
Big Brother Logic: Logical modeling and reasoning

about agents equipped with surveillance cameras in the

plane

Olivier Gasquet, Valentin Goranko, François Schwarzentruber

To cite this version:

Olivier Gasquet, Valentin Goranko, François Schwarzentruber. Big Brother Logic: Logical
modeling and reasoning about agents equipped with surveillance cameras in the plane. Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), May
2014, Paris, France. pp. 325-332, 2014. <hal-01113939>

HAL Id: hal-01113939

https://hal.archives-ouvertes.fr/hal-01113939

Submitted on 6 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01113939

To cite this version : Gasquet, Olivier and Goranko, Valentin and

Schwarzentruber, François Big Brother Logic: Logical modeling and

reasoning about agents equipped with surveillance cameras in the plane.

(2014) In: International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS), 5 May 2014 - 9 May 2014 (Paris, France).

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID : 12838

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Big Brother Logic: Logical modeling and reasoning about
agents equipped with surveillance cameras in the plane†

Olivier Gasquet
University Toulouse III - Paul

Sabatier
IRIT, France

olivier.gasquet@irit.fr

Valentin Goranko
Technical University of

Denmark,
University of Johannesburg,

South Africa
vfgo@dtu.dk

Francois
Schwarzentruber

ENS Rennes
IRISA, France

schwarze@ens-rennes.fr

ABSTRACT

We consider multi-agent scenarios where each agent controls
a surveillance camera positioned in the plane, with fixed po-
sition and angle of view, but rotating freely. The agents
can thus observe the surroundings and each other. They
can also reason about each other’s observation abilities and
knowledge derived from these observations. We introduce
suitable logical languages for reasoning about such scenarios
which involve atomic formulae stating what agents can see,
multi-agent epistemic operators for individual, distributed
and common knowledge, as well as dynamic operators re-
flecting the ability of cameras to turn around in order to
reach positions satisfying formulae in the language.

We introduce semantics of our basic logic BBL and its
extensions on natural geometric models, as well as formal
Kripke semantics for them in vision-based finite abstractions
of the geometric models. We discuss the expressiveness of
our logical languages and provide their translations in PDL
style. Using these translations we develop algorithms and
obtain complexity results for model checking and satisfiabil-
ity testing for BBL and its extensions. Notably, we show
that even for the extension with common knowledge, model
checking remains in PSPACE. Finally, we discuss some fur-
ther extensions: by adding obstacles, positioning the cam-
eras in 3D or enabling them to change positions.

Categories and Subject Descriptors

I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Modal logic; I.2.11 [Artificial

Intelligence]: Distributed Artificial Intelligence—Intelli-
gent agents, Multiagent systems

General Terms

Theory, Algorithms, Verification

Keywords

logical reasoning, multi-agent systems, surveillance cameras,
vision, knowledge, model checking, satisfiability testing

1. INTRODUCTION
Modeling and study of multi-agent systems that involve

intelligent agents combining perceptual and reasoning abil-
ities is a major field of research and applications of AI. An
important issue in that field is the analytic processing of vi-
sual perception and visual communication, where the main
problem is how to represent and reason logically about the
visual information that the intelligent agents receive from
the environment and from each other. This creates not only
agents’ knowledge about the surrounding world, but also
about each other’s knowledge about that world, etc. and
that knowledge affects and guides their intelligent behavior.

In this paper we address these issues by considering multi-
agent scenarios where each agent controls a stationary surveil-
lance camera positioned in the plane. In the basic framework
presented here each camera has a fixed position and angle
of view, but can rotate freely around its axis. Through the
cameras, the agents can observe the surrounding world and
each other. We adopt some basic assumptions about these
scenarios, in order to simplify or idealize them:

✄ We identify, conceptually and physically, the agents
with their cameras. Thus, we can talk about agents see-
ing objects and about cameras’ knowledge.

✄ We assume that the cameras/agents are positioned at
single points in the plane, and are transparent. These as-
sumptions can be easily relaxed and non-transparent cam-
eras/agents of real sizes can be considered, without major
modifications of the framework and the obtained results, by
simply treating them both as cameras and as obstacles.

✄ We assume that the only objects of interest for any
agent in our scenarios are the other cameras/agents. This
assumption is not practically restrictive, because one can as-
sume that all other objects of interest are agents equipped
with cameras, too, which cannot see anything or we are sim-
ply not interested in what they can see and know.

✄ Here we also assume that the agents and their cameras
are stationary. In reality these are often mobile. Adding
mobility of cameras leads to models where only the set of
agents and the vision angles of their cameras are specified,
but not their positions. We leave the model checking and
satisfiability problems for the case of mobile cameras to a
follow-up work.

✄ In the stationary setup we assume that every agent
knows the exact positions (but not the directions of vision)
of all agents/cameras, even of those that the agent does not
see currently. This assumption is certainly well justified if

agents are endowed with some memory, as they can turn
around to observe and memorize the positions of the others.

We introduce suitable logical languages for reasoning about
such scenarios which involve atomic formulae stating what
agents can see, multi-agent epistemic operators for individ-
ual, distributed and common knowledge, as well as dynamic
operators reflecting the ability of cameras to turn around in
order to reach positions satisfying formulae in the language.

Here we are interested not only in what agents can see,
but also in the knowledge they can derive from their visual
perception. The agents’ knowledge that we model and study
in our framework is about other agents’ observation abilities
and about their direct and iterated knowledge derived from
such observations. A subtle issue arises here, of how vision
and knowledge are related. At first glance, it seems that
agents only know about other agents’ knowledge what they
can immediately derive from what they can see regarding
the observational abilities of those other agents. We show
that this is not quite so, as there is a non-trivial deductive
aspect in the analytic knowledge that agents can acquire.

