
Convergence and Sensitivity Analysis of Repair

Algorithms in 1D

Bruno Despres, Raphaël Loubère
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†Commissariat à l’Energie Atomique CEA, BP12, 91680, Bruyères-Le-Châtel, France

bruno.despres@cea.fr
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Abstract

We prove the convergence of some repair algorithms for linear advection

in dimension one. The convergence depends on the size of the box where

the distribution of the mass excess is performed. Various numerical

examples illustrate the theoretical results. Applications to gas dynamics

in dimension one is also discussed.

Key words : Finite Volume Schemes, Repair algorithms, TVD schemes,

Gas Dynamics.

1 Introduction

The aim of this work is the convergence analysis of some very simple Repair Al-
gorithms. To our knowledge such a proof has never been given, even for simple
problems. The Repair algorithms we consider are very much in the spirit of what
was proposed by M. Shashkov and B. Wendroff in [11]. The underlying idea of Re-
pair methods is related to the fact that conservative remapping methods (present
in Arbitrary-Lagrangian-Eulerian (ALE) framework for example) may not necessar-
ily preserve a maximum principle: no new extrema should be generated during the

remapping process. If so a Repair method can remove these new maxima (resp.
minima) by distributing (resp. taking) the amount of the associated conservative
variable to (resp. from) the neighborhood.
In this paper we limit the theoretical study to transport equation in 1D and to some
simple remapping strategy in 1D. However we hope that some of the conclusions of
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the study can give insights even for multidimensional repair algorithms for systems
of PDE’s, such as compressible gas dynamics.
The outline of this paper is as follows. In the second section, we describe the repair
algorithm for the linear transport. In section three we adapt the repair algorithm for
the remapping process. The numerical results on 1D linear transport are gathered
in the fourth section, whereas the fifth section presents some numerical results for
1D gas dynamics. Finally the conclusion and the plan for future developments is
presented in the last section.

2 Repair algorithm for linear transport

Let us consider the equation of transport in 1D, with constant velocity

∂tu+ a∂xu = 0, a > 0. (1)

The initial condition is u(0, x) = u0(x) where u0 ∈ L1(R)∩BV (R). Let us consider
a mesh, that is uniform even if our result extends to non uniform mesh. The mesh
size is denoted by ∆x. The time step is denoted by ∆t. Thus un

j stands for the
numerical solution in cell j at time step n.

The repair strategy amounts to: 1) compute a prediction of the numerical solu-
tion at time step n + 1 using a “reasonable” and “local” scheme, as instance this
scheme can be a high order non monotone scheme or a highly anti-dissipative scheme,
2) check if the new value satisfies a local maximum principle, 3) if the new value does
not satisfy the local maximum principle, then repair it. Repairing means changing
the value of the unknown for 3) to be fulfilled. A difficulty is that one wants the
total mass to be preserved. So we need to describe in details how to redistribute the
mass of the repaired quantity, such as the total mass is preserved.

This family of algorithms can be local if one redistributes the mass in a local
box around the cell that needs to be repaired, or global if one redistributes the
mass in the entire domain. It has been a debate since the early time of the Repair
Algorithms to decide whether local repairing is better or not than global repairing.
On one hand, global repairing is a more simple algorithm than local repairing. On
the other hand our analysis implies that we can not prove the convergence of a
global repair process. This is a theoretical indication that global repair process can
be dangerous in some cases. Moreover a global repair process breaks the causality
by instantaneously spreading mass all over the domain. The numerical experiments
show it is indeed the case, in particular when the prediction step or the underlying
physics is oscillating.

Let us describe in detail the repair algorithm that we analyze in this work.

2.1 The prediction scheme

First, one computes the new value of the unknown using the finite volume and
conservative scheme

un+1
j − un

j

∆t
+ a

un
j + cn

j+ 1
2

− un
j−1 − cn

j− 1
2

∆x
= 0, (2)

International Journal on Finite Volumes 2



Repair Algorithms in 1D

where un
j is the mean value of u(x) in cell j: [xx− 1

2
;xx+ 1

2
].

The Courant or CFL number is less than one (a > 0)

ν = a
∆t

∆x
≤ 1. (3)

The scheme is a priori different from the upwind scheme. Thus all the difference
between the upwind scheme and the scheme used is embedded in the definition of
the correction flux acn

j+ 1
2

for all j. This correction flux can be either a linear or a

non linear function of (un
j ). The only assumption is

∃C1 > 0, ∃k ∈ N, |cn
j+ 1

2

| ≤ C1

∑

j−k≤q≤j+k

|uq − uq−1|. (4)

The hypothesis (4) essentially means that the flux is defined as the upwind flux plus
a correction. Of course the correction is zero if the numerical profile is flat (that is if
uq − uq−1 ≡ 0 in a neighborhood of cell j) : (4) is compatible with such a principle.
The hypothesis is true for the Lax-Wendroff scheme as instance, moreover all non
linear TVD algorithms satisfy (4).

