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Abstract. We consider the iterative reconstruction of both the internal geometry and
the values of an inhomogeneous acoustic refraction index through a piecewise constant
approximation. In this context, we propose two enhancements intended to reduce
the number of parameters to reconstruct, while preserving accuracy. This is achieved
through the use of geometrical informations obtained from a previously developed
defect localization method. The first enhancement consists in a preliminary selection
of relevant parameters, while the second one is an adaptive refinement to enhance
precision with a low number of parameters. Each of them is numerically illustrated.

1 Introduction

We are interested in the inverse medium problem consisting in the reconstruction of an inhomo-
geneous acoustic refraction index from far-field measurements generated through plane waves.
This parameter identification problem is non-linear and ill-posed, and we investigate two meth-
ods to reduce the number of computed parameters while preserving the reconstruction accuracy.
Applications are, for example, non-destructive structure testing or biomedical imaging [1, 2, 3].
Following the abundant literature, we write the inverse medium problem as a least-squares

problem (see [4] and references therein). Besides, since we consider discontinuous indices, we
look for the index of refraction as a piecewise constant function. In this setting, for its ease of
implementation and its efficiency for reasonably sized problems, we consider the Gauss-Newton
method, applied to a cost functional involving a Tikhonov regularization [5]. However, the Gauss-
Newton method treats all parameters in the same way. Yet, during the reconstruction, or even
right from the beginning, the values of some parameters can be close to the exact value, while
other parameters will need more iterations before reaching a given accuracy. In the absence of
some local information, the accurate parameters are then uselessly updated at each iteration.
Thus, we explore two uses of geometrical informations, obtained through defect localization, to
focus the reconstruction and consequently lighten its numerical cost.

By defect localization, we mean localizing the support of a perturbation with respect to some
known reference. However, in this paper, it is the reconstructed index that we use as the known
reference, and it is the exact index that we use as an unknown perturbed state. Thus, defect
localization can be used to locate errors in the index reconstruction. Besides, it has recently been
proved that the location of the defects in a given refraction index could be established from far-
field measurements of the unknown state and computed through a fast numerical method [6, 7].
Also, shape reconstruction has already been used jointly with parameter identification by using
the Linear Sampling method [8, 9, 10, 11].
However, the Factorization method approach, involved in [6] and [7], provides a more straight-

forward formulation as an equivalence that is defined at each point. So, we propose here to use
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this fast local information to reduce the computational effort in the complete refraction index
reconstruction process.
More precisely, in this paper we are going to propose two hybridizations between Gauss-Newton

and defect localization methods. We first consider the case where a known index has been locally
modified. This could happen, for instance, from a local deterioration or a partially incorrect esti-
mation of the actual index. In this case, a preliminary defect localization provides a geometrical
information that we can use to choose which parameters have to be reconstructed. Then, the re-
construction can be performed straightforwardly on a reduced computational domain. The goal
of this strategy is to avoid the useless reconstruction of parameters for which we have a suitable
initial guess. In a second time, we investigate adaptive refinement. Here, defect localization is
used to exhibit inaccurate regions in the current reconstruction. This local information allows us
to refine the reconstruction mesh in these regions and resume the reconstruction to get a better
precision while restraining the number of computed parameters. With this strategy, we thus
aim to control the numerical effort by diminishing the number of discrete parameter values with
respect to an uniform mesh of the whole parameter space.
This paper is structured as follows: In section 2, we specify the mathematical setting. We

then introduce the direct problem in section 2.1, followed in section 2.2 by the description of
the inverse medium problem we are interested in. The numerical method on which we will
build our enhancements is then described in section 2.3. Afterwards, the defect localization
and its applications are presented in section 3. We show how to reduce the reconstruction
domain in section 3.1, and the adaptive refinement process is detailed in section 3.2. Finally,
we numerically illustrate the sequence of both applications, and furthermore on a non-trivial
example, in section 4. We end the the paper by concluding remarks in section 5.

2 Presentation of the problem

We start by introducing the direct problem and the inverse medium problem, followed by its
numerical treatment.

