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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00801628v3


June 16, 2014 Journal of Statistical Computation and Simulation submission˙JSCS

To appear in the Journal of Statistical Computation and Simulation
Vol. 00, No. 00, Month 20XX, 1–31

Special Issue: SAMO-MASCOT

Journal of Statistical Computation and Simulation

Generalized Sobol sensitivity indices for dependent variables:

numerical methods

G. Chastainga ∗, F. Gamboab and C. Prieura
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The hierarchically orthogonal functional decomposition of any measurable function η of a random
vector X = (X1, · · · ,Xp) consists in decomposing η(X) into a sum of increasing dimension func-
tions depending only on a subvector of X. Even when X1, · · · , Xp are assumed to be dependent,
this decomposition is unique if the components are hierarchically orthogonal. That is, two of the
components are orthogonal whenever all the variables involved in one of the summands are a subset
of the variables involved in the other. Setting Y = η(X), this decomposition leads to the definition
of generalized sensitivity indices able to quantify the uncertainty of Y due to each dependent input
in X [1]. In this paper, a numerical method is developed to identify the component functions of the
decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties
of the components estimation is studied, as well as the numerical estimation of the generalized sen-
sitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world
problem.

Keywords: Sensitivity analysis ; dependent variables ; extended basis ; functional decomposition ;
greedy algorithm; LARS.

AMS Subject Classification: 62G08, 62H99

1. Introduction

In simulation models, input parameters can be affected by many sources of uncertainty.
The objective of global sensitivity analysis is to identify and to rank the input variables
that drive the uncertainty of the model output. The most popular methods are the
variance-based ones [2]. Among them, the Sobol indices are widely used [3]. This last
method relies on the assumption that the inputs are independent. Under this assumption,
Hoeffding [4] shows that the model output can be uniquely cast as a sum of increasing
dimension functions, where the integrals of every summand with respect to any of its own
variables must be zero. A consequence of these conditions is that all summands of the
decomposition are mutually orthogonal. Later, Sobol applies the latter decomposition to
sensitivity analysis [3]. It results that the global variance can be decomposed as a sum of
partial variances that quantify the sensitivity of a set of inputs on the model response.
However, for models featuring dependent inputs, the use of Sobol indices may lead

to a wrong interpretation because the sensitivity induced by the dependence between
two factors is implicitly included in their Sobol indices. To handle this problem, a
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straightforward solution consists in computing Sobol sensitivity indices for independent
groups of dependent variables. First introduced by Sobol [3], this idea is exploited in
practice by Jacques et al. [5]. Nevertheless, this technique implies to work with models
having several independent groups of inputs. Furthermore, it does not allow to quantify
the individual contribution of each input. A different way to deal with this issue has
been initiated by Borgonovo et al. [6, 7]. These authors define a new measure based on
the joint distribution of (Y,X). The new sensitivity indicator of an input Xi measures
the shift between the output distribution and the same distribution conditionally to
Xi. This moment free index has many properties and has been applied to some real
applications [8, 9]. However, the dependence issue remains unsolved as we do not know
how the conditional distribution is distorted by the dependence, and how it impacts the
sensitivity index. Another idea is to use the Gram-Schmidt orthogonalization procedure.
In an early work, Bedford [10] suggests to orthogonalize the conditional expectations
and then to use the usual variance decomposition on this new orthogonal collection.
Further, the Monte Carlo simulation is used to compute the indices. Following this
approach,the Gram-Schmidt process is exploited by Mara et al. [11], before performing
a polynomial regression to approximate the model. In both papers, the decorrelation
method depends on the ordering of the variables, making the procedure computationally
expensive and difficult to interpret.
Following the construction of Sobol indices previously exposed, Xu et al. [12] propose
to decompose the partial variance of an input into a correlated and an uncorrelated
contribution in the context of linear models. This last work has been later extended by
Li et al. with the concept of HDMR [13, 14]. In [13], the authors suggest to reconstruct
the model function using classical bases (polynomials, splines,...), then to deduce the
decomposition of the response variance as a sum of partial variances and covariances.
Instead of a classical basis, Caniou et al. [15] use a polynomial chaos expansion to
approximate the initial model, and the copula theory to model the dependence struc-
ture [16]. Thus, in all these papers, the authors choose a type of model reconstruction
before proceeding to the splitting of the response variance.

In a previous paper [1], we revisited the Hoeffding decomposition in a different way,
leading to a new definition of the functional decomposition in the case of dependent
inputs. Inspired by the pioneering work of Stone [17] and Hooker [18], we showed, under a
weak assumption on the inputs distribution, that any model function can be decomposed
into a sum of hierarchically orthogonal component functions. Hierarchical orthogonality
means that two of these summands are orthogonal whenever all variables included in one
of the components are also involved in the other. The decomposition leads to generalized
Sobol sensitivity indices able to quantify the uncertainty induced by the dependent model
inputs.
The goal of this paper is to complement the work done in [1] by providing an efficient

numerical method for the estimation of the generalized Sobol sensitivity indices. In our
previous paper [1], we have proposed a statistical procedure based on projection operators
to identify the components of the hierarchically orthogonal functional decomposition
(HOFD). The method consists in projecting the model output onto constrained spaces
to obtain a functional linear system. The numerical resolution of these systems relies on
an iterative scheme that requires to estimate conditional expectations at each step. This
method is well tailored for independent pairs of dependent variables models. However, it
is difficult to apply to more general models because of its computational cost. Hooker [18]
has also worked on the estimation of the HOFD components. This author studies the
component estimation via a minimization problem under constraints using a sample
grid. In general, this procedure is also quite computationally demanding. Moreover, it
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requires to get a prior on the inputs distribution at each evaluation point, or, at least, to
be able to estimate them properly. In a recent article, Li et al. [19] reconsider Hooker’s
work and also identify the HOFD components by a least-squares method. These last
authors propose to approximate these components expanded on a suitable basis. They
bypass some technical problem of degenerate design matrix by using a continuous descent
technique [20].
In this paper, we propose an alternative to directly construct a hierarchical orthog-

onal basis. Inspired by the usual Gram-Schmidt algorithm, the procedure consists in
recursively constructing for each component a multidimensional basis that satisfies the
hierarchical orthogonal conditions. This procedure will be referred to as the Hierarchically
Orthogonal Gram-Schmidt (HOGS) procedure. Then, each component of the decomposi-
tion can be properly estimated by a linear combination of this basis. The coefficients are
then estimated by the usual least-squares method. Thanks to the HOGS Procedure, we
show that the design matrix has full rank, so the minimization problem admits a unique
and explicit solution. Furthermore, we study the asymptotic properties of the estimated
components. Nevertheless, the practical estimation of the one-by-one component suffers
from the curse of dimensionality when using the ordinary least-squares estimation. To
handle this problem, we propose to estimate parameters of the model using variable
selection methods. Two usual algorithms are briefly presented, and are adapted to our
method. Moreover, the HOGS Procedure coupled with these algorithms is experimented
on numerical examples.
The paper is organized as follows. In Section 2, we give and discuss the general results

related to the HOFD. We remind Conditions (C.1) and (C.2) under which the HOFD
is available. Further, a definition of generalized Sobol sensitivity indices is derived and
discussed. Section 3 is devoted to the HOGS Procedure. We introduce the appropriate
notation, and outline the procedure in detail. In Section 4, we adapt the least-squares
estimation to our problem, and show the consistency of the HOGS Procedure in the
least-squares estimation context. Further, we point out the curse of dimensionality, tack-
led by the use of a penalized minimization scheme. In Section 5, we present numerical
applications. The first two examples are toy functions. The objective here is to show the
efficiency of the HOGS Procedure that may be coupled with variable selection methods
to estimate the sensitivity indices. The last example is an industrial case study. The
objective is to detect the inputs that have the strongest impact on a tank distortion.

2. Generalized Sobol sensitivity indices

Functional ANOVA models are specified by a sum of functions depending on an in-
creasing number of variables. A functional ANOVA model is said to be additive if only
main effects are included in the model. It is said to be saturated if all interaction terms
are included in the model. The existence and the uniqueness of such a decomposition
is ensured by some identifiability constraints. When the inputs are independent, any
squared-integrable model function can be exactly represented by a saturated ANOVA
model with pairwise orthogonal components. As a result, the contribution of any group
of variables to the model response is measured by the Sobol index, bounded between 0
and 1. Moreover, the sum of all the Sobol indices is equal to 1 [3]. The use of such an index
is not excluded in the context of dependent inputs, but the information conveyed by the
Sobol indices is redundant, and may lead to a wrong interpretation of the sensitivity in
the model. In this section, we remind the main results established in Chastaing et al. [1]
for possibly non-independent inputs. In this case, the saturated ANOVA decomposition
holds with weaker identifiability constraints than for the independent case. This leads
to a generalization of the Sobol indices that is well suited to perform global sensitivity
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analysis when the inputs are not necessarily independent.
First, we remind the general context and notation. The last part is dedicated to the gen-
eralization of the Hoeffding-Sobol decomposition when inputs are potentially dependent.
The definition of the generalized sensitivity indices is introduced in the following.

2.1 First settings

Consider a measurable function η of a random vector X = (X1, · · · ,Xp) ∈ Rp, p ≥ 1,
and let Y be the real-valued response variable defined as

Y :
(Rp,B(Rp), PX) → (R,B(R))

X 7→ η(X)

where the joint distribution of X is denoted by PX. For a σ–finite measure ν on
(Rp,B(Rp)), we assume that PX << ν and that X admits a density pX with respect to

ν, that is pX =
dPX

dν
.