We introduce semantics for our logical languages on nat-
ural geometric models, as well as formal Kripke semantics
for them in vision-based finite abstractions of the geometric
models. We then discuss their expressiveness and provide
translations for them in the style of Propositional Dynamic
Logic PDL [9]. Using these translations we develop algo-
rithms and obtain complexity results for model checking and
satisfiability testing for the basic logic BBL that we introduce
here and for some of its extensions. The key observations
that enables our model checking and satisfiability testing
procedures is that, while the set of geometric models over a
configuration of cameras with fixed positions is infinite, the
set of their vision-based abstractions, obtained by identify-
ing models where each agent can see the same configuration
of agents, is finite.

Finally, we discuss some important extensions of the present
work: adding obstacles, positioning the cameras in 3D or en-
abling them to change positions. Our work has potential ap-
plications to automated reasoning, formal specification and
verification of observational abilities and knowledge of multi-
robot systems.

We are aware of very few related previous studies on the
topic, but not involving logical reasoning, e.g., [7], [4]. They
have mainly considered technical, architectural and knowl-
edge representational aspects of agent-based systems of multi-
camera surveillance and information processing. To our
knowledge, the only previous study related to logical rea-
soning in such scenarios is the one represented by [11] and
[1], which is the main precursor of the present work.

The paper is organized as follows: after brief preliminaries
in Section 2, we introduce the logics BBL and some exten-
sions in Section 3, discuss their expressiveness and provide
translations to PDL in Section 4 and develop algorithms
and obtain complexity results for model checking and satis-
fiability testing in Section 5. We then introduce and discuss
briefly some further extensions in Section 6 and end with
the concluding Section 7.

2. PRELIMINARIES

2.1 Multi-agent epistemic models and logics
For the necessary background on modal logic refer e.g., to

[3]. Here we only give the basics on multi-agent epistemic

models and logics. For the conceptual aspects or further
technical background refer to e.g., [6] or [14].

A multi-agent epistemic structure for a set of agents Agt

is a tuple S = 〈Agt, St, {∼a| a ∈ Agt}〉, where St is the set
of states (possible worlds) and ∼a is the epistemic indistin-
guishability relation on St of the agent a. In our setup there
will be no abstract atomic propositions, only concretely in-
terpreted ones, so epistemic structures and models will co-
incide.

We consider fully expressive multi-agent epistemic logics,
extending classical (propositional) logic by adding epistemic
operators for individual knowledge Ka, for each agent a, and
for group knowledge KA, distributed knowledge DA, and com-
mon knowledge CA for every non-empty group of agents A.
Thus, the formulae of the language of the multi-agent epis-

temic logic MAEL are defined as follows:
ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | KAϕ | DAϕ | CAϕ,

where p ranges over a fixed set of atomic propositions PROP,
a ∈ Agt and A is a non-empty subset of Agt.

The formal semantics of the epistemic operators at a state
in a multi-agent epistemic model M = (Agt, St, {∼a| a ∈
Agt}, V) is given by the following truth definitions:

(Ka) M, q |= Kaϕ iff M, q′ |= ϕ for all q′ such that q ∼a q
′.

(KA) M, q |= KAϕ iff M, q′ |= ϕ for all q′ such that q ∼E
A q′,

where ∼E
A =

⋃

a∈A
∼a.

(CA) M, q |= CAϕ iff M, q′ |= ϕ for all q′ s.t. q ∼C
A q′, where

∼C
A is the transitive closure of ∼E

A .

(DA) M, q |= DAϕ iff M, q′ |= ϕ for all q′ such that q ∼D
A q′,

where ∼D
A =

⋂

a∈A
∼a.

2.2 Flatland
Interaction between visual perception and knowledge has

been studied in [1], in a logical framework based on the
following language, where a, b are agents:

(L✄,K) φ ::= a✄b | ¬φ | φ ∨ φ | Kaφ

The atomic proposition a✄b reads “agent a sees agent b”.
The language L✄,K has no abstract atomic propositions.

The primary intended models are geometric models where
each agent is located at a point in the space and sees a
half-space. Different agents are located at different points
and every agent a who can see another agent b can also
see b’s direction of vision. An abstract semantics is based
on Kripke models where the possible worlds are geometric
models. The indistinguishably relation ∼a for agent a in
such Kripke model is defined as follows: two worlds w and
u are such that w ∼a u iff the agents seen by agent a are the
same and are located in the same way in both w and u.

Two variants of this framework have been studied in [1]:
Lineland, where the space is 1-dimensional, and Flatland,
where the space is 2-dimensional, i.e., a plane. Figure 1
shows two possible worlds in Flatland that are indistinguish-
able for agent a, because they look the same in the parts
which a can see. Note that a sees both b and c in both
worlds, so a can see that b sees c, and this is the case in ev-
ery world which is indistinguishable from these for a, hence
a knows that b sees c. In fact, as shown in [11], Ka(b✄c) is
equivalent to a✄b ∧ a✄c ∧ b✄c. On the other hand, a does
not see d and e in any of these worlds, so a does not know
whether d sees e in any of them. In fact, d sees e in world
w and d does not see e in world u.

a

b

cd

e

world w

a

b

c

e d

world u

Figure 1: Two possible 2–dimensional worlds that

are indistinguishable for agent a

In that framework, the model checking problem takes as
an input the description of a possible world w (positions
and directions of agents) and a formula φ in L✄,K and asks
whether φ holds in w. The satisfiability problem takes as
an input a formula φ in L✄,K and asks whether there ex-
ists a world w satisfying φ. It has been proved in [1] that
both model checking and satisfiability testing are PSPACE-
complete for Lineland and are respectively PSPACE-hard
and in EXPSPACE for Flatland.

