at t0 (last

calibration date, cf. table 3 and figures 6 and 7). It turns out that modelling spatial
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distribution and their dynamics fit less accurately with reality for categories having a

little area (cultivated land in Garrotxes) or being very unsteady (like grassland). Alta

Alpujarra Granadina even gives better suitability scores because the amount of

stable area without any changes is higher into the training period (90.4%) than in

Garrotxes (75.5%) where land cover dynamics is significantly faster. Table 3 shows

the average and standard deviation of suitability scores for each land cover (pixels

really covered at t0) in comparison with all other categories. In this way we test the

goodness of fit of calibration of the suitability maps used for spatial allocation of

time transition probabilities.

To evaluate the goodness of fit of calibration for MCE-OWA performed

probability maps, authors used ROC (Relative Operating Characteristic) statistics

(Pontius and Schneider 2001), a measurement of agreement in terms of location.

Therefore, we compare each MCE-OWA probability map expressing our calibration

knowledge to a Boolean image showing the correspondent land cover distribution at

the validation date t1 (date of modelled land cover). In Garrotxes (table 4, figure 8)

the relationship is very strong for coniferous forest, broom land and grass pasture.

The lowest scores concern scrubs (a very dynamic category, cf. LUCC budget in

section 4.3) and grassland for which the used criteria seem to be insufficient to dress

a valuable suitability model. The ROC score for agriculture has to be interpreted

carefully: in 2000 only 16 pixels (less than 0.01%) were crops. On the Spanish test

area ROC is always near to 100% (table 5, figure 9)—a score level which may be

explained by sufficient criteria and land cover stability (cf. LUCC budget,

section 4.3).

4.2 Markovian time transition probabilities and land cover caption specific

probability maps

Markovian probability scores are computed for the validation date t1 using the

calibration dates t
21 and t0. Table 6 shows that predicted probability scores are

always distinctly higher (average) on areas where prediction matches real land cover

Figure 5. GIS-based prospective land cover modelling: methodological overview.
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Table 3. MCE performed average and standard deviation suitability scores for each land cover at t0 compared to all other categories (data in parentheses)a.

Garrotxes Alta Alpujarra Granadina

Land cover Average Standard deviation Land cover Average Standard deviation

Coniferous forest 191 (68) 26 (42) Deciduous forest 255 (82) 7 (74)
Deciduous forest 125 (57) 71 (81) Scrubs 244 (137) 16 (47)
Scrubs 163 (94) 30 (35) Pasture 248 (65) 10 (75)
Broom land 173 (77) 29 (63) Coniferous reforestation 251 (93) 10 (70)
Grass pasture 150 (87) 33 (50) Fallows 223 (19) 4 (44)
Grassland 117 (84) 73 (85) Mosaic cropland/fallows 217 (10) 2 (28)
Agriculture 148 (63) 61 (82) Irrigated cropland 242 (33) 13 (63)

Non-irrigated cropland 249 (7) 12 (29)
Mosaic of (non-) irrigated
cropland

217 (10) 2 (10)

aThe average suitability scores are higher and more homogeneous on areas really occupied by the respective land cover. Figure 6 shows the probability map
for land cover of being broom land in 1989 in Garrotxes. Figure 7 shows an equivalent probability map for land cover of being fallow in 1987 in Alta
Alpujarra Granadina.
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Figure 6. MCE-OWA probability map for land cover to be broom land in 1989 (Garrotxes).
Horizontal stripes show the real broom land distribution in 1989. Uniform white areas (north,
southwest and inside) correspond to masked land by constraints (villages inside and public
forests).

Figure 7. MCE-OWA probability map for land cover to be fallow in 1987 (Alta Alpujarra
Granadina). Horizontal stripes show real fallow distribution in 1987. Uniform white areas
correspond to masked land by constraints.
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in 2000 (Garrotxes) or 2001 (Alta Alpujarra Granadina) but also variable (standard

deviation).

A Garrotxes example of Markovian probability for land cover to be broom land

is shown in figure 10 while figure 11 shows probability scores of fallows in Alta

Alpujarra Granadina.

4.3 Modelled land cover

The modelled land cover over space and time is performed by coupling Markovian

time transition probabilities with suitability maps performed by multi-criteria

Figure 8. ROC curves, Garrotxes.