Also, we assume that η ∈ L2
R
(Rp,B(Rp), PX). As usual, we define the inner product 〈·, ·〉

and the norm ‖ · ‖ of the Hilbert space L2
R
(Rp,B(Rp), PX) as

〈h1, h2〉 =
∫
h1(x)h2(x)pXdν(x) = E(h1(X)h2(X)), h1, h2 ∈ L2

R
(Rp,B(Rp), PX)

‖h‖2 = 〈h, h〉 = E(h(X)2), h ∈ L2
R
(Rp,B(Rp), PX)

Here E(·) denotes the expectation. Further, V (·) = E[(· − E(·))2] denotes the variance,
and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the covariance.
Let us denote [1 : k] := {1, 2, · · · , k}, ∀ k ∈ N∗, and let C be the collection of all
subsets of [1 : p]. As misuse of notation, we will denote the sets {i} by i, and {ij} by
ij. For u ∈ C with u = {u1, · · · , uk}, we denote the cardinality of u by |u| = k and the
corresponding random subvector by Xu := (Xu1

, · · · ,Xuk
). Conventionally, if u = ∅,

|u| = 0, and X∅ = 1. Also, we denote by X−u the complementary vector of Xu (that is,
−u is the complementary set of u). The marginal density of Xu (respectively X−u) is
denoted by pXu

(resp. pX−u
).

Further, the mathematical structure of the functional ANOVA models is defined
through subspaces (Hu)u∈C and (H0

u)u∈C of L2
R
(Rp,B(Rp), PX). H∅ ≡ H0

∅ denotes the
space of constant functions. For u ∈ C\{∅}, Hu is the space of square-integrable functions
that depend only on Xu. The space H0

u is defined in a recursive way on u as:

H0
u =

{
hu ∈ Hu, 〈hu, hv〉 = 0,∀ v ⊂ u,∀ hv ∈ H0

v

}
= Hu ∩

(
∑

v⊂u

H0
v

)⊥

,

where ⊂ denotes the strict inclusion, that is A ⊂ B ⇒ A ∩ B 6= B. Further, ⊆ will
denote the inclusion when equality is possible.

2.2 Generalized Sobol sensitivity indices

Let us suppose that
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PX << ν
where

ν(dx) = ν1(dx1)⊗ · · · ⊗ νp(dxp)
(C.1)

Our main assumption is :

∃ 0 < M ≤ 1, ∀ u ∈ C \ {∅}, pX ≥M · pXu
pX−u

ν-a.e. (C.2)

Under these conditions, the following result states a general decomposition of η as
a saturated functional ANOVA model, under the specific conditions of the spaces H0

u

(defined in Section 2.1),

Theorem 2.1 Let η be any function in L2
R
(Rp,B(Rp), PX). Then, under (C.1) and

(C.2), there exist unique functions (η0, η1, · · · , η{1,··· ,p}) ∈ H∅ × H0
1 × · · ·H0

{1,··· ,p} such

that the following equality holds :

η(X) = η0 +

p
∑

i=1

ηi(Xi) +
∑

1≤i<j≤p

ηij(Xi,Xj) + · · ·+ η{1,··· ,p}(X)

=
∑

u∈C
ηu(Xu) a.e.

(1)

To get a better understanding of Theorem 2.1, the reader could refer to its proof and
further explanations in [1]. Notice that, unlike the Sobol decomposition with independent
inputs, the component functions of (1) are hierarchically orthogonal, and no more mutu-
ally orthogonal. Thus, from now on, the obtained decomposition (1) will be abbreviated
HOFD (for Hierarchically Orthogonal Functional Decomposition). Also, as mentioned in
[1], the HOFD is said to be a generalized decomposition because it turns out to be the
usual functional ANOVA decomposition when inputs are independent.
The general decomposition of the output Y = η(X) given in Theorem 2.1 allows one to
decompose the global variance as a simplified sum of covariance terms. Further below, we
define the generalized sensitivity indices able to measure the contribution of any group
of inputs in the model when inputs may be dependent :

Definition 2.2 The sensitivity index Su of order |u| measuring the contribution of Xu

to the model response is given by :

Su =

V (ηu(Xu)) +
∑

u,v∈C\{∅}
u 6⊆v,v 6⊆u

Cov(ηu(Xu), ηv(Xv))

V (Y )
(2)

More specifically, the first order sensitivity index Si is given by :

Si =

V (ηi(Xi)) +
∑

v∈C\{∅}
i 6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
(3)
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These indices are called generalized Sobol sensitivity indices because if all inputs
are independent, it can be shown that Cov(ηu, ηv) = 0, ∀ u 6= v [1]. Thus, Su =
V (ηu(Xu))/V (Y ), which is the usual definition of Sobol indices for independent inputs.

Proposition 2.3 Under (C.1) and (C.2), the sensitivity indices Su previously defined
sum to 1, i.e.

∑

u∈C\{∅} Su = 1.

Interpretation of the sensitivity indices The indices’ interpretation is not obvi-
ous, as they are no more bounded and they can even be negative. We provide here an
interpretation of the first order sensitivity index Si, split into two parts:

Si =
V (ηi(Xi))

V (Y )
︸ ︷︷ ︸

VSi

+

∑

v 6=∅
i 6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
︸ ︷︷ ︸

CoVSi

.

The first part, VSi, could be identified as the full contribution of Xi, whereas the second
part, CoVSi, could be interpreted as the contribution induced by the dependence with the
other terms of the decomposition. Thus, CoVSi would play the role of compensation. We
detail here this interpretation, and we distinguish five cases, represented and explained
further below.

VSi

CoVSi

(1)
Si > 0

(2)
Si > 0

(3)
Si > 0

(4)
Si < 0

Si = 0(5)

Case (1). The full contribution of Xi is not
important, but the uncertainty is induced by
the dependence. Thus, Xi has an influence
through its dependence with the other vari-
ables.
Case (2). The full contribution of Xi is
important, and the induced contribution is
lower. In this case, Xi has a strong influence.
Case (3). The uncertainty of the sole Xi is
important, but weakened by the contribu-
tion induced by the dependence.
Case (4). The influence of Xi is not direct,
as it comes from its dependencies with other
factors. This influence, obtained by negative
covariances, is more important than the full
contribution, soXi may not be so significant.
Case (5). The case VSi = CoVSi = 0 means
that Xi is not contributive to the global vari-
ability. However, if VSi = −CoVSi 6= 0, the
dependence makes a perfect compensation.

Thus, decisions on the influence of the model inputs can hardly be taken in Case (4) and
the perfect compensation of Case (5). Also, the interpretation is subject to the index
splitting, so it may have an impact on the conclusion drawn in sensitivity analysis. This
impact has to be carefully considered and its study remains an open problem.
From now on, the next part is dedicated to the practical use of these indices. The
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analytical formulation of the HOFD components is rarely available in realistic applica-
tions. Indeed, their computation requires to know the mathematical form of η and the
distribution of the input parameters. It also implies to search for components in a space
constrained by very specific orthogonality conditions. Efficient numerical methods has
then to be developed to estimate the generalized sensitivity indices. The following section
is devoted to an original estimation scheme of the HOFD components based on two tools:
extended bases [19] and penalized regression [21].

3. The hierarchically orthogonal Gram-Schmidt procedure

In Section 2, we show that each component ηu belongs to a subspace H0
u of

L2(Rp,B(Rp), PX). Thus, to estimate ηu, the most natural approach is to con-
struct a good approximation space of H0

u. In addition, we have seen that the generalized
sensitivity indices are defined for any type of reference measures (νi)i∈[1:p]. From now
and until the end, we will assume that νi, ∀ i ∈ [1 : p], are diffuse measures. Indeed, the
non diffuse measures raise additional issues in the results developed further that we will
not address in this paper.

In a Hilbert space, it is usual to call in an orthonormal basis to express any of the
space element as a linear combination of the components of this basis. Further below,
we will define the finite-dimensional spaces HL

u ⊂ Hu and H0,L
u ⊂ H0

u, ∀ u ∈ C, as linear
spans of some orthonormal systems that will be settled later. We denote by Span {B}
the set of all finite linear combination of elements of B, also called the linear span of B.
Consider, for any i ∈ [1 : p], a truncated orthonormal system (ψi

li
)Li

li=0 of

L2(R,B(R), PXi
), with Li ≥ 1. Without loss of generality, we simplify the notation,

and we assume that Li = L ≥ 1, for all i ∈ [1 : p]. Also, when there is no con-
fusion, ψi

li
is written ψli . Moreover, we set ψ0 = 1. For any u = {u1, · · · , uk} ∈ C,

lu = (lu1
, · · · , luk

) ∈ [1 : L]|u| := [1 : L]× · · · × [1 : L] is the multi-index associated with
the tensor-product (⊗k

i=1ψlui
). To define properly the truncated spaces HL

u ⊂ Hu, we
further assume that

∀u = {ui}ki=1 ∈ C, ∀ lu ∈ [1 : L]|u|,
∫
[
∏k

i=1 ψlui
(xui

)]2pXdν(x) < +∞ (C.3)

Remark 3.1 A sufficient condition for (C.2) is to have 0 < M1 ≤ pX ≤M2 (see Section
3 of [1]). In this particular case, it is sufficient to assume that, ∀i ∈ [1 : p], ∀ li ∈ [1 : L],
∫
(
∏

i∈[1:p] ψli(xi))
2dν(x) < +∞ to ensure (C.3).

Under (C.3), we define, HL
∅ = Span {1}. Also, we set, ∀ i 6= j ∈ [1 : p],

HL
i = Span {1, ψli , li ∈ [1 : L]} .

Further, we write the multivariate spaces HL
u , for u ∈ C, as

HL
u = ⊗i∈uHL

i .

Then, the dimension of HL
u is dim(HL

u ) = (L+ 1)|u|.

7
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Now, we focus on the construction of the theoretical finite-dimensional spaces
(H0,L

u )u∈C , that corresponds to the constrained subspaces of (HL
u )u∈C . Thus, for all

u ∈ C, H0,L
u is defined as

H0,L
u =

{
hu ∈ HL

u , 〈hu, hv〉 = 0, ∀ v ⊂ u, ∀ hv ∈ H0,L
v

}

Hence, dim(H0,L
u ) = dim(HL

u )− [
∑

v⊂u
v 6=∅

L|v| + 1] = L|u|.

Given an independent and identically distributed n-sample (ys,xs)s=1,··· ,n from the

distribution of (Y,X), the empirical version Ĥ0,L
u of H0,L

u is defined as Ĥ0,L
∅ = HL

∅ , and

Ĥ0,L
u =

{

gu ∈ HL
u , 〈gu, gv〉n = 0,∀ v ⊂ u,∀ gv ∈ Ĥ0,L

v

}

,

where 〈·, ·〉n defines the empirical inner product associated with the n-sample. The

space Ĥ0,L
u varies with sample size n, but for notational convenience, we suppress the

dependence on n.