2.3 First-order Theory of the Reals
Consider the following first-order language LF for fields:

φ ::= (e > 0) | (e = 0) | ¬φ | (φ ∧ φ) | ∀xφ | ∃xφ

where e is a polynomial expression over variables x, y,
LF has a standard interpretation in the field of reals R. The
problem of checking whether a closed formula of LF is true in
R is in EXPSPACE (see [13] for the historically first decision
procedure and [2] for the description of an algorithm that
runs in EXPSPACE)We will only need to solve that problem
for the existential fragment of LF , i.e., for sentences of the
form ∃x1 . . .∃xnψ where ψ is open, for which the truth-
checking problem in R is PSPACE-complete (see [5]) and
we will use the algorithm described there in subsection 5.3.

3. LOGICS FOR AGENTS WITH STATION-

ARY SURVEILLANCE CAMERAS
Hereafter we fix a set of agents Agt = {a1, . . . , ak}.
Here we introduce our basic logic for stationary cameras,

which we dub Big Brother Logic, or BBL for short.

3.1 Languages
The basic language of BBL involves the Flatland operator

✄, the individual knowledge epistemic operators {Ka}a∈Agt,

plus the turning (diamond) operator 〈
y
a 〉, where 〈

y
a 〉φ, means

“a can turn around his position so that φ holds”. Notation:

[
y
a] := ¬〈

y
a 〉¬. We also introduce the following extensions:

• BBLC: BBL plus all CA for every group of agents A.

• BBLD: BBL plus all DA for every group of agents A.

• Combinations of the above.

Additional operators: a ⊲⊳ b, meaning “a sees b and b sees
a” and B (abc), meaning “b is between a and c”.

3.2 Semantics
We will introduce 3 different but equivalent types of mod-

els for the logic BBL.

3.2.1 Geometric models

Camera configurations are formally represented by geo-
metric models defined in the Euclidean plane R

2 (or just a
region) as follows. Every agent’s camera is associated with
a position (a point in the plane), an angle of view and a unit
vector representing the direction of its vision. Formally:

Definition 3.1. Let U be the set of unit vectors of R2.
A geometric model is a tuple (pos, dir, ang) where:

• pos : Agt → R
2;

• dir : Agt → U ;
• ang : Agt → [0, 2π).

We denote Cp,u,α the sector that begins in point p from
direction u turning in positive (counter-clockwise) direction,
and has angle width α. We assume that different agents have
different positions, every camera can “see” everything inside
its sector of vision, including the positions and the directions
of vision of all agents positioned there, but can see nothing
outside of it. All cameras can turn at any angle.

Example 3.1 (Cameras and their sectors of vision).

a

b

d
c

d

e

3.2.2 Kripke structures and models

Now, we introduce Kripke structures in which the possible
worlds are geometric models.

Definition 3.2. Given pos : Agt → R
2 and ang : Agt →

[0, 2π), we define a Kripke structure M = (pos, ang, D,R)
where D is the set of possible functions dir : Agt → U and
R assigns to each agent a the following equivalence relation:

Ra = {(dir, dir′) ∈ D
2 | for all b 6= a, dir(b) = dir

′(b)}

The truth of formulae is evaluated in such Kripke struc-
tures with additionally specified direction function dir ∈ D.
The truth conditions are defined as follows.

• (pos, ang, D,R), dir |= a✄b iff pos(b) ∈ Cpos(a),dir(a),ang(a);

• (pos, ang, D,R), dir |= 〈
y
a 〉φ iff there exists dir′ ∈ Ra(dir)

such that (pos, ang, D,R), dir′ |= φ.

We define knowledge as in the logic of Flatland: an agent a
knows a property φ iff φ holds in all possible worlds that are
compatible with what a sees. Those possible worlds can only
differ from the actual world in the positions of the agents not
seen by agent a. Formally, the semantics of all epistemic op-
erators is given as in Section 2.1 by regarding the relation
∼a as follows: dir ∼a dir

′ iff the set of agents seen by a in dir

and dir′ are the same and they have the same directions of
view. The difference with the approach described in subsec-
tion 2.2 is that here agents have common knowledge of the
positions of all agents.

Note that if all agents seen by camera a are in the interior
of its sector of vision, then a slight change of the direction of
vision of a camera may not change what the respective agent
sees, so all cameras would see the same objects if they are
rotated at sufficiently small angles. This naturally defines
an equivalence relation over worlds in pointed Kripke mod-
els where equivalent worlds satisfy the same✄-propositions.
Formally, given a Kripke structureM = (pos, ang, D,R) and
dir, dir′ ∈ D, we define:
dir ≡ dir′ iff (∀a, b ∈ Agt : M, dir |= a✄b iff M, dir′ |= a✄b).
The equivalence class of dir with respect to ≡ will be denoted
by dir. Since Agt is finite, there are finitely many equivalence
classes w.r.t. a given Kripke structure (see prop. 3.2).

Lemma 3.1. Given any Kripke structure
M = (pos, ang, D,R), for every agent a we have that (≡
◦Ra) = (Ra◦ ≡), where ◦ is the composition of relations.

Proof. Let (dir, dir′) ∈ (≡ ◦Ra), and let dir′′ be the same
as dir but with dir′′(a) = dir′(a). Then (dir, dir′′) ∈ Ra and
dir′′ ≡ dir′. Similarly the other way round.

All these Kripke structures are infinite. We give below an
equivalent definition for the semantics based on their quo-
tients w.r.t the equivalence relation ≡.