2.2 Correction step

The spirit of this repair algorithm is to compare un+1
j with

Mn
j = max(un

j , u
n
j−1) and mn

j = min(un
j , u

n
j−1), (5)

that is one checks if mn
j ≤ un+1

j ≤ Mn
j is true or not. Suppose un+1

j > Mn
j , then

one has to modify the value of un+1
j and redistribute the mass “around”. In the

convergence analysis of the method, we discovered that it is better at the theoretical
level not to redistribute the mass globally but locally at least in a box of size p ∈ N
around the current cell. This is why we have introduced a new step in the repair
algorithm first proposed in [11] to be able to ensure that the redistribution of mass
can be made in the box of size p. Since p is a parameter of the method, one recovers
the global repair by setting p ≈ +∞.

So let us define boxes of size p. Each box is the collection of cells j such that
rp ≤ j ≤ (r + 1)p− 1 where r ∈ Z. The mathematical definition of these boxes Br

is
Br = {j; rp ≤ j ≤ (r + 1)p− 1}, r ∈ Z. (6)

However it is also possible to use boxes of different sizes, provided the size is smaller
than the predefined maximal box’s size p. It is also possible to use moving boxes,
that is the starting point of each box is different from one time step to the other.
For the simplicity of the mathematical exposure we use only (6).

To make the correction we first need to compute

bMr =





∑

j∈Br

(

un
j − ν(un

j − un
j−1) −Mn

j

)



− ν(cn
(r+1)p− 1

2
− cn

rp− 1
2
), (7)

bmr =





∑

j∈Br

(

un
j − ν(un

j − un
j−1) −mn

j

)



− ν(cn
(r+1)p− 1

2
− cn

rp− 1
2
). (8)

International Journal on Finite Volumes 3
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Most presumably bMr ≤ 0 (resp. bmr ≥ 0), since this is the result of a comparison be-

tween
∑

j∈Br

(

un
j − ν(un

j − un
j−1) −Mn

j

)

≤ 0 (resp.
∑

j∈Br

(

un
j − ν(un

j − un
j−1) −mn

j

)

≥
0) and ν(cn

(r+1)p− 1
2

− cn
rp− 1

2

). Moreover if p is large enough and ν small enough (i.e.

the time step is small) then bMr ≤ 0 (resp. bmr ≤ 0) is probably stating true. The
correction is here to ensure that bMr ≤ 0 and bmr ≥ 0 are always satisfied. The idea
being that if these inequalities are not satisfied then we multiply the value of the
fluxes by a small number such that bMr ≤ 0 and bmr ≥ 0 are fulfilled.

So we define
dn

j− 1
2

= µn
j− 1

2
cn
j− 1

2
where µn

j− 1
2
∈ [0, 1]. (9)

The coefficient µn
j− 1

2

has to be computed to give a corrected value of the flux. The

constraint µn
j− 1

2

∈ [0, 1] appears natural from the consistency point of view. We

expect that the definition of these µn
j− 1

2

will be the closest as possible to 1, so that

the corrected flux dn
j− 1

2

is almost equal to the flux of the prediction scheme. We

need to check

b̃Mr − ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

− µn
rp− 1

2

cn
rp− 1

2

) ≤ 0, (10)

b̃mr − ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

− µn
rp− 1

2

cn
rp− 1

2

) ≥ 0, (11)

where by definition b̃Mr =
∑

j∈Br

(

un
j − ν(un

j − un
j−1) −Mn

j

)

is not positive and

b̃mr =
∑

j∈Br

(

un
j − ν(un

j − un
j−1) −mn

j

)

is not negative. One feasible strategy can

be derived as:

International Journal on Finite Volumes 4
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Analysis of (10)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

≥ 0 : Then (10) is true once

ν(µn
rp− 1

2

cn
rp− 1

2

) ≤ −b̃Mr . Thus we define ϕ1,−
r , ϕ

1,+
r such that

µn
rp− 1

2

≤ ϕ1,−
r =

−b̃Mr
cn
rp− 1

2

and ϕ1,+
r = +∞. (12)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

< 0 : Then (10) is true once

ν(−µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

) ≤ −b̃Mr . Thus we define ϕ2,−
r , ϕ

2,+
r

such that

ϕ2,−
r = +∞ and µn

(r+1)p− 1
2
≤ ϕ2,+

r =
−b̃Mr

−cn
(r+1)p− 1

2

. (13)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

< 0 : Then (10) is true without con-

dition. Thus ϕ3,−
r = ϕ

3,+
r = +∞

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

≥ 0 : Then it is not possible to sim-

plify the inequality (10). Thus we impose ϕ4,−
r = ϕ

4,+
r and

µn
(r+1)p− 1

2

, µn
rp− 1

2

≤ ϕ4,−
r =

−b̃Mr
cn
rp− 1

2

− cn
(r+1)p− 1

2

(14)