Table 4. Garrotxes ROC statistics based on MCE probability maps expressing the suitability
of land cover specific occurrence (calibration data) and reality (validation date).

Land cover ROC

Coniferous forest 0.949
Deciduous forest 0.768
Scrubs 0.647
Broom land 0.866
Grass pasture 0.833
Grassland 0.643
Agriculture 0.713
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Figure 9. ROC curves, Alta Alpujarra Granadina.

Table 5. Alta Alpujarra Granadina ROC statistics based on MCE probability maps
expressing the suitability of land cover specific occurrence (calibration data) and reality
(validation date).

Land cover ROC

Deciduous forest 0.991
Scrubs 0.982
Pasture 0.974
Coniferous reforestation 0.969
Fallows 0.985
Mosaic cropland/fallows 0.961
Irrigated cropland 0.963
Non-irrigated cropland 0.950
Mosaic of (non-) irrigated cropland 0.951
Urban use, badlands, mines 0.944
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Table 6. Markov chain analysis predicted average probability scores (%) and standard
deviation for each real land cover in t1 in Garrotxes and Alta Alpujarra Granadina compared
to all other categories (data in parentheses).

Garrotxes Alta Alpujarra Granadina

Land cover Average
Standard
deviation Land cover Average

Standard
deviation

Coniferous
forest

70 (13) 22 (19) Deciduous forest 82 (2) 13 (2)

Deciduous
forest

31 (3) 30 (5) Scrubs 79 (7) 8 (13)

Scrubs 30 (19) 15 (10) Pasture 85 (1) 0 (1)
Broom land 55 (13) 11 (19) Coniferous

reforestation
79 (13) 10 (7)

Grass pasture 23 (8) 9 (8) Fallows 64 (2) 19 (9)
Grassland 47 (3) 20 (9) Mosaic cropland/

fallows
14 (2) 8 (5)

Agriculture 1 (0) 0 (0) Irrigated cropland 68 (5) 19 (17)
Non-irrigated
cropland

41 (0) 1 (3)

Mosaic of (non-)
irrigated cropland

17 (0) 5 (1)

Figure 10. Markovian probability of being covered by broom land in 2000 and real broom
land distribution (horizontal stripes): Garrotxes.
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evaluation. To improve land cover distribution we added cellular automata to

increase spatial contiguity.

For both study areas modelled land cover is very close to reality (table 7, 8): 73%

in Garrotxes, 77.6% in Alta Alpujarra Granadina but the correctness is due for a

major part to persistence. In Garrotxes 75.5% of areas were stable during the

training period (1980–1989), 72% between t0–t1 (1989–2000). The Spanish area

persistence is about 90.4% during the training period (1957–1987) and concerns

83.9% of areas between the last calibration date and validation date (1987–2001).

The Garrotxes cross-matrix (table 7) confirms that the model fits better to reality

for categories covering large areas like coniferous forests and broom lands. The

prediction rate is lower for categories covering little areas and gets close to zero for

crops covering only 0.007% of the area (16 pixels) while developed areas (urban)

corresponds, by definition (constrained area), to reality. The Alta Alpujarra

Granadina cross matrix (table 8) shows that the amount of modelled land cover is

also close to reality except for coniferous reforestation which means land planning

difficult to model. Two other categories (confusion between mosaic of cropland and

fallows and irrigated cropland) do not match the model.

Figures 12 and 13 are maps of modelled land cover at t1 compared with real land

cover in t1 and t0. Adding the last calibration date (t0) is helpful to evaluate the

correctness of the model for land cover dynamics. Because land cover persistence is

high, a null model of pure land cover persistence between t0 and t1 gives better

results for the Spanish area (land cover persistence: 83.9%, correct modelled land

Figure 11. Markovian probability of being covered by fallows in 2001 and real fallow
distribution (horizontal stripes, always on high probability): Alta Alpujarra Granadina.
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Table 7. Matrix comparing real land cover in 2000 (rows) to predicted land cover in 2000 (columns) in Garrotxesa.