3.2.3 Direction-based and vision-based abstractions
of Kripke models

Given a Kripke structureM = (pos, ang, D,R) the direction-
based abstraction of M is the Kripke model KM = (W,R, s)
with valuation s as follows:

• W = {dir | dir ∈ D};

• R maps each agent a to the equivalence relation

Ra = {(dir, dir′) | (dir, dir′) ∈ (≡ ◦Ra)};

• for all w ∈W : w ∈ s(a✄b) iff M, w |= a✄b.

Proposition 3.1. Let G = (pos, dir, ang) be a geometric
model, M be the Kripke structure extracted from G and KM

be the direction-based abstraction of M. Then the mapping
h : D → W defined by h(dir) = dir is a bounded morphism
from M onto KM, and consequently, a bisimulation.

Proof. We check the bisimulation conditions:

Atomic harmony: M, dir |= a✄b iff KM, dir |= a✄b for
any dir ∈ D, by definition.

Forth: If dir, dir′ ∈ D and (dir, dir′) ∈ Ra then
(h(dir), h(dir′)) ∈ Ra by definition of Ra.

Back: If (h(dir), w) ∈ Ra for some w ∈ W then w = dir′

for some dir′ ∈ D such that (dir, dir′) ∈ (≡ ◦Ra). Then
there is dir′′ ∈ D s.t. dir ≡ dir′′, hence h(dir) = h(dir′′) and
(dir′′, dir′) ∈ Ra.

Corollary 3.1. For all formulas φ ∈ BBL, we have that
M, dir |= φ iff KM, dir |= φ.

In fact, each dir ∈W is entirely characterized by the pos-
sible families of sets – one for each camera – of other agents

that the camera can see in a glance if suitably turned. Be-
cause of this, we can identify a possible world with the tuple
stating for each agent the set of other agents that it sees.
Of course, we can precompute theses tuples, and also for
each agent a we can pre-compute the family Sa of the sets
of agents that can be seen at the same time by a, by using
standard analytic geometry (we omit the routine details).

Definition 3.3. Formally (where dir ∈ D):

• Γdir
a = {b ∈ Agt | pos(b) ∈ Cpos(a),dir(a),ang(a)} is the set

a sees in direction given by dir;

• (Γdir
a)a∈A is the tuple of sets of agents each agent sees

in directions given by dir;

• Sa = {Γdir
a | u ∈ U}; is the family of all sets of agents

a can see when turning.

Example 3.2. In the geometrical model in Example 3.1
we have (trust us about the angles):

• Sa = {∅, {b}, {b, d}, {b, d, e}, {d, e, c}, {e, c}, {c}})

• Sb = {∅, {a}, {e}, {e, c}, {c, d}, {d}};

• Sc = {∅, {a}, {a, d}, {a, d, b}, {d, b}, {b, e}, {e}};

• Sd = {∅, {a}, {b}, {e}, {e, c}, {c}};

• Se = {∅, {b}, {b, d}, {b, d, a}, {d, a}, {a}}.

Proposition 3.2. Each set Sa contains at most 2k − 2
sets of agents, where k = (#Agt) is the number of agents.
Hence so does the set Ra(dir) in the vision-based abstract
model.

Proof. Let a be an agent and start turning the camera
clockwise. The set of agents seen by a’s camera only changes
when one of the two boundary rays of the sector of vision of
the camera passes through an agent. In one full circle each
of these rays passes through k − 1 agents.

A direction-based abstract model can be equivalently de-
fined as follows.

Definition 3.4. A vision-based abstract model is a triple
N = (V, T, σ) where:

• V = {(Γdir
a)a∈Agt | for all a ∈ Agt, dir ∈ D};

• T maps each agent a to the equivalence relation

Ta = {((Γdir
a)a∈Agt, (Γ

dir′

a)a∈Agt) | for all b 6= a, Γdir
b = Γdir′

b }

• for all (Γdir
a)a∈Agt ∈ V : (Γdir

a)a∈Agt ∈ σ(b✄c) iff c ∈ Γdir
b .

The following can be shown by direct verification:

Proposition 3.3. The mapping h : KM → N defined by

h(dir) = (Γdir
a)a∈A is an isomorphism between the direction-

based abstract model KM and the vision-based model N .

Corollary 3.2. For all formulas φ ∈ BBL, we have that

KM, dir |= φ iff N, (Γdir
a)a∈A |= φ.

We will henceforth drop the superscript dir for possible worlds.
As well σ will be omitted in models since it can be deduced.

A BBL formula is satisfiable iff it is true in some geometric
model (hence, in some abstract Kripke structure or in a
vision-based abstraction); it is valid iff it is true in every
geometric model.

4. EXPRESSIVENESS AND EXTENSIONS

4.1 Expressing properties and specifications
The language of BBL and its extensions can express var-

ious natural specifications regarding the visual abilities and
knowledge of the agents. Here are some examples in BBL

and in BBLCD:

• a✄b → Ka[
y
b](a✄b): “If a can see b, then a knows that

whichever way b turns around, this will remain true.”

• (b✄a∧ b6✄c)∧Kb〈
y
a 〉((a✄b∧ a✄c) → K̂bKa(b✄a∧ b6✄c):

“If agent b sees a but not c and knows that a can turn around
so as to see both b and c then b consider it possible that a

knows that b sees a but not c.”

• (a ⊲⊳ b) → Ca,b(a ⊲⊳ b): “If a and b see each other, then
this is a common knowledge amongst them.”

• Ka,b(〈
y
a 〉(a✄b) ∧ 〈

y
b 〉(b✄a)) → Ca,b(〈

y
a 〉〈

y
b 〉(a ⊲⊳ b)).