The next procedure is an iterative scheme to construct (H0,L
u )u∈C and (Ĥ0,L

u )u∈C by
taking into account their specific properties of orthogonality. This numerical method is
referred to as the Hierarchically Orthogonal Gram-Schmidt (HOGS) procedure.

Hierarchically Orthogonal Gram-Schmidt Procedure

(1) Initialization. For any i ∈ [1 : p], we use the truncated orthonormal system
(ψli)

L
li=0. Set φli = ψli , ∀ li ≥ 1 and

H0,L
i = Span {φli , li ∈ [1 : L]} .

As (φli)
L
li=1 is an orthonormal system, any function hi ∈ H0,L

i satisfies
E(hi(Xi)) = 0.

(2) Second order interactions. Let u = {i, j} with i 6= j ∈ [1 : p]. The

space H0,L
u is constructed in a recursive way. By Step (1), we have H0,L

i =

Span {φli , li ∈ [1 : L]} and H0,L
j = Span

{
φlj , lj ∈ [1 : L]

}
. For all lij = (li, lj) ∈

[1 : L]2,
(a) set

φlij (Xi,Xj) = φli(Xi)× φlj (Xj) +
L∑

k=1

λikφ
i
k(Xi) +

L∑

k=1

λjkφ
j
k(Xj) + Clij

(b) The constants (Clij , (λ
i
k)

L
k=1, (λ

i
k)

L
k=1) are determined by solving the hierar-

chical orthogonal constraints,







〈φlij , φik〉 = 0, ∀ k ∈ [1 : L]

〈φlij , φjk〉 = 0, ∀ k ∈ [1 : L]
〈φlij , 1〉 = 0

Finally, H0,L
ij = Span

{
φlij , lij ∈ [1 : L]2

}
. Each function hij ∈ H0,L

ij satis-

fies the constraints imposed to H0
ij.

8
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(3) Higher order interactions. To build a basis (φlu)lu∈[1:L]|u| of H0,L
u , with u =

(u1, · · · , uk), we proceed recursively on k. By the previous steps of the Procedure,
we have at hand, for any v ∈ C such that 1 ≤ |v| ≤ k − 1,

H0,L
v = Span

{

φlv , lv ∈ [1 : L]|v|
}

, dim(H0,L
v ) = L|v|.

Now, to obtain φlu, for all lu = (lu1
, · · · , luk

) ∈ [1 : L]|u|, we proceed as follows,
(a) set

φlu(Xu) =

k∏

i=1

φlui
(Xui

) +
∑

v⊂u
v 6=∅

∑

lv∈[1:L]|v|
λlv,luφlv(Xv) + Clu (4)

(b) compute the (1+
∑

v⊂u
v 6=∅

L|v|) coefficients (Clu , (λlv ,lu)lv∈[1:L]|v|,v⊂u) by solving

{

〈φlu , φlv〉 = 0, ∀v ⊂ u, ∀ lv ∈ [1 : L]|v|

〈φlu , 1〉 = 0.
(5)

The linear system (5), with (4), is equivalent to a sparse matrix system
of the form Au

φΛ
u = Dlu, when Clu has been removed. The matrix Au

φ

is a Gramian matrix involving terms E(Φv1(Xv1
)tΦv2(Xv2

))v1,v2⊂u, with

(Φvi(Xvi
))lvi

= φlvi
(Xvi

), lvi
∈ [1 : L]|vi|, i = 1, 2. Λu involves the coef-

ficients (λlv,lu)lv∈[1:L]|v|,v⊂u, and D
lu involves −E(

∏

ui∈u φ
·
lui

Φvi)vi⊂u.

In Lemma A.2, we show that Au
φ is a definite positive matrix, so the system

(5) admits a unique solution.

Finally, set H0,L
u = Span

{
φlu , lu ∈ [1 : L]|u|

}
.

The construction of (Ĥ0,L
u )u∈C is very similar to the (H0,L

u )u∈C one. However, as the

spaces (Ĥ0,L
u )u∈C depend on the observed n-sample, their construction requires to assume

that the sample size n is larger than the size L. Thus, face to an expensive model with
a limited budget, the number of observations n may be small. In this case, and in view
of the HOGS procedure, L should be chosen accordingly.
To build Ĥ0,L

i , ∀ i ∈ [1 : p], we use the usual Gram-Schmidt procedure on (φli)
L
li=1 to

get an orthonormal system (φ̂li)
L
li=1 with respect to the empirical inner product 〈·, ·〉n.

To build (Ĥ0,L
u )u∈C,|u|≥2, we can simply use the HOGS procedure while replacing 〈·, ·〉

with 〈·, ·〉n. Finally, we denote

Ĥ0,L
u = Span

{

φ̂lu , lu ∈ [1 : L]|u|
}

∀ u ∈ C \ {∅}.

In practice, polynomials or splines basis functions [22] will be considered. In the next
section, we discuss the practical estimation of the generalized Sobol sensitivity indices
using least-squares minimization, and its consistency. Further, we discuss the curse of
dimensionality, and propose some variable selection methods to circumvent it.

9
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4. Estimation of the generalized sensitivity indices

4.1 Least-Squares estimation

The effects (ηu)u∈C in the HOFD (1) satisfy

(ηu)u∈C = Argmin
(hu)u∈C

hu∈H0
u

E[(Y −
∑

u∈C
hu(Xu))

2] (6)

Notice that η0, the expected value of Y , is not involved in the sensitivity indices
estimation. Thus, Y is replaced with Ỹ := Y − E(Y ) in (6). Also, the residual term
η{1,··· ,p} is removed from (6) and is estimated afterwards. In Section 3, we defined the

approximating spaces Ĥ0,L
u of H0

u, for u ∈ C \ {∅}. Thus, the minimization problem (6)
may be replaced with its empirical version,

min
βu
lu

∈R,
lu∈[1:L]|u|,

u∈C

1

n

n∑

s=1






ỹs −

∑

u⊂[1:p]
u 6=∅

∑

lu∈[1:L]|u|

βulu φ̂lu(xu
s)







2

(7)

where ỹs := ys − ȳ, ȳ := 1
n

∑n
s=1 y

s, and where every subspace Ĥ0,L
u is spanned by the

basis functions (φ̂lu)lu∈[1:L]|u| constructed according to the HOGS Procedure of Section
3. The equivalent matrix form of (7) is

min
β

‖Y− Xφ̂β‖2n (8)

where Ys = ys− ȳ, Xφ̂ =
(

φ̂1 · · · φ̂u · · ·
)
∈ ×

u∈C
Mn,L|u|(R), where ×

u∈C
Mn,L|u|(R) denotes

the cartesian product of real entries matrices with n rows and L|u| columns.
For u ∈ C, (φ̂u)s,lu = φ̂lu(xu

s), and β = (βulu)lu,u, ∀ s ∈ [1 : n], ∀ lu ∈ [1 : L]|u|.

4.2 Asymptotic results

The method exposed in Section 3 aims at estimating the ANOVA components, whose
uniqueness is ensured by hierarchical orthogonality. However, we would like to make sure
that our numerical procedure is robust, i.e. that the estimated summands converge to
the theoretical ones. To do that, we suppose that the model function η is approximated
by ηL, where

ηL(X) =
∑

u∈C
ηLu (X), with ηLu =

∑

lu∈[1:L]|u|

βu,0lu
φlu(Xu),

where βu,0lu
stands for the true parameter. Further, we assume that the estimator η̂L of

ηL is given

η̂L(X) :=
∑

u∈C
η̂Lu (Xu), with η̂Lu (Xu) =

∑

lu∈[1:L]|u|

β̂lu φ̂lu(Xu),

10
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where the coefficients (β̂ulu)lu∈[1:L]|u|,u∈C are estimated by (8), and φ̂lu ∈ Ĥ0,L
u . Here, we

are interested in the consistency of η̂L when the dimension L|u| is fixed for all u ∈ C.
This result is stated in Proposition 4.1.

Proposition 4.1 Assume that

Y = ηL(X) + ε, where ηL(X) =
∑

u∈C

∑

lu∈[1:L]|u|

β
u,0
lu
φlu(Xu),

with E(ε) = 0, and E(ε2) = σ2∗, E(ε · φlu(Xu)) = 0, ∀ lu ∈ [1 : L]|u|, ∀ u ∈ C.

(β0 = (βu,0
lu

)lu,u is the true parameter).

Further, let us consider the least squares estimation η̂L of ηL using the sample
(ys,xs)s∈[1:n] from the distribution of (Y,X), and the functions (φ̂lu)lu, that is

η̂L(X) =
∑

u∈C
η̂Lu (Xu), where η̂Lu (Xu) =

∑

lu∈[1:L]|u|

β̂ulu φ̂lu(Xu),

where β̂ = Argminβ∈Θ,
∥
∥
∥Y− Xφ̂β

∥
∥
∥

2

n

and Θ is a compact set of Rm, m being the size of

the vector β.

If we assume that

(H.1) The distribution PX is equivalent to ⊗p
i=1PXi

;

(H.2) For any u ∈ C, any lu ∈ [1 : L]|u|, ‖φlu‖ = 1 and
∥
∥
∥φ̂lu

∥
∥
∥

n

= 1

(H.3) For any i ∈ [1 : p], any li ∈ [1 : L],
∥
∥
∥φ̂2li

∥
∥
∥ < +∞.

Then,

∥
∥η̂L − ηL

∥
∥ a.s.→ 0 when n→ +∞. (9)

The proof of Proposition 4.1 is postponed to Appendix A.