2.1 The direct problem

We consider time-harmonic acoustic waves, with a fixed wave number k, modeled by the Helmholtz
equation [12]. Inhomogeneous media are then represented by an acoustic refraction index, de-
noted by n ∈ L∞(Rd). So, the total field, denoted by un ∈ L

2
loc(R

d), is assumed to satisfy

∆un + k2n(x)un = 0, x ∈ R
d, (1)

where d is the problem’s dimension (d = 2 or 3). We consider compactly supported inhomo-
geneities, and we denote by D the support of n(x) − 1. We also denote by ui ∈ L2

loc(R
d) an

incoming wave satisfying (1) with n(x) = 1 . The total field is then the sum of this incoming
wave and the wave scattered by the inhomogeneous medium, denoted by us ∈ L2

loc(R
d):

un := us + ui, (2)

where the scattered wave is assumed to satisfy the Sommerfeld radiation condition

∂ru
s = ikus + O

(
|x|

− d−1
2

)
. (3)

Then, the linear system (1)-(3) defines un ∈ L
2
loc(R

d) uniquely from ui [12, Chap. 8].
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Figure 1: General setting and notations.

Besides, the outgoing part of a wave has an asymptotic behavior called the far field pattern,
denoted by u∞n ∈ C

∞(Γm), and given by the Atkinson expansion [13, Theorem 6.11]

un(x) := ui(x) + γ
eik|x|

|x|
d−1
2

u∞n (~x) + O
(
|x|

− d−1
2

)
, ~x :=

x

|x|
∈ Γm, (4)

where Γm denotes the set of measurement directions as a subset of the unit sphere Sd−1 (see
figure 1), and where γ only depends on the dimension and is defined by

γ :=

{
eiπ/4
√
8πk

if d=2,
1
4π if d=3.

Furthermore, for practical reasons, we will mainly consider scattered waves having a plane
wave source. These plane waves are defined by

ui(~θ, x) := exp(ik~θ · x),

where ~θ is a unitary vector in the set of incidence directions, denoted by Γe as shown in Figure 1.
We then denote the total field with a plane wave source of incoming direction ~θ by

un(~θ, x), ~θ ∈ Γe, x ∈ R
d.

Lastly, the corresponding far-field pattern in the measurement direction ~x ∈ Γm will be de-
noted by

u∞n (~θ, ~x), ~θ ∈ Γe, ~x ∈ Γm.

2.2 The inverse medium problem

We are interested in the reconstruction, from far-field data, of an inhomogeneous refraction index
that will be denoted by n⋆ ∈ L∞(D) throughout this paper. Note that all considered indices will
be implicitly extended by 1 outside D, the compact support of n⋆ − 1.

Most of the methods used to solve this reconstruction problem are valid for domains that
are (subsets of) Hilbert spaces. Thus, we consider an index-to-far-field mapping F : L∞(D) →
L2(Γe × Γm) defined by

F(n) := u∞n .

Besides, data are generally perturbed by noise or measurement errors. So, we assume that we
only have access to u

ε ∈ L2(Γe × Γm), the perturbed version of u∞n⋆ satisfying

‖uε − u∞n⋆‖L2(Γe×Γm) 6 ε ‖u∞n⋆‖L2(Γe×Γm) . (5)
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The usual approach to this problem is then to find n by minimizing the difference between
F(n) and u

ε. Thus, we define the data misfit by

J(n) := c1 ‖F(n)− u
ε‖

2
L2(Γe×Γm) ,

where c1 denotes a normalization constant (e.g. c1 = ‖uε‖
−2
L2(Γe×Γm)).

Even so, this problem is not continuous, as is shown by the following proposition. So, even a
small perturbation ε can lead to a minimizer very far from n⋆.

Proposition 2.1. The non-linear problem consisting in “finding nε minimizing J” is ill-posed
in the sense of Hadamard.

Proof. The mapping F is compact, and thus cannot have a continuous inverse.
Indeed, it has been shown in [14, Proposition 2.1.14] that the mapping n 7→ un is continuous

from L∞(D) into H2(D); and as such, from L∞(D) into L2(D). As a consequence, the same
property holds for the mapping f : n 7→ (n− 1)un.
Moreover, the asymptotic behavior of the Lippmann-Schwinger equation yields the following

relationship [12, Chap. 8.4]:

F(n)(~θ, ~x) =

∫

z∈D

e−ik~x·zk2(n(z)− 1)un(~θ, z), θ ∈ Γe, ~x ∈ Γm. (6)

It is well known that the linear operator f 7→
∫
z∈D

e−ik~x·zk2f(z) is compact.
Hence, the non-linear operator F is the combination of a compact linear operator with a

continuous mapping. Therefore, it is compact itself.