“If a and b know that each of them can turn around to see
the other, then it is a common knowledge amongst them
that they can both turn so as to see each other.”

• 〈
y
a 〉(a✄c∧a✄d)∧〈

y
b 〉(b✄d∧b✄e) → 〈

y
a 〉〈

y
b 〉(Da,bc✄e∨

Da,bc6✄e). “If a can turn around so as to see both c and d and
b can turn around so as to see both d and e then both a and
b can turn around so as to make it a distributed knowledge
amongst them whether c sees e.” (The reader is invited to
check by hand the validity of this formula.)

4.2 Defining betweenness and collinearity
Assuming that the cameras’ angles of vision are strictly

less that 2π, the relations of betweenness and collinearity
can be expressed in the language of BBL as follows:

• The formula [
y
a](a✄b → a✄c) is true in a geometric

model precisely when c lies on the ray starting at a

and passing through b, i.e., when b is between a and c

or c is between a and b.

• Therefore, the formula [
y
a](a✄b → a✄c)∧ [

y
b](b✄a →

b✄c) is true in a geometric model precisely when c lies
strictly between a and b. Thus, we can define

B (acb) := [
y
a](a✄b → a✄c) ∧ [

y
b](b✄a → b✄c)

4.3 Relations between vision and knowledge
Clearly, seeing and visual knowledge are closely related:

an agent knows that he sees whatever he sees: a✄b → Kaa✄b

and knows that he does not see whatever he does not see:
a 6✄b → Kaa 6✄b. On the other hand, there is more in the
agent’s visual knowledge than what he can see directly. For
instance, the following is valid for any agents a, b, c1, c2, e,
even if a does not see b:

a✄c1 ∧ a✄c2 ∧ B (c1ec2) → Ka(b✄c1 ∧ b✄c2 → b✄e)

Thus, a has non-trivial (i.e., not logically valid) knowledge
about b’s visual abilities.

4.4 PDL-like form of BBL

Here we will adopt a different, PDL-like perspective on
the logic BBL. For background on the propositional dynamic
logic PDL refer e.g., to [9]. We can consider every sequence
of (non-deterministic) turns of cameras as a program, where

turning the camera of an agent a at an unspecified angle is

an atomic program, denoted by
y
a . Besides, we can consider

tests as atomic programs and build complex programs by
applying compositions, unions and iterations to these, like
in PDL. The technical advantage is that, as we will show, all
knowledge operators can be represented in terms of suitable
programs, and eventually the whole language of BBL and
all of its extensions considered here can be translated to
versions of PDL.

More precisely, let us first introduce a two-sorted lan-
guage, denoted BBLPDL, with sorts for formulae and for
programs, as follows, where a, b ∈ Agt.

φ ::= a✄b | ¬φ | φ ∨ φ | [γ]φ; γ ::=
y
a | φ? | γ; γ | γ ∪ γ

The intuitive meaning of the program operations is as in
PDL, e.g., φ? is the program that tests whether φ is true
or not, γ1; γ2 is the sequential composition of γ1 and γ2.
γ1 ∪ γ2 represents the non-deterministic choice between γ1
and γ2. The formula [γ]φ is read as “after all executions of

γ, the property φ holds”. We also define the dual operator
〈γ〉 by 〈γ〉φ := ¬[γ]¬φ, meaning “there exists an execution

of γ such that φ holds afterwards”. The formal semantics in
a vision-based abstraction model N = (V, T) and a world
v ∈ V is defined as follows:

• N, v |= [
y
a]φ iff for all u ∈ Ta(v), N, u |= φ;

• N, v |= [φ?]ψ iff N, v |= φ→ ψ;

• N, v |= [γ1; γ2]φ iff N, v |= [γ1][γ2]φ;

• N, v |= [γ1 ∪ γ2]φ iff N, v |= [γ1]φ or N, v |= [γ2]φ.

For instance, the program“if a does not see b then a turns”

is represented by γ = (¬a✄b)?;
y
a .

4.5 Expressing the knowledge operators
Now, we will show how to simulate knowledge operators

in terms of programs in BBLPDL.

4.5.1 Expressing the individual knowledge operators

The (individual) knowledge operator Ka can be simulated
with the following program, where {b1, . . . , bn} = Agt \ {a}:

γ
K
a =

(

a✄b1? ∪ (a 6✄b1?;
y
b1)

)

; . . . ;
(

a✄bn? ∪ (a 6✄bn?;
y
bn)

)

Indeed, each program
(

a✄bi? ∪ (a 6✄bi?;
y
bi)

)

can change

the direction of view of bi if and only if a does not see bi,
except when bi is a. Thus, the program γK

a may turn arbi-
trarily all agents, other than a, that are not seen by a, which
reflects precisely the semantics of Ka. Group knowledge op-
erator KA is then simulated by the program: γK

A =
⋃

a∈A
γK
a .

4.5.2 Expressing distributed knowledge

The distributed knowledge operator DA is simulated with
the following program, where {b1, . . . , bn} = Agt \ A:

γD
A =

(

∨

a∈A
a✄b1?

⋃

(

∧

a∈A
a 6✄b1?

)

;
y
b1

)

; . . . ;
(

∨

a∈A
a✄bn?

⋃

(

∧

a∈A
a 6✄bn?

)

;
y
bn

)

The construction
(

∨

a∈A
a✄bi?

⋃

(

∧

a∈A
a 6✄bi?

)

;
y
bi

)

, as

in the translation of individual knowledge operator, is a pro-
gram that turns agent bi if and only if no agent in A sees it.
This reflects precisely the semantics of DA.