Our aim here is to study how the approximating spaces Ĥ0,L
u , constructed with the

previous procedure, behave when n → +∞. However, we assume that the dimension
of H0,L

u , L|u|, is fixed. By extending the work of Stone [17], Huang [32] explores the
convergence properties of functional ANOVA models when L|u| is not fixed anymore.
Nevertheless, the results are obtained for a general model spaceHu, and its approximating
space Ĥu, ∀ u ∈ C. In [32], the author states that if the basis functions are m-smooth
and bounded, ‖η̂ − η‖ converges in probability. For polynomials, Fourier transforms or

splines, he specifically shows that ‖η̂ − η‖ = Op(n
− 2m

2m+d ) (See [32] p. 257), when d is the
ANOVA order (i.e. η ≃ ∑

u∈C
|u|≤d

ηu), where d can be chosen by the notions of effective

dimension [23]. Thus, even if we show the convergence of η̂L for d = p, where p is the
model dimension, it is in our interest to have a small order d when p gets large to get a
good rate of convergence.
However, in practice, even for small d ≪ p, the number of terms blows up with the
dimensionality of the problem, and so would the number of model evaluations when
using an ordinary least-squares regression scheme. As an illustration, take d = 3, p = 8
and L = 5. In this case, m = 7740 parameters have to be estimated, which could be a

11
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difficult task in practice. To handle this kind of problem, many variable selection methods
have been considered in the field of statistics. The next section aims at briefly exposing
the variable selection methods based on a penalized regression. We particularly focus on
the ℓ0 penalty [24] and on the Lasso regression [25].

4.3 The variable selection methods

For simplicity, we denote by m the number of parameters in (8). The variable selection
methods usually deal with the penalized regression problem

min
β

‖Y− Xφ̂β‖2n + λJ(β) (10)

where J(·) is positive valued for β 6= 0, and where λ ≥ 0 is a tuning parame-
ter. The most intuitive approach is to consider the ℓ0-penalty J(β) = ‖β‖0, where
‖β‖0 =

∑m
j=1 1(βj 6= 0). Indeed, the ℓ0 regularization aims at selecting non-zero coef-

ficients, thus at removing the useless parameters from the model. The greedy approxi-
mation [24] offers a series of strategies to deal with the ℓ0-penalty. Nevertheless, the ℓ0
regularization is a non convex function, and suffers from statistical instability, as men-
tioned in [25, 26]. The Lasso regression could be regarded as a convex relaxation of the
optimization problem [25]. Indeed, the Lasso regression is based on ℓ1-penalty, i.e. (10)
with J(β) = ‖β‖1, and ‖β‖1 =

∑m
j=1 |βj |. The Lasso offers a good compromise between

a rough selection of non-zero elements, and a ridge regression (J(β) =
∑m

j=1 β
2
j ) that

only shrinks coefficients, but is known to be stable [21, 27]. In the following, the proposed
method will use either the ℓ0 or the ℓ1 regularization.
The adaptive forward-backward greedy (FoBa) algorithm proposed in Zhang [28] is ex-
ploited here to deal with the ℓ0 penalization. From a dictionary D that can be large
and/or redundant, the FoBa algorithm is an iterative scheme that sequentially selects
and discards the element of D that has the least impact on the fit. The aim of the al-
gorithm is to efficiently select a limited number of predictors. The advantage of such an
approach is that it is very intuitive, and easy to implement.
Initiated by Efron et al. [29], the modified LARS algorithm is adopted to deal with the
Lasso regression. The LARS is a general iterative technique that builds up the regression
function by successive steps. The adaptation of LARS to Lasso (the modified LARS) is
inspired by the homotopy method proposed by Osborne et al. [30]. The main advantage
of the modified LARS algorithm is that it builds up the whole regularized solution path
{β̂(λ), λ ∈ R}, exploiting the property of piecewise linearity of the solutions with re-
spect to λ [27, 31]. Moreover, the modified LARS yields all lasso solutions, making this
algorithm theoretically efficient.
In the next part, both the FoBa and the modified LARS algorithms are adapted to

our problem and are then compared on numerical examples.

4.4 Summary of the estimation procedure

Provided an initial choice of orthonormal system (ψli)
L
li=0,i∈[1:p], we first construct the

approximation spaces Ĥ0,L
u of H0

u for |u| ≤ d, and d ≪ p, using the HOGS Procedure

described in Section 3. A HOFD component ηu is then a projection onto Ĥ0,L
u , whose

coefficients (β̂ulu) are defined by least-squares estimation. To bypass the curse of dimen-
sionality, the FoBa algorithm or the modified LARS algorithm is used. Once the HOFD
components are estimated, we derive the empirical estimation of the generalized Sobol
sensitivity indices. Thus, Ŝi, ∀ i ∈ [1 : p], is given by

12
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Ŝi =

1
n

∑n
s=1

(
∑L

li=1 β̂
i
li
φ̂li(x

s
i )
)2

V̂ (Y )
+

∑

|v|≤d
i 6∈v

1
n

∑n
s=1

(
∑L

li=1 β̂
i
li
φ̂li(x

s
i ) ·
∑

lv
β̂vlv φ̂lv(xv

s)
)

V̂ (Y )
,

where V̂ (Y ) = 1/n
∑n

s=1(y
s − ȳ)2.

5. Application

In this section, we are interested by the numerical efficiency of the HOGS procedure
introduced in Section 3, that may be coupled with a penalized regression, as done in
Section 4.3. The goal of the following study is to show that our strategy gives a good
estimation of the generalized sensitivity indices in an efficient way.

5.1 Description

In this study, we compare several numerical strategies summarized further below.

(1) The HOGS Procedure consists in constructing the basis functions that will be
used to estimate the components of the functional ANOVA. Further, to estimate
the m unknown coefficients, we may use
(a) the usual least squares estimation when m < n, and n is the number of

model evaluations. This technique is called LSEHOGS.
(b) whenm ≥ n, the HOGS is coupled with the adaptive greedy algorithm FoBa

to solve the ℓ0-penalized problem. This is called FoBaHOGS. To relax the ℓ0
penalization, the modified LARS algorithm may replace the greedy strategy,
abbreviated LHOGS, where L stands for LARS.

(2) The general method developed in [1], based on projection operators, consists
in solving a functional linear system, when the model depends on independent
pairs of dependent inputs. This procedure is abbreviated POM for Projection
Operators Method.

(3) At last, we compare our strategy to a minimization under constraints detailed
in [18], and summarized as

{

minF ‖Y− XF‖2
n

DnF = 0
(11)

with Ys = ys − ȳ, s = 1, · · · , n, X is a matrix composed of 1 and 0 elements,
Fs,u = ηu(xu

s), and Dn is the matrix of hierarchical orthogonal constraints,
where the inner product 〈·, ·〉 has been replaced with its empirical version 〈·, ·〉n.
However, the matrix X is not full rank, so the solution of (11) is not unique. This
implies that the descent technique used to estimate F may give local solutions and
lead to wrong results. Moreover, in a high-dimensional paradigm, the matrix of
constraints Dn becomes very large, leading to an intractable strategy in practice.
To remedy to these issues, we consider that each component is parametrized, and
constrained, i.e. we consider the following problem,

{

minΦ ‖Y− XΦ‖2
n

DnΦ = 0
(12)

13
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where Xs,lu = ψlu(xu
s), s = 1, · · · , n, with (ψlu)lu,u the usual tensor basis of

L2(R) (polynomial, splines, . . . ). The vector Φ is the set of unknown coefficients,
and Dn is the matrix of constraints given by (5), where the inner product 〈·, ·〉 has
been replaced with its empirical version 〈·, ·〉n, on the parametrized functionals
of the decomposition. The Lagrange function associated with (12) can be easily
derived, and the linear system to be solved is the following

(
tXX −tD
D 0

)(
Φ
λ

)

=

(
tXY

0

)

,

where λ is the Lagrange multiplier. This procedure, substantially similar to the
HOGS Procedure, is abbreviated MUC for Minimization Under Constraints.

In the following, the computational time cost of each model is negligible when compared
with the procedures described above. In the next numerical examples, all these strategies
are compared in terms of CPU time, as well as mean squared error, defined as

mse(η) =
1

|C|
∑

u∈C

1

n

n∑

s=1

[η̂u(xu
s)− ηu(xu

s)]2 ,

where the functions η̂u are estimated by one of the methodologies described above, and
ηu are the analytical functions.

5.2 Test cases and results

For every model, we consider that the functional ANOVA decomposition is truncated at
order d = 2.

Test case 1: the g-Sobol function. Well known in the sensitivity literature [2], the
g-Sobol function is given by

Y =

p
∏

i=1

|4Xi − 2|+ ai
1 + ai

, ai ≥ 0,

where the inputs Xi are independent and uniformly distributed over [0, 1]. The analytical
Sobol indices are given by

Su =
1

D

∏

i∈u
Di, Di =

1

3(1 + ai)2
, D =

p
∏

i=1

(Di + 1)− 1, ∀ u ∈ C.

We take p = 4, and a = (0, 1, 4.5, 99). We choose the Legendre polynomial basis of
degree 5. Therefore, the number of parameters to be evaluated is m = 170. The purpose
of this study is to show the efficiency of the HOGS strategy, and to compare it with the
MUC one. Our aim is also to consolidate the asymptotic result given in Section 4 from
a numerical viewpoint. To this end, we make two numerical tests, where

(a) the model is evaluated n = 200 times over 50 runs. The estimated first and second
order sensitivity indices are represented in Figure 1 when LSEHOGS and MUC
methods are used.

(b) the model is evaluated n = 1500 times over 50 runs. The estimated first and second
order sensitivity indices are represented in Figure 2 in this condition.

14
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The computational efficiency of both strategies are reported in Table 1.
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Figure 1. Test case 1(a). Sensitivity indices estimation with n = 200 evaluations
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Figure 2. Test case 1(b). Sensitivity indices estimation with n = 1500 evaluations

Table 1. Test case 1. Numerical comparisons of the MUC and the
LSEHOGS

CPU time (in sec.) mse(η) × 10−3

Case 1(a) MUC 0.1628 28.2

LSEHOGS 0.35 6.3

Case 1(b) MUC 1.867 20.8

LSEHOGS 0.658 2

Test case 2: the Li function. This polynomial function has been introduced by Li et
al. [19], and is given by the following expression,

Y = g1(X1,X2) + g2(X2) + g3(X3), X ∼ N(0,Σ),

15
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with

g1(X1,X2) = [a1X1 + a0][b1X2 + b0]

g2(X2) = c2X
2
2 + c1X2 + c0

g3(X3) = d3X
3
3 + d2X

2
3 + d1X3 + d0

Σ =





σ21 γσ1σ2 0
γσ1σ2 σ22 0

0 0 σ23



 .