Garrotxes

Predicted land cover in 2000%

Coniferous
forest

Deciduous
forest Scrubs

Broom
lands

Grass
pastures Grassland Agriculture Urban

Sum of real
land cover

Real land cover 2000 (%) Coniferous
forest

35.81 0.12 3.47 0.63 0.43 0.47 0.00 0.00 40.93

Deciduous
forest

1.19 6.45 2.92 0.58 0.32 0.23 0.00 0.00 11.69

Scrubs 2.28 1.26 6.87 1.70 1.82 1.13 0.01 0.00 15.08
Broom lands 0.32 0.40 1.68 18.00 1.12 0.09 0.00 0.00 21.61
Grass pastures 0.21 0.08 0.44 2.64 2.29 0.00 0.00 0.00 5.66
Grassland 0.55 0.02 0.75 0.01 0.27 3.19 0.01 0.00 4.80
Agriculture 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Urban 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.230 0.23

Sum predicted land cover 40.37 8.33 16.13 23.56 6.24 5.12 0.03 0.23 100.00

aData are expressed as a percentage of the total area. Crosswise data mean correct prediction. Data in the top-right part of the matrix indicate a predicted
landscape ‘opening’, while data in the bottom-left part mean a predicted landscape ‘closing’.

G
IS

la
n
d
co
ver

m
o
d
ellin

g
7
1
3



Table 8. Matrix comparing real land cover in 2001 (rows) to predicted land cover in 2001 (columns) in Alta Alpujarra Granadinaa.

Alta Alpujarra Granadina

Predicted land cover in 2001%

Deciduous
forest Scrubs Pasture

Coniferous
reforestation Fallows

Mosaic crop-
land/fallows

Irrigated
cropland

Non-
irrigated
cropland

Mosaic of
(not)

irrigated
cropland

Urban use,
badlands,
mines

Sum of
real land
cover

Real land
cover 2001
(%)

Deciduous for-
est

9.31 0.04 0.00 1.27 0.10 0.00 0.14 0.00 0.00 0.00 10.86

Scrubs 0.35 27.94 0.09 4.30 0.00 0.00 0.05 0.01 0.00 0.04 32.78
Pasture 0.22 0.01 18.15 2.36 0.00 0.00 0.00 0.00 0.00 0.00 20.74
Coniferous
reforestation

0.01 0.16 0.00 9.05 0.00 0.00 0.00 0.00 0.00 0.00 9.22

Fallows 0.11 1.49 0.14 1.49 8.33 0.35 0.69 0.00 0.03 0.00 12.63
Mosaic
cropland/
fallows

0.09 0.67 0.00 0.23 0.92 0.39 3.85 0.00 0.00 0.01 6.16

Irrigated
cropland

0.11 0.40 0.00 0.01 0.21 1.44 3.53 0.07 0.00 0.01 5.78

Non-irrigated
cropland

0.01 0.05 0.00 0.00 0.36 0.10 0.00 0.53 0.00 0.00 1.05

Mosaic of
(not) irrigated
cropland

0.01 0.00 0.00 0.03 0.14 0.00 0.04 0.00 0.03 0.00 0.25

Urban use,
badlands,
mines

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.34 0.35

Sum predicted
land cover

10.21 30.76 18.38 18.74 10.22 2.28 8.31 0.61 0.06 0.40 100.00
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cover: 77.6%) as the used model. In French Pyrenees modelled land cover (73% of

pixel correct modelled) is barely better than null hypothesis (72%).

ROC statistics (cf. section 4.1) indicate that suitability maps used for spatial

allocation of time transition probabilities match with reality in terms of location.

Another criterion is the amount of modelled land cover change. To do so, we

compare LUCC (land use/land cover change) budgets (Pontius et al. 2004) of real to

modelled land cover change. The following LUCC budget tables give answers to

major land cover change questions: for a given period, what are the gain and loss of

each category? What is the amount of total change and what is the proportion of

swap (changing of location) and net change?