4.5.3 Expressing common knowledge

In order to simulate the common knowledge operator CA,
we need to add the iteration operator ∗ in the language, that
is, if γ is a program then γ∗ is the program that repeats
γ any finite number of times. The resulting language is
called BBLPDL∗ . The semantics is defined on a vision-based
abstraction model N = (V, T) and v ∈ V as follows:

• N, v |= [γ∗]φ iff N, v |= [γ]nψ for all integers n ≥ 0,
where [γ]0φ = φ and [γ]nφ = [γ][γ]n−1φ for n ≥ 1.

Common knowledge among a group A = {a1, . . . , ak} can

be simulated by: γC
A =

(

γa1 ; . . . ; γak

)∗

. As the program γai

represents the epistemic relation for agent ai, the program
γC
A corresponds to taking an arbitrary finite path along the

epistemic relations for all agents in A. Note that this simu-
lation is correct because the programs γai are reflexive and
commute with each other.

4.6 Translation into BBLPDL and BBLPDL∗

Let τ be the translation from BBL into BBLPDL and
BBLPDL∗ defined by: τ(a✄b) = a✄b, τ(φ1 ∨ φ2) = τ(φ1) ∨
τ(φ2), τ(¬φ) = ¬τ(φ), τ(Xαφ) = γX

α τ(φ) (X is K, D or C).
The next claim follows immediately from the construc-

tions of the knowledge simulating programs.

Proposition 4.1. Let N = (V, T) be a vision-based ab-
straction model (def. 3.4), and v ∈ V , then: N, v |= φ iff
N, v |= τ(φ).

5. DECISION PROCEDURES
In this section, we address the model checking problem

and the satisfiability problem for BBL and its extensions.
For any of these languages L, the model checking problem
MC(L), is defined as follows:

Input: a geometric model G = (pos, dir, ang) and a for-
mula φ of L.

Output: ‘yes’ iff N, v |= φ where N is the vision-based
abstraction of G.

The satisfiability problem SAT(L) is defined as follows.

Input: a formula φ in L;

Output: ‘yes’ iff there exists a geometric model G =
(pos, dir, ang) such that N, v |= φ where N is the vision-
based abstraction of G.

5.1 Upper-bound for MC(BBLPDL∗)
The procedure for the model checking problems above

consists in two stages: first compute sets Sa (def. 3.3) in
the vision based abstraction model (see Definition 3.4) from
the geometric model (see Definition 3.1) and then do model
checking on worlds of the vision based abstraction model.

5.1.1 Computing the vision-based abstraction model

Let us consider a vision based abstraction model and an
agent a. For computing the set Sa, we consider a polar
coordinate system centered in pos(a) and we consider all
agents b 6= a as a list sorted by angles. We perform a scan
of all agents b 6= a and we compute the possible sets of
agents whose positions are in a sector centered in pos(a) and
of angle ang(a). The set of those sets is exactly Sa. This
can be achieved in linear time in the size of the vision based

abstraction model and the reader can find the pseudo-code in
the technical report [8] . The idea is to identify the positions
of the sector of vision of a where one of the boundary rays
passes through some of the other agents, and determine the
sets of agents seen by a in those positions.

5.1.2 Upper-bound results for model checking

Now, we design a procedure mc for model checking. The
specification of mc(Γ, φ) is to return true iff N,Γ |= φ where
N = (V, T) is the vision-based abstraction model and Γ ∈ V .
The routine mc is very standard and the only interesting
case concerns the model checking of a formula of the form
[γ]ψ where γ is a program, given by a regular expression.
This case relies on a subroutine path? whose specification
is: path?(Γ,Γ′, γ) returns true iff there is a γ-path from Γ
to Γ′, i.e. a path in the graph (V, T) whose labels match
the regular expression γ. For instance, if Γ(Ta ◦Ta ◦RTb)Γ

′,

then there is a (
y
a ;(

y
a ;

y
b)∗)-path from Γ to Γ′ and therefore

path?
(

Γ,Γ′, (
y
a ;(

y
a ;

y
b)∗)

)

is true.
We want to prove that this model checking procedure

works in PSPACE. All cases are straightforward except that
of γ = γ∗

1 . In order to treat this case, we introduce a new
construction of program: γ = γm

1 wherem is an integer writ-
ten in binary. The procedure path? uses the following simple
observation: If there is a γ∗

1 -path from Γ to Γ′ then there is

a γm

1 -path, where 0 ≤ m ≤ 2k
2

(recall that k = #Agt).
Thus, for the case of γ∗

1 , we look for the existence of a

γm

1 -path from Γ to Γ′ for some m ∈ {0, . . . , 2k
2

}.

Now, for the case γm

1 when m > 1 we use the Divide
and Conquer method and browse all possible ‘intermediate’

worlds Γ′′ in a γ
⌊m

2
⌋

1 -path from Γ to Γ′, that is, there is a

γ
⌈m

2
⌉

1 -path from Γ to Γ′′ and a γm

1 -path from Γ′′ to Γ′.

The resulting model checking procedure runs in polyno-
mial space. The reader can find the pseudo-code of path?
and mc in the technical report [8] .

Proposition 5.1. MC(BBLPDL∗) is in PSPACE.

5.2 Lower-bound results for model checking
Unsurprisingly, the lower-bound is reached even without

the star operator in the language:

Proposition 5.2. MC(BBLPDL) is PSPACE-hard.