The normal distribution does not satisfy Condition (C.2). However, the Gaussian den-
sity makes it possible to compute a HOFD decomposition, as done in [19]. Moreover,
if the search of solutions is restricted to the polynomial spaces, the uniqueness of the
HOFD components given in [19] is ensured, whatever the type of distribution. Thus, the
analytical form of the ANOVA components and the generalized Sobol indices can be
derived in this case.
To mimic the work done in [19], we take a0 = c1 = d0 = 1, a1 = b0 = c2 = d1 = d2 = 2
and b1 = c0 = d3 = 3. The variations are set equal to σ1 = σ2 = 0.2, σ3 = 0.18 and
γ = 0.6. For each component, we choose a Hermite basis of degree 10 to apply the HOGS
Procedure and the MUC strategy. Thus, the number of parameters to be estimated is
equal to m = 330. Further, we consider n = 300 model evaluations to estimate the
parameters by the (L/FoBa)HOGS method. We repeat the test over 50 repetitions. We
compare it to the MUC and the POM strategies in Table 2 on the estimated sensitivity
indices. Table 3 shows the number of non-zero estimated coefficients for the FoBaHOGS
and the LHOGS. The averaged elapsed time and the mse(η) computed for each method
are also reported in Table 3.

Table 2. Test case 2. Sensitivity indices estimation (with standard deviations) with n = 300

S1 S2 S3 S12 S13 S23 S123

Analytical 0.4683 0.4652 0.0593 0.0072 0 0 0

POM
0.4402 0.4718 0.0810 -0.0014 - - -
(0.021) (0.0401) (0.0012) (0.001) - -

FoBaHOGS
0.4488 0.4699 0.0714 0.0041 0 0 0.0058
(0.0216) (0.0190) (0.0233) (0.0028) (0) (0)

LHOGS
0.4536 0.4733 0.0745 0.0065 0.0013 0.0006 -0.0098
(0.0216) (0.0193) (0.0227) (0.0017) (0.0017) (0.0009)

MUC
0.4439 0.4533 0.0713 0.0002 0.0002 0.0001 0.0310
(0.0206) (0.0185) (0.0221) (0.0001) (0.0004) (0.0003)

Table 3. Test case 2. Numerical comparisons of the MUC, the POM and
the FoBa/LHOGS with n = 300

∑

j 1(β̂j 6= 0) CPU time (in sec.) mse(η) × 10−3

POM - 11.96 6.5

MUC - 11.97 7.9

FoBaHOGS 5.9 3.38 5.1

LHOGS 152.6 77.23 5.1
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Figure 3. Tank distortion at point y

Table 4. Description of inputs of the shell model

Inputs Meaning Distribution

Rint shell internal radius U([1800; 2200]), γ(Rint, Tshell) = 0.85
Tshell shell thickness U([360; 440]), γ(Tshell , Tcap) = 0.3
Tcap cap thickness U([180; 220]), γ(Tcap, Rint) = 0.3

Ecap cap Young’s modulus αN(µ,Σ) + (1 − α)N(µ,Ω), α = 0.02

σy,cap cap yield strength µ =

(

210
500

)

, Σ =

(

350 0
0 29

)

, Ω =

(

175 81
81 417

)

Eshell shell Young’s modulus αN(µ,Σ) + (1 − α)N(µ,Ω), α = 0.02

σy,shell shell yield strength µ =

(

70
300

)

, Σ =

(

117 0
0 500

)

, Ω =

(

58 37
37 250

)

Pint internal pressure N(80, 10)

Test case 3: the tank pressure model. The case study is a shell closed by a cap and
subjected to an internal pressure. Figure 3 illustrates a simulation of tank distortion.
The calculation of interest is the von Mises stress [33] at point y. The yielding of the
material occurs as soon as the von Mises stress reaches the material yield strength. The
selected point y corresponds to the point for which the von Mises stress is maximal in the
tank. We want to prevent the tank from material damage induced by plastic strains. A
2D finite elements model the system using the code ASTER. In order to design reliable
structures, a manufacturer wants to identify the most contributive parameters to the
von Mises criterion variability. The von Mises criterion depends on three geometrical
parameters: Rint, Tshell and Tcap. It also depends on six material parameters, Eshell,
Ecap, σy,shell, σy,cap, and Pint. Table 4 gives the meaning and the distribution of the eight
inputs.
The geometrical parameters are uniformly distributed because of the large choice left

for the tank building. The correlation γ between the geometrical parameters is induced
by the constraints of manufacturing processes. The physical inputs are normally dis-
tributed and their uncertainty are due to the manufacturing process and the properties
of the elementary constituents variabilities. The large variability of Pint in the model
corresponds to the different internal pressure values which could be applied to the shell
by the user.
To measure the contribution of the correlated inputs to the output variability, we proceed
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to two estimation methods:

(1) As the FoBaHOGS technique gives very similar results with the LHOGS one,
we perform the FoBaHOGS strategy with n = 1000 simulations for each of 50
replications. We use the 5-spline functions for the geometrical parameters and the
Hermite basis functions of degree 7 for the physical parameters. Figure 5 displays
the first order sensitivity indices Si, i = 1, · · · , 8, and their splits into VSi and
CoVSi for an easier interpretation.

(2) As we are faced to four independent groups of dependent variables,
{Rint, Tshell, Tcap}, {Ecap, σy,cap}, {Eshell, σy,shell} and {Pint}, we estimate the
usual Sobol indices of these four groups by the Monte Carlo procedure [5, 34],
with two observations samples of respective size n = 10000, for each of 50 repli-
cations. The aim is to compare the results obtained by this approach to our
procedure, and to illustrate the additional information one can get with the gen-
eralized sensitivity indices. Figure 4 plots the contribution of the independent
groups into the model variability.
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Figure 4. Sobol indices of the four groups of variables

Interpretation. Through the Case 1, we observe that MUC clearly underestimates the
sensitivity indices even if n is large, whereas our strategy behaves well. Also, the MUC
procedure gives a very large variability for S1 and S2 that does not appear in the LSE-
HOGS one. Moreover, trough Figures 1(a)-2(a), one can observe that the variability of
the estimation gets very small when n gets large, which numerically strengthens the con-
vergence result of Section 4.2. In terms of numerical comparison, the CPU time is not
significantly different from one technique to another, whereas the squared error is much
smaller for the LSEHOGS.
In Case 2, the POM shows its limitation, as only interaction terms involved in inde-
pendent pairs of dependent inputs can be estimated. The MUC strategy behaves well
in this situation, although the mean-squared error is the largest of the four methods.
Nevertheless, in view of Case 1, MUC is not a robust technique, and the quality of the
estimation might vary according to the model complexity. At last, (L/FoBa)HOGS give
very similar results in terms of estimation. The LHOGS is much slower than FoBaHOGS
because the LARS computes the whole regularization path {β̂(λ), λ ∈ R} before choos-
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Figure 5. Test case 3. First order sensitivity indices with n = 1000

ing one solution by selection criterion [25]. Thus, although the LARS penalization offers
a theoretical consistency, its time performance is low.
The Case 3 compares the Jacques’s method [5] with our strategy. Through the usual
approach, we notice that {Rint, Tshell, Tcap} and {Pint} are the most contributive groups
in the model. However, we are unable to detect the influence of each input in this way.
Our strategy offers to do it. Moreover, we notice that the sensitivity index of any group
in Figure 4 is equal to the sum of the individual contributions of Figure 5(a). This shows
the relevance of our sensitivity indices. It also makes sense with the remark about the
generalization made on page 6. Indeed, the model function can be decomposed as

Y = η∅ + η{Rint,Tshell,Tcap} + η{Ecap,σy,cap} + η{Eshell,σy,shell} + η{Pint} + interaction terms,

where each summands are orthogonal. Thus, in this case, SSobol
{Rint,Tshell,Tcap} ≡

S{Rint,Tshell,Tcap}. Further, any summand can be decomposed as (3). For example, one
can write,

η{Rint,Tshell,Tcap} = ηRint
+ ηTshell

+ ηTcap
+ interaction terms.

Thus, SSobol
{Rint,Tshell,Tcap} = SRint

+ STshell
+ STcap

.

Moreover, the sensitivity can be explained thanks to the split of the indices, as showed
in Figure 5(b)-5(c). The effects of the material parameters Eshell, Ecap, σy,shell, σy,cap
are negligible, so we can conclude that they do not have any influence in the model.
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The internal pressure Pint has an influence on the model response, but the strongest
contribution comes from the correlated set of geometrical inputs (Rint, Tshell, Tcap). More
precisely, we deduce that Tcap has an important full contribution, barely weakened by
the contribution induced by the dependence. Thus, one can deduce that Tcap is very
significant in the model. In view of low full and induced contribution, we can reasonably
deduce that Rint has a very small influence in the model. The sensitivity index of Tshell
is quite small, but it should be noticed that the covariance part plays the role of com-
pensation, and, if possible, one should work on the dependence with Rint to increase its
influence.

6. Conclusions and perspectives

This paper brings a new methodology to estimate the components of the generalized
functional decomposition, when the latter satisfy hierarchical orthogonal constraints.
Moreover, we show the consistency of the estimators when the usual least-squares es-
timation is used to estimate the unknown coefficients. From a practical point of view,
it appears that the penalized regression should be often applied, and we observe that
a selection variable strategy is numerically efficient. However, both FoBa and LARS
suffer from limitations. On the one hand, FoBa is a very intuitive algorithm, but has
no theoretical basis to guarantee the consistency of the estimators. On the other hand,
LARS is computationally expensive when compared with a greedy strategy. It is also
well-known that LARS suffers from numerical instability when predictors are strongly
correlated. The future objective is to overcome these issues by exploring the numerical
and theoretical properties of our methodology when the ℓ0 penalization is relaxed by the
L2-boosting [35, 36].
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Appendix A. Convergence results

In this part, we restate and prove Proposition 4.1 of Section 4.2. For sake of clarity, we
first define and recall some notation that will be used further.

Reminder

First, as mentioned in Section 4, we assume that Y is centered. Recall that, ∀ i ∈ [1 : p],

L is the dimension of the spaces H0,L
i and Ĥ0,L

i . Also, dim(H0,L
u ) = dim(Ĥ0,L

u ) = L|u|.
For u = {u1, · · · , uk} ∈ C, lu = (lu1

, · · · , luk
) is a multi-index of [1 : L]|u|.