LUCC budgets of real land cover change (number in bold) between t0 and t1 show

that land cover change is faster in Garrotxes within a shorter period. If net change is

dominant on both study areas, the swap is very reduced in Sierra Nevada (only a

quarter of total change). In other words, land cover succession (e.g. from pasture via

scrubs to forest) with spatial moving of categories is active in French Pyrenees while

it is nearly locked in the south of Spain (vegetal recolonization is very slow in

semiarid mountains). LUCC budgets of modelled land cover change differ from

reality in opposite directions. While modelled total change is half reality in

Garrotxes it is twice reality in Alta Alpujarra Granadina (AAG). The responsible

model step, Markov chain analysis, underestimates the amount of land cover change

in Garrotxes and overestimates it on the second test area. The difference between

real and modelled total change is principally imputed to swap. Real swap in

Garrotxes is three times more important than modelled swap. In AAG real swap is

Figure 12. Modelled (2000) and real land cover (1989, 2000) in Garrotxes.

Figure 13. Modelled (2001) and real land cover (1987, 2001) in Alta Alpujarra Granadina.
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only the third part of observed swap. Going into the details tables 9 and 10 show

that modelled swap is underestimated particularly for coniferous forest, scrubs and

grass pasture while the amount of net change is clearly below reality for deciduous

forest and broom land. In AAG swap is particularly overestimated for scrubs,

fallows but also for deciduous forest while net change is clearly overestimated for

coniferous reforestation and, in minor proportions, for scrubs and pasture. On the

contrary, net change in mosaic of cropland and fallows and irrigated cropland is

underestimated by the model.

Comparing real and modelled LUCC budgets to ROC statistics (cf. tables 4 and 5)

about suitability, one can notice that there is no clear relationship. First, used

suitability maps produced with training data match generally well with reality in t1

Table 9. LUCC budget of real (number in bold) and modelled land cover changes in
Garrotxes (1989–2000).

Gain Loss Total change Swap
Absolute value of

net change

Coniferous
forest

5.92 2.43 3.60 0.68 9.53 3.11 7.21 1.35 2.32 1.76

Deciduous
forest

6.20 2.40 0.51 0.08 6.71 2.47 1.01 0.15 5.70 2.32

Scrubs 8.25 3.87 8.92 3.49 17.18 7.36 16.51 6.98 0.67 0.38
Broom land 4.34 3.35 6.17 3.21 10.51 6.56 8.68 6.43 1.83 0.13
Grass
pasture

2.39 0.62 6.18 3.81 8.57 4.43 4.79 1.23 3.79 3.20

Grassland 0.83 0.27 2.44 1.56 3.27 1.82 1.66 0.53 1.61 1.29
Agriculture 0.01 0.00 0.13 0.11 0.14 0.11 0.01 0.00 0.12 0.11
Total 27.95 12.93 27.95 12.93 27.95 12.93 11.92 3.75 16.03 9.18

Table 10. LUCC budget of real (numbers in bold) and modelled land cover changes in Alta
Alpujarra Granadina (1987–2001).

Gain Loss Total change Swap
Absolute value of

net change

Deciduous
forest

0.28 0.88 0.04 1.27 0.32 2.15 0.08 1.76 0.24 0.39

Scrubs 0.46 2.60 0.42 4.75 0.88 7.35 0.83 5.21 0.05 2.15
Pasture 0.00 0.23 0.00 2.60 0.00 2.82 0.00 0.45 0.00 2.37
Coniferous
reforestation

0.24 9.62 0.15 0.00 0.40 9.62 0.31 0.00 0.09 9.62

Fallows 1.79 1.83 0.66 3.10 2.45 4.93 1.32 3.65 1.13 1.28
Mosaic
cropland/fallows

4.85 1.65 0.69 1.37 5.54 3.02 1.38 2.74 4.16 0.28

Irrigated
cropland

0.40 0.08 5.61 2.77 6.01 2.85 0.80 0.16 5.21 2.70

Non-irrigated
cropland

0.00 0.01 0.37 0.82 0.37 0.83 0.00 0.03 0.37 0.80

Mosaic of (not)
irrigated
cropland

0.02 0.00 0.10 0.27 0.11 0.27 0.03 0.00 0.08 0.27

Urban use,
badlands, mines

0.01 0.06 0.01 0.00 0.01 0.06 0.01 0.00 0.00 0.05

Total 8.05 16.95 8.05 16.95 16.09 33.90 4.76 13.99 11.33 19.91
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in terms of location while Markov time transition probabilities differ in opposite

directions from real-time transitions. Then, we notice excellent ROC values for land

cover categories causing major model failures in terms of amount of space.