2.3 Iterative approximation by a piecewise constant index

As stated in the introduction, we try to recover the unknown index n⋆ with help of piecewise
constant functions. Hence, the indices will numerically be represented by N complex parameters
(ηi)i=1...N associated to the same number of zones (Zi)i=1...N , so n(x) =

∑
i=1...N ηi1Zi

(x),
where 1Zi(x) is the characteristic function of Zi and

⋃
i=1...N Zi = D. Each zone is thus a set

of connected elements in the underlying mesh used to solve the Helmholtz equation. Moreover,
to avoid any possibility of inverse crime, the reconstruction will be led on a second mesh that is
different from the one used to generate the data u

ε. As a consequence, the zones associated to
the unknown parameters will intersect the discontinuities of n⋆. It is thus strictly impossible to
reconstruct n⋆ exactly. This is illustrated in Figure 2, showing two 2D meshes that will be used
in our numerical simulations.
In this setting, we use the well-known Gauss-Newton method applied to the cost function J

with a standard Tikhonov regularization term [15]:

J̃(n) := c1 ‖F(n)− u
ε‖

2
L2(Γe×Γm) + c2 ‖n− n0‖

2
L2(D) ,

where c2 > 0 is a regularization parameter and n0 ∈ L∞(D) is an initial guess. The choice
of this regularization parameter parameter is discussed in a large number of papers, see for
example [16, 17] and references therein. Empirically, it seems that a few percent of the fidelity

term c1 ‖F(n)− u
ε‖

2
are a decent initial guess for c2. Besides, assumptions on n0 and c2 for the

convergence of this method are discussed in [18, 19]. Hence, the index n⋆ we are looking for is
approximated by a sequence (np)p∈N of indices, defined iteratively through Algorithm 1.

The gradient of the cost function, required for the Gauss-Newton method, has the following
integral representation.
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Figure 2: Test case geometry

Algorithm 1: The Gauss-Newton method for J̃

Input: n0 ∈ L
∞(D)

1 p← 0;
2 repeat

3 Compute np+1 by solving the linear system

(
DF(np)

⋆DF(np) +
c2
c1
id
)
(np+1 − n0) =

−DF(np)
⋆
(
F(np)− u

ε −DF(np)(np − n0)
)
,

where id is the identity matrix, and DF(np)
⋆ is the hermitian adjoint of the matrix

DF(np);
4 p← p+ 1;

5 until ‖np − np−1‖2 /(1 + ‖np−1‖2) < ǫ;
Output: npEnd
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Lemma 2.2. The mapping F is differentiable and the differential DF evaluated at n ∈ L∞(D)
and applied to the direction dn ∈ L∞(D) has the following integral representation

DF(n) dn : (~θ, ~x) 7→

∫

z∈D

k2un(−~x, z)un(~θ, z) dn(z) dz, ~θ ∈ Γe, ~x ∈ Γm. (7)

Proof. Expansion (4) shows that u∞n (~θ, ·) is linear with respect to the scattered field (un−u
i)(~θ, ·).

Furthermore, It has been shown in [14, Proposition 4.3.1] that the scattered field is differentiable
with respect to n and that the differential of the index-to-scattered-field mapping evaluated at
n ∈ L∞(D), applied to dn ∈ L∞(D), is the function vs(~θ, ·) ∈ L2

loc(R
d) satisfying

(
∆x + k2n(x)

)
vs(~θ, x) = −k2 un(~θ, x) dn(x), x ∈ R

d, (8)

and the Sommerfeld radiation condition (3). Note that, contrarily to n, the direction dn is
extended by 0 outside D. Thus, F is differentiable, and its differential is defined on C∞(Γe×Γm)
by DF(n) dn = v∞.
Now, let us denote by Φn(z, x) the Green function of the Helmholtz equation (1). Multiply-

ing (8) by Φn(z, x), integrating over D, and using Green’s formula, yields

vs(~θ, x) =

∫

z∈D

k2Φn(z, x)un(~θ, z) dn(z) dz, x ∈ R
d.

The asymptotic behaviour is then given by

v∞(~θ, ~x) =

∫

z∈D

k2Φ∞
n (z, ~x)un(~θ, z) dn(z) dz, ~x ∈ Sd−1.