We refer (φlu)lu∈[1:L]|u| as the basis of H0,L
u and (φ̂lu)lu∈[1:L]|u| as the basis of Ĥ0,L

u

constructed according to HOGS Procedure of Section 3. Thus, these functions all lie in
L2
R
(Rp,B(Rp), PX).
〈·, ·〉 and ‖·‖ are used as the inner product and norm on L2

R
(Rp,B(Rp), PX),

〈h1, h2〉 =
∫

h1(x)h2(x)pXdν(x), ‖h‖2 = 〈h, h〉,

while 〈·, ·〉n and ‖·‖
n
denote the empirical inner product and norm, that is

〈g1, g2〉n =
1

n

n∑

s=1

g1(x
s)g2(x

s), ‖g‖2
n
= 〈g, g〉n,

when (ys,xs)s=1,··· ,n is the n-sample of observations from the distribution of (Y,X).

22



June 16, 2014 Journal of Statistical Computation and Simulation submission˙JSCS

New settings

We set m :=
∑

u∈C L
|u| the number of parameters in the regression model. Denote, for

all u ∈ C, Φu(Xu) ∈ (L2(R,B(R), PX))L
|u|

, with (Φu(Xu))lu = φlu(Xu), and by β any
vector of Θ ⊂ Rm, where (β)lu,u = βulu , ∀ lu ∈ [1 : L]|u|.

Recall that, for a, b ∈ N∗, Ma,b(R) denotes the set of all real matrices with a rows and
b columns.

Set Xφ̂ =
(

φ̂1 · · · φ̂u · · ·
)
∈ ×

u∈C
Mn,L|u|(R), where (φ̂u)s,lu = φ̂lu(xu

s), and we set

Xφ =
(
φ1 φ2 · · ·

)
∈ ×

u∈C
Mn,L|u|(R), where (φu)s,lu = φlu(xu

s), for u ∈ C, s ∈ [1 : n] and

lu ∈ [1 : L]|u|.

Denote by Aφ be the m × m Gram matrix whose block entries are
(E(Φu(Xu)

tΦv(Xv)))u,v∈C .

The main convergence result is reminded further below.

Proposition A.1 Assume that

Y = ηL(X) + ε, where ηL(X) =
∑

u∈C

∑

lu[1:L]|u|

β
u,0
lu
φlu(Xu) ∈ H0,L

u ,

with E(ε) = 0, E(ε2) = σ2∗, E(ε · φlu(Xu)) = 0, ∀ lu ∈ [1 : L]|u|, ∀ u ∈ C.

(β0 = (βu,0
lu

)lu,u is the true parameter).

Further, let us consider the least-squares estimation η̂L of ηL using the sample
(ys,xs)s∈[1:n] from the distribution of (Y,X), and the functions (φ̂lu)lu, that is

η̂L(X) =
∑

u∈C
η̂Lu (Xu), where η̂Lu (Xu) =

∑

lu∈[1:L]|u|

β̂ulu φ̂lu(Xu) ∈ Ĥ0,L
u ,

where β̂ = Argminβ∈Θ
∥
∥
∥Y− Xφ̂β

∥
∥
∥

2

n

, and Θ is a compact set of Rm. If we assume that

(H.1) The distribution PX is equivalent to ⊗p
i=1PXi

;

(H.2) For any u ∈ C, any lu ∈ [1 : L]|u|, ‖φlu‖ = 1 and
∥
∥
∥φ̂lu

∥
∥
∥

n

= 1

(H.3) For any i ∈ [1 : p], any l ∈ [1 : L], the fourth moment of φ̂li is finite.

Then,

∥
∥η̂L − ηL

∥
∥ a.s.→ 0 when n→ +∞. (A1)

The proof of Proposition is broken up into Lemmas A.2-A.5. To prove (A1), we intro-
duce η̄L as the following approximation of ηL,

η̄L =
∑

u∈C
η̄Lu (Xu) =

∑

u∈C

∑

lu∈[1:L]|u|

βu,0lu
φ̂lu(Xu) = Xφ̂β0,
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and we write the triangular inequality,

‖η̂L − ηL‖ = ‖η̂L − η̄L + η̄L − ηL‖ ≤ ‖η̂L − η̄L‖+ ‖η̄L − ηL‖. (A2)

Thus, it is enough to prove that
∥
∥η̂L − η̄L

∥
∥ a.s.→ 0, and that

∥
∥η̄L − ηL

∥
∥ a.s.→ 0.

Lemmas A.4 and A.5 deal with convergence results on ‖η̄L − ηL‖ and on ‖η̂L − η̄L‖,
respectively. Lemmas A.2, A.3 are preliminary results to prove Lemmas A.4 and A.5.

A.1 Preliminary results

Lemma A.2 If (H.1) holds, then Aφ is a non singular matrix.

Proof of Lemma A.2.
First of all notice that when we consider a Gram matrix, by a classical argument

on the associated quadratic form, the full rank of this matrix holds if and only if the
associated functional vector has full rank in L2 [37].

To begin with, set, for all i ∈ [1 : p], Ψi =

(
1
Φi

)

and Gi := E(Ψi
tΨi). As (φli)

L
li=1 is

an orthonormal system, we obviously get Gi = I(L+1)×(L+1), where I denotes the identity
matrix. Now we may rewrite the tensor product ⊗p

i=1Gi as

⊗p
i=1Gi = ⊗p

i=1E(Ψi
tΨi) =

∫

⊗p
i=1

[
Ψi(xi)

tΨi(xi)
]
dPX1

(x1) · · · dPXp
(xp). (A3)

We obviously have ⊗p
i=1Gi = I. So that, using the remark of the beginning of the proof,

the system ⊗p
i=1

[
Ψi

tΨi

]
=

(

1 (⊗i∈uΦi)u⊆[1:p]
u 6=∅

)

is linearly independent (⊗p
i=1PXi

)−a.e.

As we assumed that ⊗p
i=1PXi

and PX are equivalent by (H.1), we get that
(

1 (⊗i∈uΦi)u⊆[1:p]
u 6=∅

)

is linearly independent PX − a.e..

Now, we may conclude as in the classical Gram-Schmidt construction. Indeed, the
construction of the system (Φu)u∈C involves an invertible triangular matrix.

�

Lemma A.3 Let u, v ∈ C and lu ∈ [1 : L]|u|, lv ∈ [1 : L]|v|. Assume that (H.2)

holds. Further, assume that ‖φ̂lu − φlu‖
a.s.→ 0,

∥
∥
∥φ̂lu − φlu

∥
∥
∥

n

a.s.→ 0, ‖φ̂lv − φlv‖
a.s.→ 0 and

∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

a.s.→ 0. Then, the following results hold:

(i)
∥
∥
∥φ̂lu

∥
∥
∥

a.s.→ 1 and ‖φlu‖n

a.s.→ 1;

(ii) 〈φlu , φ̂lv〉
a.s.→ 〈φlu , φlv〉 and 〈φlu , φ̂lv〉n

a.s.→ 〈φlu , φlv〉;
(iii) 〈φ̂lu , φ̂lv〉

a.s.→ 〈φlu , φlv〉 and 〈φ̂lu , φ̂lv〉n
a.s.→ 〈φlu , φlv〉;

(iv) For u = {u1, · · · , uk} ∈ C, with k ≥ 1, and lu ∈ [1 : L]|u|,

∥
∥
∥
∥
∥

k∏

i=1

φ̂lui
−

k∏

i=1

φlui

∥
∥
∥
∥
∥

n

a.s.→ 0 =⇒ 〈
k∏

i=1

φ̂lui
, φ̂lv〉n

a.s.→ 〈
k∏

i=1

φlui
, φlv〉.
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Proof of Lemma A.3.
The first point (i) is trivial. Now, we have, by (H.2),

∣
∣
∣〈φlu , φ̂lv〉 − 〈φlu , φlv〉

∣
∣
∣ =

∣
∣
∣〈φlu , φ̂lv − φlv〉

∣
∣
∣

≤ ‖φlu‖
︸ ︷︷ ︸

=1

∥
∥
∥φ̂lv − φlv

∥
∥
∥

a.s.→ 0.

Further,

∣
∣
∣〈φlu , φ̂lv〉n − 〈φlu , φlv〉

∣
∣
∣ ≤

∣
∣
∣〈φlu , φ̂lv − φlv〉n

∣
∣
∣+ |〈φlu , φlv〉n − 〈φlu , φlv〉|

= ‖φlu‖n

∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

+ |〈φlu , φlv〉n − 〈φlu , φlv〉| .

By the usual strong law of large numbers, |〈φlu , φlv〉n − 〈φlu , φlv〉|
a.s.→ 0. By hypothesis,

∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

a.s.→ 0, and ‖φlu‖n

a.s.→ 1 by (i). Hence, (ii) holds.

The point (iii) follows from

∣
∣
∣〈φ̂lu , φ̂lv〉 − 〈φlu, φlv〉

∣
∣
∣ =

∣
∣
∣〈φ̂lu − φlu , φ̂lv〉+ 〈φlu , φ̂lv − φlv〉

∣
∣
∣

≤
∥
∥
∥φ̂lu − φlu

∥
∥
∥

∥
∥
∥φ̂lv

∥
∥
∥+ ‖φlu‖

∥
∥
∥φ̂lv − φlv

∥
∥
∥ .

By assumptions,
∥
∥
∥φ̂lu − φlu

∥
∥
∥

a.s.→ 0 and
∥
∥
∥φ̂lv − φlv

∥
∥
∥

a.s.→ 0. Thus, the first point of (iii) is

satisfied, as
∥
∥
∥φ̂lv

∥
∥
∥

a.s.→ ‖φlv‖ = 1 (by (i)). Further,

∣
∣
∣〈φ̂lu , φ̂lv〉n − 〈φlu , φlv〉

∣
∣
∣ ≤

∣
∣
∣〈φ̂lu , φ̂lv − φlv〉n

∣
∣
∣+
∣
∣
∣〈φ̂lu , φlv〉n − 〈φlu , φlv〉

∣
∣
∣

=
∥
∥
∥φ̂lu

∥
∥
∥

n

∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

+
∣
∣
∣〈φ̂lu , φlv〉n − 〈φlu, φlv〉

∣
∣
∣ .