Proof. We will give a polynomial reduction of the satis-
fiability problem SAT-QBF for quantified Boolean formulas
(QBF), which is PSPACE-complete [12], to MC(BBLPDL).
Consider a QBF ∃p1∀p2 . . . Qnpnψ(p1, . . . , pn) where Qk is
∃ if k is odd and ∀ if k is even and where ψ(p1, . . . , pn)
is Boolean formula over the atomic propositions p1, . . . , pn.
Let Agt = {a0, a1, . . . , am}. We build an instance (G, φ),
where G = (pos, dir, ang), for MC(BBLPDL) as follows:

• pos(ai) = (i, 0); dir(ai) = (−1, 0); ang(ai) =
π
4
;

• φ = 〈
y
a1〉[

y
a2] . . . Oiψ

′ where Oi is 〈
y
ai〉 if i is odd and

[
y
ai] if i is even and ψ′ is the formula ψ in which we
have replaced all occurrences of pi by ai✄a0.

Since each of the cameras positioned as above can inde-
pendently be turned so as to see a0 and it can also be turned

so as not to see a0, the formula ∃p1∀p2 . . . Qnpnψ(p1, . . . , pn)
is true in the quantified Boolean logic QBL iff N, v |= φ

where N is the vision-based abstraction model of G.

Theorem 5.1. Let BBL− be the fragment of BBLPDL with-
out turning operators but with the knowledge operators. Then
MC(BBL−) is PSPACE-hard.

Proof. The proof is similar to the proof of Proposition
5.2 (and to the proof for the MC problem in Lineland, in
[1]). We provide a polynomial reduction of the SAT-QBF
problem to MC(BBL−) as follows. Consider a QBF formula
∃p1∀p2 . . . Qnpnψ(p1, . . . , pn) where Qk = ∃ if k is odd and
Qk = ∀ if k is even and where ψ(p1, . . . , pn) is Boolean
formula over the atomic propositions p1, . . . , pn. We build
an instance G = (pos, dir, ang), φ for MC(BBL−) as follows:

• pos(ai) = (2i, 0); pos(bi) = (2i+ 1, 0);

• dir(ai) = (−1, 0); dir(bi) = (−1, 0);

• ang(ai) =
π
4
; ang(bi) =

π
4
;

• φ = K̂a1(a2✄a1 ∧ Ka2(a3✄a1 →ψ′) . . .) where ψ′

is the formula ψ in which we have replaced all occur-
rences of pi by bi✄a1.

Again, we claim that the formula ∃p1∀p2 . . . Qnpnψ(p1, . . . , pn)
is true in quantified Boolean logic iff N, v |= φ where N is
the vision-based abstraction model of G. The idea encoded
in that formula is that the knowledge operators Kai and

K̂ai serve respectively as universal and existential quantifiers
over the truth values of the boolean variable pi, while the
guards aj✄a1 ensure that the agents’ cameras are positioned
so as to enable each of these truth values.

Corollary 5.1. The model checking problem for BBLC,
BBLD and any combination is PSPACE-complete.

5.3 Upper-bound for satisfiability
Now we address the problem of existence of a placement

of cameras satisfying a given formula φ of BBLPDL∗ .

Proposition 5.3. SAT(BBLPDL∗) is in PSPACE.

Proof. The satisfiability testing procedure of a formula
φ works as follows. First, we guess the set Sa for each agent
a. Each Sa contains at most O(k) sets of agents each of them
containing at most k = #Agt agents. Thus, it is possible to
guess a collection of sets (Sa)a∈Agt, where each Sa is a set of
size at most O(k2) in polynomial time.

Now, we have to check that there exists a geometric model
G from which we can derive the collection (Sa)a∈Agt. That
boils down to finding suitable positions and angles of vision
for all cameras, consistent with the collection (Sa)a∈Agt. The
key point is that we can express the existence of such model
in the existential fragment of the first-order theory of the
field of reals which is the same as the FO theory of real-
closed fields [5] and can be decided in polynomial space.
Once we know the family (Sa)a∈Agt to be consistent, we com-
pute the abstract vision-based modelN induced by (Sa)a∈Agt.
We then select a set Γa ∈ Sa for each agent a. We finally

check whether N, (Γa)a∈Agt |= 〈
y
a1〉 . . . 〈

y
an〉φ where Agt =

{a1, . . . , an}.

For that purpose we call mc((Γa)a∈Agt, 〈
y
a1〉 . . . 〈

y
an〉φ) where

the procedure mc is the procedure for the model check-
ing.

5.4 Lower-bound for satisfiability

Proposition 5.4. SAT(BBLPDL) is PSPACE-hard.

Proof. The formula ∃p1∀p2 . . . Qnpnψ(p1, . . . , pn) is true

in QBL iff φ′ is satisfiable where φ′ = 〈
y
a1〉[

y
a2] . . . Oiψ

′ where

Oi is 〈
y
ai〉 if i is odd and [

y
ai] if i is even and ψ′ is the

formula ψ in which we have replaced all occurrences of pi
by ai✄a0.

Corollary 5.2. The satisfiability problem for BBLC, BBLD

and any combination is PSPACE-complete.

6. FURTHER EXTENSIONS OF THE BBL
The present work only considers a simplified and ideal-

ized scenarios of stationary cameras placed in the plane and
without any obstacles to their vision. It is amenable to sev-
eral natural and important extensions which we only briefly
discuss here. The technical details and respective results
will be presented in an extended follow-up work.

6.1 Adding obstacles
In many real life scenarios the visibility by the cameras of

the objects of interest, including other agents, is impaired by
stationary or moving obstacles. Here we only sketch how our
framework can be extended by adding stationary obstacles.
In geometric models, these are represented by their shapes
placed in the plane, as in the figure below.

a

b
d

c

In order to take obstacles into account, we have to mod-
ify the scan used to compute the sets Sa. For instance,
In the example above, when we compute Sa, the segment
[pos(a), pos(c)] intersects the obstacle and thus c will not
appear in Sa.