Finally, representation (7) is obtained by applying the mixed reciprocity principle: Φ∞
n (z, ~x) =

un(−~x, z) (see [20, equation (3.66)]).

Remark 2.3. As described in [18, 19], to ensure the convergence of the regularized non-linear
Gauss-Newton method (Algorithm 1), one also requires the differential of F to be Lipschitz con-
tinuous, which is actually the case. Indeed, the reference [14, Proposition 4.3.1], invoked in the
proof of Lemma 2.2, gives the twice continuous differentiability of the scattered field with respect
to n, thus implying that F is twice continuously differentiable too.

Numerical example

Set-up To illustrate our reconstruction schemes in R
2, we consider a disc D of radius 1 centered

at the origin. The embedded perturbation Ω is then chosen as another disc centered at (0.3, 0.3),
and of radius 0.3. The mesh corresponding to this geometry can be seen in Figure 2a. The
(perturbed) index we are looking for is set to n⋆ := 1.3 in D \Ω and n⋆ := 1.6 in Ω whereas the
initial guess, corresponding to the last known state, is n0 := 1.3 in D.
The Gaus-Newton method is performed with the regularization parameter c2 := 10−2 (and

c1 = ‖uε‖
−2
L2(Γe×Γm), as previously denoted). Also, solutions to the Helmholtz equation are

computed via a P 1 finite element method and Cartesian Perfectly Matched Layers (PML) [21].
Lastly, the corresponding far-fields are evaluated through the representation formula (6). For
all these examples, the wave number is set to k = 5, and the angles corresponding to incom-
ing/measurement directions are equally distributed over [0, 2π].
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(f) Evolution of the relative error

Figure 3: Gauss-Newton reconstruction with 30× 30 data and ε = 2% noise
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Results An example can be seen in Figure 3 with a reconstruction mesh of 2672 triangles (see
Figure 2b) divided into N = 10, N = 27, N = 75 and N = 2672 zones.

More precisely, the final relative error

epEnd
:= ‖npEnd

− n⋆‖
L2(D) / ‖n

⋆‖L2(D)

is synthesized as a function of the number of zones N in Figure 4.
Moreover, for comparison purpose, we list in Table 1 the exact final relative error obtained in

several configurations. Besides, we see in this table that the relative error is of order 10−2, so we
choose the stopping criterion ‖np − np−1‖2 /(1+‖np−1‖2) < ǫ = 10−4 for all our reconstructions.
In all these test cases, this bound was reached after four iterations.

Comments The low error that can be seen in Figure 4 for N = 19 is a particular case related
to the considered test case. Indeed, it just happens that this choice of zones provides a natural
match to our simple geometry, yielding a reconstruction that is better than expected.
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Figure 4: Final relative error with 30× 30 data and different noise levels ε

3 Enhancements of the Gauss-Newton method via defect

localization

In the presented piecewise constant iterative approximation, the possible precision is directly
linked to the number of basis functions N which, in turn, is linked to the computational effort.
In the lack of some geometrical informations, all parameters are equally treated and updated at
each iteration. However, this can generate more effort than is really needed, and we address two
cases where these unnecessary efforts can be reduced.

1. For the first case, we consider a bounded perturbation in a known initial state n0. So, most
of the values of the index have not changed and should not be reconstructed.
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15× 15 data 30× 30 data 60× 60 data
N ε epEnd

epEnd
epEnd

10
5% 5.9% 5.9% 5.9%
2% 5.9% 5.9% 5.8%
1% 5.9% 5.8% 5.8%

27
5% 4.9% 4.9% 4.9%
2% 4.8% 4.8% 4.8%
1% 4.9% 4.8% 4.8%

75
5% 5.4% 5.0% 4.4%
2% 3.9% 3.7% 3.7%
1% 3.6% 3.6% 3.6%

2672
5% 5.3% 4.5% 3.9%
2% 3.5% 3.3% 3.1%
1% 3.1% 3.0% 2.9%

Table 1: Gauss Newton reconstruction

2. For the second case, we are concerned in focusing on the most inexact constants during the
reconstruction. Indeed, to obtain a precise identification, the reconstruction mesh has to
be refined in the zones intersected by the discontinuities of n⋆. However, if n⋆ is constant
in large areas, refining the reconstruction mesh everywhere only raises the computational
effort for a relatively small precision increment.