First,
∥
∥
∥φ̂lu

∥
∥
∥

n

= 1. By hypothesis,
∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

a.s.→ 0. By (ii),
∣
∣
∣〈φ̂lu , φlv〉n − 〈φlu , φlv〉

∣
∣
∣
a.s.→ 0, so we can conclude.

Let show (iv). We have,

∣
∣
∣〈
∏k

i=1 φ̂lui
, φ̂lv〉n − 〈∏k

i=1 φlui
, φlv〉

∣
∣
∣ ≤

∣
∣
∣〈
∏k

i=1 φ̂lui
−∏k

i=1 φlui
, φ̂lv〉n

∣
∣
∣

+
∣
∣
∣〈
∏k

i=1 φlui
, φ̂lv〉n − 〈∏k

i=1 φlui
, φlv〉

∣
∣
∣

≤
∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥

n

+
∥
∥
∥
∏k

i=1 φlui

∥
∥
∥

n

∥
∥
∥φ̂lv − φlv

∥
∥
∥

n

+
∣
∣
∣〈
∏k

i=1 φlui
, φlv〉n − 〈∏k

i=1 φlui
, φlv〉

∣
∣
∣ .

By the strong law of large numbers,
∣
∣
∣〈
∏k

i=1 φlui
, φlv〉n − 〈∏k

i=1 φlui
, φlv〉

∣
∣
∣
a.s.→ 0, and we

can conclude with the previous arguments.

25



June 16, 2014 Journal of Statistical Computation and Simulation submission˙JSCS

�

A.2 Main convergence results

Lemma A.4 Remind that the true regression function is

ηL(X) =
∑

u∈C
ηLu (Xu), where ηLu (Xu) =

∑

lu∈[1:L]|u|

βu,0lu
φlu(Xu).

Further, let η̄L be the approximation of ηL,

η̄L(X) =
∑

u∈C
η̄Lu (Xu), where η̄Lu (Xu) =

∑

lu∈[1:L]|u|

βu,0lu
φ̂lu(Xu).

Then, under (H.2)-(H.3), we have

‖η̄Lu − ηLu ‖
a.s.→ 0 ∀ u ∈ C, and ‖η̄L − ηL‖ a.s.→ 0.

Proof of Lemma A.4.
For any u ∈ C,

‖η̄Lu − ηLu ‖ = ‖
∑

lu

βu,0lu
φ̂lu −

∑

lu

βu,0lu
φlu‖ ≤

∑

lu

|βu,0lu
| · ‖φ̂lu − φlu‖.

Let us show that ‖φ̂lu −φlu‖
a.s.→ 0. Actually, the proof of this convergence requires the

use of Lemma A.3, so we also have to show that
∥
∥
∥φ̂lu − φlu

∥
∥
∥

n

a.s.→ 0. These two results

are going to be proved by a double induction on |u| ≥ 1 and on lu ∈ [1 : L]|u|. We set

(Hk) ∀ u, |u| = k,

{

‖φ̂lu − φlu‖
a.s.→ 0

∥
∥
∥φ̂lu − φlu

∥
∥
∥

n

a.s.→ 0 ∀ lu ∈ [1 : L]|u|.

Let us show that (Hk) is true for any k ≤ p :

• Let u = {i}, so k = 1. We used the Gram-Schimdt procedure on (φli)
L
li=1 to construct

(φ̂li)
L
li=1. Let us show by induction on li that ‖φ̂li − φli‖

a.s.→ 0, ∀ si ∈ [1 : L]. Set

(H′
li)

{

‖φ̂li − φli‖
a.s.→ 0

∥
∥
∥φ̂li − φli

∥
∥
∥

n

a.s.→ 0.

◦ For li = 1, φ̂1 =
φ1 − 〈φ1, φ̂0〉nφ̂0
∥
∥
∥φ1 − 〈φ1, φ̂0〉nφ̂0

∥
∥
∥

n
︸ ︷︷ ︸

T 1
n

, with φ̂0 = φ0 = 1. So,

‖φ̂1 − φ1‖ ≤
∥
∥
∥
1−T 1

n

T 1
n

φ1

∥
∥
∥+

∥
∥
∥
〈φ1,1〉n

T 1
n

∥
∥
∥ .
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As (φ1)
L
li=1 is an orthonormal system, we get |〈φ1, 1〉n| a.s.→ E(φ1) = 0 and T 1

n
a.s.→

‖φ1‖ = 1.

Therefore, ‖φ̂1 − φ1‖ a.s.→ 0. Also,

∥
∥
∥φ̂1 − φ1

∥
∥
∥

n

≤ 1−T 1
n

T 1
n

‖φ1‖n
+ |〈φ1,1〉n|

T 1
n

.

Exactly with the same previous argument, we conclude that
∥
∥
∥φ̂1 − φ1

∥
∥
∥

n

a.s.→ 0,

then (H′
1) is true.

◦ Let li ∈ [1 : L]. Suppose that (H′
k) is true for any k ≤ li. Let us show (H′

li+1) holds.
By construction, we get,

φ̂li+1 =
φli+1 −

∑li
k=0〈φli+1, φ̂k〉n · φ̂k

‖φli+1 −
li∑

k=0

〈φli+1, φ̂k〉n · φ̂k‖n

︸ ︷︷ ︸

T
li+1

n

.

So,

∥
∥
∥φ̂li+1 − φli+1

∥
∥
∥ ≤

∥
∥
∥
∥

1− T li+1
n

T li+1
n

φli+1

∥
∥
∥
∥
+

li∑

k=0

∥
∥
∥
∥

1

T li+1
n

〈φli+1, φ̂k〉n · φ̂k
∥
∥
∥
∥
.

For all k ≤ li,

∣
∣
∣〈φli+1, φ̂k〉n

∣
∣
∣ =

∣
∣
∣〈φli+1, φk〉n + 〈φli+1, φ̂k − φk〉n

∣
∣
∣

≤ |〈φli+1, φk〉n|+
∣
∣
∣〈φli+1, φ̂k − φk〉n

∣
∣
∣

≤ |〈φli+1, φk〉n|+ ‖φli+1‖n
·
∥
∥
∥φ̂k − φk

∥
∥
∥

n

.

By induction,
∥
∥
∥φ̂k − φk

∥
∥
∥

a.s.→ 0. By the usual law of large numbers, |〈φli+1, φk〉n| a.s.→
|〈φli+1, φk〉| = 0 as the system (φli)

L
li=1 is orthonormal. As ‖φli+1‖n

a.s.→ ‖φli+1‖ = 1,

we deduce that
∣
∣
∣〈φli+1, φ̂k〉n

∣
∣
∣
a.s.→ 0. And,

∥
∥
∥〈φli+1, φ̂k〉nφ̂k

∥
∥
∥ ≤

∥
∥
∥〈φli+1, φ̂k〉2n

∥
∥
∥

1/2 ∥∥
∥(φ̂k)

2
∥
∥
∥

1/2

︸ ︷︷ ︸
<+∞

by (H.3).

Also,

T li+1
n

a.s.→ ‖φli+1‖ = 1 ⇒
∥
∥
∥φ̂li+1 − φli+1

∥
∥
∥

a.s.→ 0.

Now,

∥
∥
∥φ̂li+1 − φli+1

∥
∥
∥

n

≤ 1− T li+1
n

T li+1
n

‖φli+1‖n
+

li∑

k=0

1

T li+1
n

∣
∣
∣〈φli+1, φ̂k〉n

∣
∣
∣ .
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With the previous arguments, 〈φli+1, φ̂k〉n a.s.→ 0, and T li+1
n

a.s.→ 1. Then, we conclude
that (H′

li+1) is true.

Therefore, (H1) is satisfied.
• Let k ∈ [1 : p]. Suppose now that (H|ũ|) is true for any 1 ≤ |ũ| ≤ k − 1, and any

lũ ∈ [1 : L]|u|. Show that (Hk) is satisfied. Let u be such that u = {u1, · · · , uk}.

First, as (H|ũ|) is true for any 1 ≤ |ũ| ≤ k− 1, results (i)-(ii)-(iii) of Lemma A.3 can

be applied to any couple (φlu , φ̂lu) such that |u| ≤ k − 1.

Further, we have seen that, for any lu ∈ [1 : L]|u|,

φ̂ulu =

k∏

i=1

φ̂lui
+
∑

v⊂u
v 6=∅

∑

lv∈[1:L]|v|
λnlv ,luφ̂lv + Cn

lu
,

where (Cn
lu
, (λnlv ,lu)lv,v⊂u) are computed by the resolution of the following equations

{
〈φ̂lu , φ̂lv〉n = 0, ∀v ⊂ u, ∀ lv ∈ [1 : L]|v|

〈φ̂lu , 1〉n = 0.
(A4)

The resolution of (A4) leads to the resolution of a linear system, when removing
Cn
lu
, of the type

Au,nΛu,n = Dlu,n,

where Λu,n is the vector of unknown parameters (λnlv ,lu)lv∈[1:L]|v|,v⊂u, A
u,n is the

matrix whose block entries are (〈φ̂v1 , φ̂v2〉n)v1,v2⊂u, and Dlu,n involves block entries

(−〈⊗k
i=1φ̂lui

, φ̂vi〉n)vi⊂u.

Also, the theoretical construction of the functions (φlu)lu consists in setting

φlu =

k∏

i=1

φlui
+
∑

v⊂u
v 6=∅

∑

lv∈[1:L]|v|
λlv ,luφlv + Clu,

where (Clu , (λlv ,lu)lv,v⊂u) are computed by the resolution of the following equations

{

〈φlu , φlv〉 = 0, ∀v ⊂ u, ∀ lv ∈ [1 : L]|v|

〈φlu , 1〉 = 0.
(A5)

The resolution of (A5) leads to the resolution of a linear system, when removing
Clu, of the type

Au
φΛ

u = Dlu ,

where Λu is the vector of unknown parameters (λlv ,lu)lv∈[1:L]|v|,v⊂u, Au
φ is the

matrix whose block entries are (〈φv1 ,φv2〉)v1,v2⊂u, and Dlu involves block entries
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(−〈⊗k
i=1φlui

,φvi〉)vi⊂u.