Suppose that each obstacle is a polygon, described by a
list of its vertices. A segment [pos(a), pos(b)] intersects the
obstacle iff the segment intersects one of the segments of the
polygon. Thus, testing intersection is done in polynomial
time. Eventually, the model checking procedure can be ad-
justed to deal with obstacles and would remain in PSPACE.

The satisfiability testing problem now is modified as fol-
lows: given a set of obstacles positioned in the plane and
a specification in BBL or any of its extensions, determine
whether there is a positioning of the cameras in the plane
(without moving the obstacles) such that the resulting con-
figuration satisfies the specification. Its optimal complexity
is currently under investigation.

6.2 Cameras in 3D
In the real world, cameras are usually placed in the 3D

space and their areas of vision are 3-dimensional. That adds
essential, though not crucial, technical overhead in comput-
ing the areas of vision of the cameras, but the logical lan-
guages and the epistemic parts of their semantics remain es-
sentially unchanged. The model checking and satisfiability

testing algorithms, without or with obstacles, can be suit-
ably modified and will be in the same complexity classes as
in 2D.

6.3 Moving cameras and robots
In reality the agents and their cameras are often mobile,

not stationary. The simplest way to capture that feature is
to consider the same logical languages over geometric mod-
els that only involve the agents and the vision angles of their
cameras, but not their positions. Thus, the model checking
problem for the case of mobile cameras, asking for suitable
positioning of the cameras, satisfying the input specification,
reduces to satisfiability testing problem for models with sta-
tionary cameras. A more refined approach for capturing
mobile cameras involves adding to the language an extra
dynamic operator for translations in the plane along the cur-
rent direction of the camera. Together with the operator for
rotations (turning) these can express every movement in the
plane. The respective geometric models involve again only
the sets of agents and the vision angles of their cameras, but
not their positions. The possible worlds (states) in Kripke
models and in their vision-based abstraction models remain
the same. They are based on all sets of other agents that
may be seen in a glance after any rotation and/or trans-
lation. In the recursive model checking procedure for the
enriched languages, every occurrence of a translation oper-
ator in the formula applied to an agent a would generate a
finite number of different model checking problems, arising
by sliding the camera in the current direction of the agent a
and only recording the changes occurring in the vision sets
of the agents. Thus, eventually, the model checking problem
for the case of mobile cameras can be reduced to repeated
solving of finite sets of model checking problem for mod-
els with stationary cameras. The optimal complexity of the
model checking problem with moving cameras is currently
open.

6.4 Communicating agents with cameras
Lastly, the agents controlling cameras may have the abil-

ity of communicating with each other so that their respective
knowledge can be broadcast to others. The interaction be-
tween knowledge and announcements has been studied and
it is known that latter do not have negative effect on the
complexity of the basic logic (see [10]). We conjecture that
in our case, too, adding announcements would not increase
the complexity of the model checking and satisfiability.

7. CONCLUDING REMARKS
We have introduced formal models for multi-agent sys-

tems, where agents control surveillance cameras, and logical
languages to reason about the interaction between their vi-
sion and knowledge. The abstract scenario considered in
this paper is applicable in principle to various real-life situ-
ations, ranging from systems of real-time surveillance cam-
eras in building and public areas, through multi-robot sys-
tems, to networks of stationary satellites positioned around
the globe. Thus, our framework and results have immedi-
ate potential applications to automated reasoning, formal
specification and verification of observational abilities and
knowledge of multi-agent systems in each of these situations.

Acknowledgements

The work of Valentin Goranko was partially supported by
the CIMI (Centre International de Mathematiques et d’Infor-
matique) Excellence program while in Toulouse as a scien-
tific expert.

8. REFERENCES
[1] P. Balbiani, O. Gasquet, and F. Schwarzentruber.

Agents that look at one another. Logic Journal of
IGPL, 21(3):438–467, 2013.

[2] M. Ben-Or, D. Kozen, and J. Reif. The complexity of
elementary algebra and geometry. Journal of
Computer and System Sciences, 32(2):251–264, 1986.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, 2001.

[4] A. L. Bustamante, J. M. Molina, and M. A. Patricio.
Multi-camera and multi-modal sensor fusion, an
architecture overview. In Proc. of DCAI’2010, pages
301–308, 2010.

[5] J. Canny. Some algebraic and geometric computations
in PSPACE. In Proceedings of STOC’88, pages
460–467. ACM, 1988.

[6] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[7] J. Garćıa, J. Carbó, and J. M. Molina. Agent-based
coordination of cameras. Intern. Journal of Computer
Science & Applications, 2(1):33–37, 2005.

[8] O. Gasquet, V. Goranko, and F. Scharzentruber. Big
brother logic: Logical modeling and reasoning about
agents equipped with surveillance cameras in the
plane (long version). Technical report,
IRIT/RT–2014-01–FR, 2014.
http://www.irit.fr/publis/LILAC/Reports/

2014-GasquetGorankoSchwarzentruber.pdf.

[9] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, 2000.

[10] C. Lutz. Complexity and succinctness of public
announcement logic. In Proc. of AAMAS’06, pages
137–143. ACM, 2006.

[11] F. Schwarzentruber. Seeing, knowledge and common
knowledge. In Logic, Rationality, and Interaction,
pages 258–271. Springer, 2011.

[12] M. Sipser. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston, 2006.

[13] A. Tarski. A decision method for elementary algebra
and geometry. Springer, 1951.

[14] H. van Ditmarsch, W. van der Hoek, and B. Kooi.
Dynamic Epistemic Logic. Springer, Dordecht, 2008.