To address these aspects of the reconstruction, the useful information in both cases would
thus be the localization of the nearly exact constants. Or, to put it otherwise, we look for
the localization of the difference between the reconstruction at hand and the exact (unknown)
index. We call this defect localization with respect to an inhomogeneous background reference.
Of course, to enhance the complete reconstruction, access to this specific information should
be fast. To this end, it has been shown in [6] that the Factorization method for a constant
background, as presented in [22], can be extended to an inhomogeneous background with help
of a modified measurement operator.

Theorem 3.1. [6, Theorem 6.1] Assume that Γm = Γe = Sd−1. Then, define a measurement

operator W :=
(
Id+ 2ik |γ|

2
Fn

)
(Fn⋆ − Fn) , where Fn : L2(Sd−1) → L2(Sd−1) denotes the

classical far-field operator, defined by Fng(~x) := 〈g, u∞n (·, ~x)〉L2(Sd−1). Next, we define the posi-
tive self-adjoint operator W# by W# := |W +W ⋆|+ |W −W ⋆|, where the notation |·| applied to

an operator L stands for |L| := (L⋆L)
1
2 . Lastly, assume that n and n⋆ are real valued, and that

either (n− n⋆) or (n⋆ − n) is locally bounded from below in Ω := support(n− n⋆).
Then, for each z ∈ R

d, we have n(z) 6= n⋆(z) if, and only if,

S{n,n⋆}(z) :=



∑

j

∣∣∣〈un(·, z), ψj〉L2(Sd−1)

∣∣∣
2

σj




−1

> 0,

where (σj , ψj) is an eigensystem of W#.

Remark 3.2. This localization result calls for a number of remarks.
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1. Theorem 3.1 requires full bi-static data (Γm = Γe = Sd−1) and real-valued indices. How-
ever, we also recall the conjecture, stated in [6, Remark 6.2]: To build the localization func-
tion S, the eigensystem of W#, denoted by (σj , ψj), could be replaced by a right-singular
system of (Fn⋆ − Fn). The main benefit is the possibility of considering Γm 6= Γe 6= Sd−1

and complex valued indices. Moreover, we a priori need to truncate the sum to avoid over-
valued terms, due to perturbations on the smallest eigenvalues. However, in our experience,
we have noticed that the computations are stable. So, no truncation is performed for the
numerical applications of this paper and all the eigenvalues of the measurement operator’s
matrix representation are considered.

2. Furthermore, numerical examples in [6] show that this localization is effective for defects
bigger than (approximately) one over six of the wavelength. Besides, in order to get sat-
isfactory results in the successive resolutions of the Helmholtz equation, we have set the
reconstruction mesh size to be about one over twenty of the wavelength. Thus, we will only
consider defects that cover at least four connected mesh elements.

3. Moreover, the examples shown in [6] exhibit that defects can be localized even when the
surrounding background is not precisely known. Practically, low amplitude inaccuracies with
respect to the exact index do not seem to interfere with the localization of the contrasting
defects. Thus, geometrical information gained through the defect localization presented here
is expected to focus on the most ”defective” zones.

4. Finally, it is to be noted that the added computational cost of this localization function
within the Gauss-Newton process will be negligible. Indeed, the functions un(·, z) will al-
ready have been computed to evaluate the differential of F , as can be seen on the integral
representation (7).

3.1 Selective reconstruction

We here consider the case where the initial guess n0 is exact, except for some perturbation
whose support will be denoted by Ω. Thus, we propose to perform a preliminary selection of the
parameters, to reconstruct only the perturbed ones. The selection is performed by considering
only the parameters associated to zones where the maximal value of the (normalized) defect
localization function S{n0,n⋆}/maxD S{n0,n⋆} is above some threshold T . The whole index n⋆ is
then reconstructed by updating those parameters only. This leads to a reconstruction, described
in Algorithm 2, using a number of parameters NSel that should be significantly less than N .

Algorithm 2: Selective reconstruction

Input: n0 ∈ L
2(D)

1 Si ← maxZi S{n0,n⋆}(x);
2 ΩT ← the set of zones for which Si > T maxSi;
3 npEnd

← Algorithm 1(n0 ΩT
) (all indices are extended by n0 outside ΩT );

Output: npEnd

Numerical example

Set-up In the framework of section 2.3, we here consider the smallest possible zones, that is one
parameter for each triangle of the reconstruction mesh. Figure 5 shows which zones are selected
with three threshold values T = 10%, T = 20% and T = 30%.
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Results We can see that a threshold of T = 10% yields an accurate selection of the perturbation,
and thus provides a satisfactory reconstruction with only NSel = 323 selected parameters. Thus,
we end up with significantly less parameters than the 2672 we have initially considered.