However, ROC statistics include land cover persistence, the preponderant land

cover aspect, while LUCC budget focuses, by definition, on land cover change.

5. Discussion of results

The performed results do not intend to predict future reality but they can help us to

better understand environmental and social complex changes in time and space.

Therefore, the interpretation must be done carefully; the land cover modelling

means simulation showing what could be reality. It is a scenario in frame of a

decision support. Nevertheless, an accurate interpretation may be useful to improve

the prediction rate. On both test areas the accurate prediction is around L of the

whole area. Prediction rate is better on the Spanish area which is also more stable

particularly on the upper sides. This may appear poor compared with Null model

(land cover persistence), but it is interesting to notice that the annual land cover

change rate during the training period (t
21—t0; model calibration) is different from

the rate during t0—t1 (validation date). This average annual rate decreased moder-

ately in Garrotxes (from 2.7% to 2.5%) but increased in AAG (from 0.3% to 0.95%).

Before analysing the prediction rate it may be helpful to discuss the results of the

two preliminary steps: the suitability maps and time transition probabilities.

The suitability maps performed with MCE-OWA reveal the conditions during the

training period. The statistical results in table 3 show that it is easier to model land

cover suitability on the Spanish test area (higher average suitability and lower

standard deviation). This may be related to greater land cover persistence in Alta

Alpujara Granadina. This general noting is also valid regarding specific land cover

suitability scores. Table 3 shows that it is always easier to model the suitability for

land cover categories of which the size is important and stable in time although they

are less important to model land cover change. On the contrary, we notice lower

suitability scores for land cover categories of which location is difficult to explain

with used criteria (deciduous forest and grassland in Garrotxes or mosaic of

cropland and fallows and mosaic of irrigated and not irrigated cropland in Alta

Alpujarra Granadina). ROC statistics values generally indicate goodness of fit of

calibration.

The time transition probabilities are computed automatically and based on only

two input land cover maps and do not include land cover relevant criteria. The

quality of results is expressed in table 6 by comparing predicted probability scores

obtained by MCA to reality. Projected on real land cover at instance t1 the average

probability to be covered by a specific land cover category is even higher on

locations really covered than on the rest of the study area. Generally higher and

more homogeneous scores on the Spanish test area are also related to greater land

cover stability. This is also true for specific categorical results. Only for scrubs

(Garrotxes) the probability to be covered is almost equal on the area really covered

by scrubs in 2000 than on the rest of the study area. The mentioned high speed of

land cover change in Garrotxes results basically from spontaneous forest spreading.

In this process the scrubs form an only transitional category, difficult to model when

we use only two land cover states contrary to manual suitability modelling using

also land cover relevant criteria. We notice the opposite effect for grassland which

suitability is difficult to model while MCA score shows a high correspondence to
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real distribution. Performed LUCC budgets indicate that MCA performed time

transition probabilities explain the major part of prediction failure.

The computed land cover maps reflect previous considerations. In Garrotxes

stable land cover categories with important extent like coniferous forest and broom

are correctly predicted while less than half of the pixels covered by deciduous forest,

scrubs and grass pasture (weak MCA probability) are correctly predicted (table 7).

On the contrary, the weak suitability scores for grassland are compensated for

stability in time. These considerations may also be applied to Alta Alpujarra

Granadina (table 8): relative stable categories with large extent like deciduous forest,

scrubs and pastures correspond in more than 85% (diagonal of table 8 compared

with sum of real land cover) to reality. For fallows, characterized by a lower

suitability score but stable in time we notice a correspondence of 66%. At the

opposite, the modelling results for mosaic of cropland and fallows (6.3%) as well as

mosaic of irrigated and not irrigated cropland (12%) do not match with real land

cover. This may be explained by an inadequate, but nevertheless fine, resolution

(25m) compared with the size of concerned micro parcels. Another interesting

aspect is coniferous reforestation. While suitability and time transition probabilities

are elevated, the integrating step ends in an extent that is twice as reality. It is the

only category of which the sum of predicted area is very different from real area; a

process difficult to predict because it is a matter of land planning programmes

changing abruptly, from time to time, land cover.