We have,

∥
∥
∥φ̂lu − φlu

∥
∥
∥ = ‖∏k

i=1 φ̂lui
−∏k

i=1 φlui
+
∑

v⊂u
v 6=∅

∑

lv∈[1:L]|v|(λ
n
lv ,lu

φ̂lv − λlv,luφlv)

+Cn
lu

− Clu‖
≤
∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥+

∑
v⊂u
v 6=∅

∑

lv∈[1:L]|v|
∥
∥
∥λnlv ,luφ̂lv − λlv,luφlv

∥
∥
∥

+
∣
∣Cn

lu
− Clu

∣
∣ ,

(A6)
and,

∥
∥
∥φ̂lu − φlu

∥
∥
∥

n

≤
∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥

n

+
∑

v⊂u
v 6=∅

∑

lv∈[1:L]|v|
∥
∥
∥λnlv,lu φ̂lv − λlv,luφlv

∥
∥
∥

n

+
∣
∣Cn

lu
− Clu

∣
∣ .

(A7)
First, we show that







∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥

a.s.→ 0, ∀ lui
∈ [1 : L]

∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥

n

a.s.→ 0, ∀ lui
∈ [1 : L].

(A8)

Each univariate function φ̂lui
is constructed from (φk)k≤lui

by the Gram-Schmidt pro-
cedure. Thus,

∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥ =

∥
∥
∥
∥

∏k
i=1

[
φlui

−∑lui
−1

k=0
〈φlui

,φ̂k〉n·φ̂k

T
lui
n

]

−∏k
i=1 φlui

∥
∥
∥
∥

≤
∥
∥
∥
∏k

i=1 φlui

(
∏k

i=1
1

T
lui
n

− 1
)∥
∥
∥

+
∑

s+t=k
(s,t)∈N×N

∗

1≤i1<···<is≤k
1≤j1<···<jt≤k

∑luj1
−1

k=0 · · ·∑lujt
−1

k=0 ‖ai1 · · · ais · bj1 · · · bjt‖

where ai = φlui
/T

lui
n , and bj = 〈φjluj

, φ̂k〉n ·φ̂k/T
luj

n . As already proved, for all i ∈ [1 : p],

lui
∈ [1 : L],

T
lui
n

a.s.→ 1, T
luj

n
a.s.→ 1.

Also, we previously showed that

∥
∥
∥〈φluj

, φ̂k〉nφ̂jk
∥
∥
∥

a.s.→ 0,
∥
∥
∥〈φluj

, φ̂k〉nφ̂k
∥
∥
∥

n

a.s.→ 0, ∀ j, ∀ luj
.

Thus, we conclude that (A8) is satisfied.

Secondly, as
∥
∥
∥
∏k

i=1 φ̂lui
−∏k

i=1 φlui

∥
∥
∥

n

a.s.→ 0, Assertion (iv) of Lemma A.3 can be

applied. Assertion (iii) claims that Au,n tends to the theoretical matrix Au
φ. Also, by

(iv) of Lemma A.3, Dlu,n a.s.→ Dlu . Hence, Λu,n a.s.→ Λu. We also deduce that Cn
lu

a.s.→ Clu .
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Consequently, by induction, we deduce that every piece of the right-hand side of (A6)

(respectively (A7)) tends to 0, so is
∥
∥
∥φ̂lu − φlu

∥
∥
∥ (resp.

∥
∥
∥φ̂lu − φlu

∥
∥
∥

n

). Hence, (Hk) is

satisfied.

As a conclusion,
∥
∥
∥φ̂lu − φlu

∥
∥
∥

a.s.→ 0, ∀ lu ∈ [1 : L]|u|, ∀ u ∈ C. Hence, we deduce that

∥
∥η̄Lu − ηLu

∥
∥ a.s.→ 0, ∀ u ∈ C,

and

∥
∥η̄L − ηL

∥
∥ ≤

∑

u∈C

∥
∥η̄Lu − ηLu

∥
∥ =⇒

∥
∥η̄L − ηL

∥
∥ a.s.→ 0.

�

Lemma A.5 Recall that β̂ = Argminβ∈Θ
∥
∥
∥Y− Xφ̂β

∥
∥
∥

2

n

. If (H.1)–(H.3) hold, then

∥
∥
∥β̂ − β0

∥
∥
∥

2

a.s.→ 0 (A9)

Moreover,

∥
∥η̂L − η̄L

∥
∥ a.s.→ 0. (A10)

Proof of Lemma A.5.
First, we remind the true regression model,

Y = ηL(X) + ε, where ηL(X) =
∑

u∈C

∑

lu∈[1:L]|u|

β
u,0
lu
φlu(Xu), (A11)

with E(ε) = 0, E(ε2) = σ2∗, E(ε · φlu(Xu)) = 0, ∀ lu ∈ [1 : L]|u|, ∀ u ∈ C, and

β0 = (βu,0
lu

)lu,u∈C the true parameter. Let

β̃ ∈ Argmin
β∈Θ

‖Y− Xφβ‖2n . (A12)

Due to Lemma A.2, (tXφXφ)
−1 is well defined. Thus,

β̃ − β0 =

( tXφXφ

n

)−1

·
tXφ · ε
n

.

By the law of large numbers, (
t
Xφ·ε
n )u

a.s.→ E(ε · φlu(Xu)) = 0, ∀ u ∈ C. Moreover,
t
XφXφ

n
a.s.→ Aφ, where Aφ is defined in the new settings. Thus,

∥
∥
∥β̃ − β0

∥
∥
∥

2

a.s.→ 0.

Under (H.2)–(H.3), we have, by Proof of Lemma A.4, that

∥
∥
∥φ̂lu − φlu

∥
∥
∥

a.s.→ 0. (A13)
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We are going to use (A13) to show that
∥
∥
∥β̂ − β̃

∥
∥
∥

2

a.s.→ 0.

As β̂ is the solution of the ordinary least-squares problem, we get β̂ = (tXφ̂Xφ̂)
−1tXφ̂Y

because, as seen later tXφ̂Xφ̂

a.s.→ Aφ, that is invertible.

We define the usual matrix norm |||·|||
2
as |||A|||

2
:= sup‖x‖

2
=1 ‖Ax‖2

, where ‖·‖
2
is the

Euclidean norm. The Frobenius matrix norm is defined as |||A|||
F
:=
√

Trace(AtA), and
|||A|||

2
≤ |||A|||

F
[38]. We use this inequality to get

∥
∥
∥β̂ − β̃

∥
∥
∥

2

=
∥
∥
∥((tXφ̂Xφ̂)

−1tXφ̂ − (tXφXφ)
−1tXφ)Y

∥
∥
∥

2

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣(tXφ̂Xφ̂)

−1tXφ̂ − (tXφXφ)
−1tXφ

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

· ‖Y‖
2

=
√
n
∣
∣
∣

∣
∣
∣

∣
∣
∣(tXφ̂Xφ̂)

−1tXφ̂ − (tXφXφ)
−1tXφ

∣
∣
∣

∣
∣
∣

∣
∣
∣
F

·
∥
∥
∥

Y√
n

∥
∥
∥

2

.

First, by (A11),

∥
∥
∥

Y√
n

∥
∥
∥

2

=
∥
∥
∥
Xφβ0+ε√

n

∥
∥
∥

2

≤
∥
∥
∥
Xφβ0√

n

∥
∥
∥

2

+
∥
∥
∥

ε√
n

∥
∥
∥

2

and
∥
∥
∥
Xφβ0√

n

∥
∥
∥

2

=

√

1
n

∑n
s=1

[
∑

u∈C
∑

lu
βu,0lu

φlu(xu
s)
]2 a.s.→ (tβ0Aφβ0)

1/2. Also,
∥
∥
∥

ε√
n

∥
∥
∥

2

a.s.→
√

E(ε2) = σ∗. Hence,
∥
∥
∥

Y√
n

∥
∥
∥

2

≤ (tβ0Aφβ0)
1/2 + σ∗ <∞.

Now, let us consider
√
n
∣
∣
∣

∣
∣
∣

∣
∣
∣(tXφ̂Xφ̂)

−1tXφ̂ − (tXφXφ)
−1tXφ

∣
∣
∣

∣
∣
∣

∣
∣
∣
F

. After computation, we

get

n
∣
∣
∣

∣
∣
∣

∣
∣
∣(tXφ̂Xφ̂)

−1tXφ̂ − (tXφXφ)
−1tXφ

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

F

= Trace[(
t
XφXφ

n )−1] + Trace[(
t
Xφ̂Xφ̂

n )−1]

−2 Trace[(
t
XφXφ

n )−1 ·
t
XφXφ̂

n · (
t
Xφ̂Xφ̂

n )−1].

• t
XφXφ

n
a.s.→ Aφ

•
t
Xφ̂Xφ̂

n
a.s.→ Aφ, by (iii) of Lemma A.3

•
t
XφXφ̂

n
a.s.→ Aφ by (ii) of Lemma A.3.

Under (H.1), using the result of Lemma A.2, Aφ is invertible. Then,

n
∣
∣
∣

∣
∣
∣

∣
∣
∣(tXφXφ)

−1t
Xφ − (tXφ̂Xφ̂)

−1t
Xφ̂

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

F

a.s.→ Trace(A−1
φ ) + Trace(A−1

φ )− 2Trace(A−1
φ ) = 0.

Thus,
∥
∥
∥β̂ − β̃

∥
∥
∥

2

a.s.→ 0. We conclude that

∥
∥
∥β̂ − β0

∥
∥
∥

2

≤
∥
∥
∥β̂ − β̃

∥
∥
∥

2

+
∥
∥
∥β̃ − β0

∥
∥
∥

2

a.s.→ 0.

At last,
∥
∥η̂L − η̄L

∥
∥ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣Xφ̂

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

∥
∥
∥β̂ − β0

∥
∥
∥

2

a.s.→ 0. �

Finally, as a consequence of Lemmas A.4-A.5,

∥
∥η̂L − ηL

∥
∥ ≤

∥
∥η̂L − η̄L

∥
∥+

∥
∥η̄L − ηL

∥
∥ a.s.→ 0.
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