Comments We can also see in Table 2 that the relative error can be lower than what was
obtained through a full Gauss-Newton reconstruction over a set of various configurations. This
is a consequence of the fact that all the parameters outside the perturbation are equal to the exact
value, while they can be miscalculated in the full reconstruction. Identifying the unperturbed
parameters can thus clearly enhance the reconstruction. As previously, the stopping criterion
was reached after four iterations in all cases.

15× 15 data 30× 30 data 60× 60 data
T ε NSel epEnd

NSel epEnd
NSel epEnd

10%
5% 874 4.0% 739 3.3% 633 2.8%
2% 354 2.4% 323 2.3% 360 2.3%
1% 305 2.3% 282 2.4% 296 2.3%

20%
5% 321 2.7% 282 2.6% 268 2.8%
2% 196 3.5% 181 3.7% 203 3.3%
1% 172 4.1% 162 4.3% 171 4.0%

30%
5% 204 3.3% 181 3.7% 178 3.9%
2% 134 5.4% 125 5.7% 136 5.3%
1% 120 5.8% 112 5.9% 115 5.8%

Table 2: Selective reconstruction

However, a threshold of T = 20% seems too high, as the 181 selected zones do not completely
cover the perturbation’s support, resulting in a slightly flawed reconstruction. More precisely,
the relative error obtained as a function of T with 30× 30 data can be seen in Figure 6. Clearly,
there is an optimal value for T around 10% when the noise ratio is kept low.
Besides, with more noise (5%), we see in Figure 6 that the optimal T is shifted towards 20%.

Furthermore, we see that a good estimation of this threshold becomes even more important when
the noise level grows. This brings up the problem of how to select a correct threshold, taking
at least the measurements noise and the amount of data into account. Unfortunately, for the
moment, we do not have a realistic indicator to tell if the selected threshold is acceptable.

3.2 Adaptive refinement

As stated in section 2.3, we use a reconstruction mesh that is different from the one used to
generate the data. Hence, the supports of the basis functions used in the reconstruction will
not follow the geometry of n⋆, especially with a low number N of basis functions. Thus, we
propose to iteratively refine the reconstruction mesh with help of the previously introduced
defect localization, in order to provide a satisfying approximation of the unknown index with a
small number of parameters. The refinement outline is presented in Algorithm 3.
The number of 16 mesh elements is taken so that, after the splitting, each zone has still more

than four mesh elements, which is the lower limit for defects to be relevant, as specified in
Remark 3.2.

Numerical example

Set-up We illustrate our adaptive refinement in Figure 7 in the same conditions as in section 3.1.
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Figure 5: Selective reconstruction with 30× 30 data and ε = 2% noise
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Figure 6: Influence of the threshold T with 30× 30 data and different noise levels ε

Algorithm 3: Adaptive refinement

Input: n0 ∈ L
∞(D)

1 p← 0;
2 repeat

3 Si ← maxZi S{np,n⋆}(x);

4 I ← {i such that Zi contains more than 16 mesh elements};
5 iSplit ← i such that SiSplit

= maxi∈I Si;
6 Update the set of zones by splitting ZiSplit into four sub-zones;
7 Update the set of parameters accordingly by duplicating ηiSplit three times;
8 N ← N + 3;
9 np+pEnd

← Algorithm 1(np);
10 p← p+ pEnd;

11 until N > Nmax or each Zi contains less than 16 mesh elements;
Output: npEnd
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Results The steps 3 (defect localization) and 9 (reconstruction on the refined set) of Algorithm 3
are illustrated alternately in Figures 7a–7f, and it can be seen how the reconstruction focuses
on the support of the contrasting perturbation. Figure 7g represents the values of n59, which is
obtained with N = 76 basis functions chosen during 25 successive adaptive refinements. Also,
the relative error ep, obtained in step 10 of the algorithm, is plotted in Figure 7h as a function
of p.