Another approach to interpret the quality of performed data is, depending on map

legend logic, an interpretation of residues for each category (prediction failures). The

Garrotxes land cover is described as qualitative data but may be put on a landscape

rank scale of which the extremities are closed formations (1: coniferous and 2:

deciduous forests) and open landscape corresponding to more intensive use (7:

agriculture). By this way the matrix data of table 4 are mapped as the difference,

expressed in parametric distance of land cover categories, as shown in fig. 14. The

negative balance means a predicted landscape opening while positive values express a

predicted landscape closing that did not happen. This map visualises the geographic

distribution of prediction failures and their parametric importance. The prediction

failures occur outside stable areas which are concentrated along the western and

southern limits of the study area (public forests) and on the left bank forming large

pastures. The map also shows that almost the half of false predicted area (12.9% of

27.1%) has a prediction failure of only one category.

In Alta Alpujarra it is clearly impossible to rank up land cover categories—the

vegetation dynamics is slower and, consequently the land cover categories more static.

So, fig. 15 focuses on specific prediction residues. Among the residues (22.39%), the

principal prediction failure concerns coniferous reforestation (9.71%) of which the

predicted area is twice as reality. The overestimated areas are close to earlier

reforestation areas (contiguous filter) and also form islands on locations affected by

forest fire during the training period. The second most important prediction failure

(4.77%) is about irrigated cropland, also overestimated. It concerns especially the land

near villages where, in reality, we notice amosaic of cropland and fallows. On the other

side, our model does not predict some new irrigated cropland (olive plantations and

herbaceous cultures). A 2.82% overestimation of scrubs (like deciduous forest) shows

that regenerationofnatural vegetation,mainlyon fallows, is slower thanpredicted.The

summed rest of prediction failure (0.41%) concerns a variety of different but less

significant situations.

718 M. Paegelow and M. T. Camacho Olmedo



6. Conclusion and outlook

The first results can lead us to draw some conclusions concerning the data set and

the methodology. The land cover is described as qualitative data by a small number

of land cover categories. The disadvantage is certain variability inside of the

categories. This may be illustrated by an example on Garrotxes. Figure 12 shows in

the south eastern part a large oblong area predicted as scrubs (same land cover as in

1980 and 1989). In reality this area changed by natural vegetation dynamics and

became a deciduous forest emphasizing a general problem while handling with

qualitative data: intra-class changes. In this case scrubs became even higher and

more compact. At the same time the floristic composition changed and Quercus ilex

got the upper hand.

Another limiting factor resulting from used data is training time series. Only two

land cover maps were used for calibration. On the other hand, social and

Figure 14. Mapped difference (real minus modelled land cover at t1) of land cover ranks in
Garrotxes.
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environmental conditions change quickly so that the rhythm of traditional, fine

resolution, data supports like standard aerial photographs do not match the rhythm

of land-use changes. The model calibration on two different test areas illustrates the

difficulty to predict correctly land cover dynamics using fine resolution data. Data

availability and uncertainty, random-side affects and the open status of complex

systems are limiting factors to model land cover.

Concerning the used methodology for prospective land cover modelling, it seems

that complementing automatic modelling tools with manual supervised tools

improves model results as shown for suitability and time transition probabilities for

scrubs and grassland in eastern Pyrenees or fallows in the Spanish study area. A

limit of the model is the fact that multi-criteria evaluation, multi-objective land

allocation and cellular automata only influence the spatial distribution of predicted

scores by Markovian chain analysis. LUCC budgets (cf. tables 9 and 10) emphasize

that the principal prediction failure is the incorrect amount of predicted land cover

change. Finally, each model is affected by random noise. Random side effects like

forest fire and wind fall, even if they are not significant (less than 2% of the whole

area), seem impossible to model correctly.

Figure 15. Accurate prediction and typology of major prediction failures, Alta Alpujarra
Granadina.
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We insist that the model is based on a small number of easily available data so

that the application to other areas is easy to perform by using existent and GIS

implemented tools. To improve the model some steps are under work:

N Application to a third test area;

N Critical review of used Markov chain analysis;

N Comparing and combining the GIS based model with statistic approaches

(nonlinear parametric model and neural networks) using the same data sets;

N Considering intra-class variance by using semi-quantitative land cover data

(covering rates);

N Increasing use of validation tools.
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