Comments First, it can be noted that each refinement adds 3 parameters to be reconstructed
and that each call to Algorithm 1 generates about four iterations (see Tables 1-2). So, the number
of iterations is comparable to the number of parameters.
Then, comparing with the results obtained when using basis functions that are placed ran-

domly, summarized in Table 1 or in Figure 3f, we can see lower reconstruction errors when using
our guided adaptive refinement. In this example, our results are even comparable to the complete
reconstruction (Algorithm 1) performed with 20 times more parameters. We thus meet our goal,
which is a satisfactory reconstruction with a limited number of well-chosen basis functions.

Moreover, as we can see in Table 3, the sensitivities to noise or data amount in this example
are similar to what we observe in section 3.1.
Finally, it cannot be overlooked that the number of total iterations pend is now quite high,

since each loop in Algorithm 3 computes an iterative reconstruction. However each of those
reconstructions is conducted on a very small number of parameters. So, the integral represen-
tation (7) for the differential is not cost effective in this case and a suitably tuned evaluation of
np+1 in Algorithm 1 might thus be able to balance the higher number of iterations.

15× 15 data 30× 30 data 60× 60 data
ε N epEnd

N epEnd
N epEnd

5% 76 4.9% 76 6.0% 76 5.0%
2% 76 4.0% 76 4.8% 76 3.3%
1% 76 3.8% 76 4.4% 76 3.6%

Table 3: Adaptive refinement

4 Combining both strategies

The selective reconstruction is presented in section 3.1 as a preliminary step to the reconstruction.
Furthermore, the adaptive refinement described in section 3.2 enhances the actual reconstruction
step. So, adaptive refinement and selective reconstruction can be used one after the other. This
extension of Algorithm 2 is described in Algorithm 4.

Algorithm 4: Selective reconstruction followed by adaptive refinement

Input: n0 ∈ L
∞(D)

1 Si ← maxZi
S{n0,n⋆}(x);

2 ΩT ← the set of zones on which Si > T max(Si);
3 npEnd

← Algorithm 3(n0 ΩT
) (all indices are extended by n0 outside ΩT );

Output: npEnd

Note that the number of parameters selected in step 1 of this algorithm is not directly used
in the adaptively refined reconstruction (step 3). Indeed, the iterative refinement described

14



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

0.2

0.3

0.4

0.5

0.6

(a) Loop 1, step 3 (defect localization)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

(b) Loop 1, step 9 (refined reconstruction)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(c) Loop 2, step 3 (defect localization)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

(d) Loop 2, step 9 (refined reconstruction)
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(f) Loop 3, step 9 (refined reconstruction)
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Figure 7: Adaptive refinement (Algorithm 3) with 30× 30 data and ε = 2% noise
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in Algorithm 3 starts the reconstruction with only one zone. More precisely, the information
retained from the selection step is the shape of the perturbation. Note that the accuracy of this
selection is important: This is what allows the adaptive refinement to focus on the reconstruction
of the perturbation’s inner geometry, instead of focusing on the contrast between the perturbation
and the background.

Numerical example 1

Set-up As in section 3, we illustrate Algorithm 4 with the selection thresholds T = 10%,
T = 20% and T = 30%. The respective selected mesh elements can be seen in Figures 5a–5e.

Results Figures 8a–8c show the reconstructions after 2, 4 and final adaptive refinement loops
with a threshold T = 10%. As expected through the previous results, the reconstruction is very
good. In fact, the exact values listed in Table 4 show that this reconstruction reaches an accuracy
comparable to the one obtained through the initial selective reconstruction; the latter requiring
10 times more basis functions. As in section 3.2, and for the same reasons, the number of
parameters for each adaptively refined reconstruction is comparable to the number of iterations.

Similarly to the examples presented in section 3.1, T > 20% also provides a too small selection,
leading to a flawed reconstruction. For example, it can be seen in Figures 8d–8i that the recon-
struction tends to a crown shape. So, the constraint induced by this too small selection seems
to create false local minima, altering he whole convergence process, as we can see in Figure 8j.
The corresponding relative error values are detailed in Table 4.

Comments Since the selection is performed before the adaptive refinement, the choice of the
threshold T still has a large influence in the final result, even in the case of over-selection.
However, results in terms of accuracy remain close to the reference listed in Table 1 while involving
only 0.6% to 2% of the total number of elements used in the full Gauss-Newton reconstruction.

15× 15 data 30× 30 data 60× 60 data
T ε N epEnd

N epEnd
N epEnd

10%
5% 60 3.9% 57 3.1% 61 3.1%
2% 52 2.6% 52 2.4% 55 2.5%
1% 49 2.6% 52 2.5% 52 2.5%

20%
5% 52 3.3% 52 2.8% 46 3.0%
2% 22 3.8% 19 3.7% 22 3.3%
1% 19 4.0% 19 3.9% 16 4.1%

30%
5% 16 4.1% 19 3.6% 16 4.2%
2% 16 5.3% 16 5.6% 16 5.3%
1% 15 5.5% 16 5.6% 16 5.6%

Table 4: Selective reconstruction chained with iterative refinement

Numerical example 2

Set-up As a last example, we now consider a more elaborate and complex valued unknown
index n⋆, shown in Figure 9. Besides, we also make this reconstruction more challenging by
reducing the measurements aperture. Incoming directions are still taken in [0, 2π], but there
will be five less, and measurement directions are now taken in [0, 32π]. In this situation, the
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(b) Fourth refinement
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(c) Last (17th) refinement
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(d) Second refinement
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(e) Fourth refinement
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(f) Last (8th) refinement

Selection threshold T = 20%
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(g) Second refinement
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(h) Fourth refinement
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(i) Last (5th) refinement
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Figure 8: Selective reconstruction followed by adaptive refinement, 30 × 30 data and ε = 2%
noise
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localization function presented in Theorem 3.1 cannot be defined. So, we consider the technical
modification, recalled in Remark 3.2, that is conjectured to cover this case. Furthermore, we
assume that n⋆ was known before the central perturbation. So, we consider the initial guess n0

shown in Figure 10.
Finally, to remain in the previously defined context, we present the results of Algorithm 4

applied to this new geometry with the same selection thresholds T = 10%, T = 20% and
T = 30%.
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Figure 9: Exact index n⋆
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Figure 10: Initial guess n0

Results The reference reconstructions obtained with the usual Gauss-Newton reconstruction
(Algorithm 1) in the special case of 30× 25 data and 2% noise are synthesized in Figure 11.

We then present in Figure 12 the selected zones and the resulting reconstruction corresponding
to each selection threshold. In this case, T = 20% now seems to be the best threshold value,
and T = 30% is still too high. Indeed, in the lines of the previous numerical example depicted in
Figure 8, T = 30% seems again to induce a false local minima, resulting in an altered convergence
sequence. This is confirmed in Figure 12j, where we can also see that, even though T = 10%
allows to reach a satisfying precision, it requires much more refinements to do so than with
T = 20%.

The results obtained in section 3 are thus reinforced by this example, exhibiting reconstructions
comparable in precision to the full Gauss-Newton reconstruction, but with a much lower number
of parameters.
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Figure 11: Relative error for the usual Gauss-Newton method, with 30 × 25 data and different
noise levels ε

Comments Note that with this less trivial test case, the borders of the supports of the basis
functions for the reconstruction do not correspond to the discontinuities of the exact index. This
ensures that we avoid this particular case, which was mentioned in the concluding comments of
Section 2.3.

5 Conclusion

We have used a defect localization method to propose two ways of reducing the number of param-
eters in the reconstruction of an unknown refraction index. The first method is set in the context
of defects identification and uses their localization to reconstruct only the useful parameters of
the whole index. The second method is an adaptive refinement, based on defect localization to
iteratively reconstruct a better approximation with a limited number of parameters. We have
obtained good numerical results with both methods.

The reconstruction could however be further enhanced by two automations: some automatic
choice of the threshold for the defect localization function and some automatic selection of the
regularization parameter. The second issue has been reviewed for example in [16, 17] and is
claimed to be less critical when using a so-called Multiplicative Regularization described in [23].
However, for now, we have not been able to further enhance our results with these techniques.
Finally, convergence of the coupled process, hybridizing the Gauss-Newton and Factorization
methods, presented in this paper remains to be investigated.
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Figure 12: Selective reconstruction chained with adaptive refinement for the more elaborate ex-
ample with 30× 30 data and ε = 2% noise
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media. J. Funct. Anal., 252(2):490–516, 2007.

[21] B. Dah. Sur la modélisation de milieux fictifs absorbants de type couches de Bérenger. PhD
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