International Journal on Finite Volumes 5
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Analysis of (11)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

≥ 0 : Then (11) is true once

ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

) ≤ b̃mr . Thus we impose that

ψ1,−
r = +∞ and µn

(r+1)p− 1
2
≤ ψ1,+

r =
b̃mr

cn
(r+1)p− 1

2

. (15)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

< 0 : Then (11) is true once

ν(−µn
rp− 1

2

cn
rp− 1

2

) ≤ b̃mr . Thus we impose that

µn
rp− 1

2
≤ ψ2,−

r =
b̃mr

−cn
rp− 1

2

and ψ2,+
r = +∞. (16)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

< 0 : Then it is not possible to sim-

plify the inequality (11). Thus we impose ψ3,−
r = ψ

3,+
r that

µn
(r+1)p− 1

2

, µn
rp− 1

2

≤ ψ3,−
r =

−b̃Mr
−cn

(r+1)p− 1
2

+ cn
rp− 1

2

(17)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

≥ 0 : Then (11) is true without con-

dition. Thus ψ4,−
r = ψ

4,+
r = +∞

Let us consider each of the cases considered in inequalities (12) to (17). We
gather the restrictions it imposes for all µn

rp− 1
2

. The mathematical definition of the

correction algorithm is the following.

Definition 2.1 Let us define the corrected fluxes at the boundaries of the boxes

dn
(r+1)p− 1

2
= min

(

1,min
l
ϕl,+

r ,min
l
ψl,+

r ,min
l
ϕ

l,−
r+1,min

l
ψ

l,−
r+1

)

× cn
(r+1)p− 1

2
.

(18)
Inside the boxes we do not correct, that is

dn
j− 1

2
= cn

j− 1
2
, ∀j 6= rp. (19)

The next step consists in the computation of the new prediction ûn+1
j with the

corrected flux:

ûn+1
j − un

j

∆t
+ a

un
j + dn

j+ 1
2

− un
j−1 − dn

j− 1
2

∆x
= 0. (20)

International Journal on Finite Volumes 6
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Lemma 2.2 One has the inequalities after the correction step





∑

j∈Br

(

un
j − ν(un

j − un
j−1) −Mn

j

)



− ν
(

dn
(r+1)p− 1

2
− dn

rp− 1
2

)

≤ 0 (21)





∑

j∈Br

(

un
j − ν(un

j − un
j−1) −mn

j

)



− ν
(

dn
(r+1)p− 1

2
− dn

rp− 1
2

)

≥ 0. (22)

The proof is performed by considering all cases (12-17) separately.

Inequalities (21-22) will be crutial in the analysis of the repairing procedure,
essentialy inequality (31) in subsection 2.4.

2.3 Repairing

As already mentioned, to repair a value means successively to compare with the
local maximum and minimum, to truncate if needed, then to redistribute the excess
of mass on all surrounding cells. Using mathematical notations, one gets







if ûn+1
j > Mn

j then un+1
j = Mn

j and ∆mn
j = ûn+1

j −Mn
j > 0,

if ûn+1
j < mn

j then un+1
j = mn

j and ∆mn
j = ûn+1

j −mn
j < 0,

else then un+1
j = ûn+1

j and ∆mn
j = 0.

(23)

The total mass in box Br of the new unknown un+1
j may as well be different from

the correct mass, so one defines the default of mass as:

∆Mn
r =

∑

rp≤j≤(r+1)p−1

∆mn
j . (24)

This default of mass may be positive or negative. So we need to redistribute it on
the box to get at least a conservative algorithm. Following [11], we consider







if ∆Mn
r > 0 then un+1

j = un+1
j + λn

r (Mn
j − un+1

j ),

if ∆Mn
r < 0 then un+1

j = un+1
j + λn

r (mn
j − un+1

j ),

if ∆Mn
r = 0 then un+1

j = un+1
j ,

(25)

where the coefficient λn
r is set to















if ∆Mn
r > 0 λn

r = ∆Mn
r

P

rp≤j≤(r+1)p−1(M
n
j
−u

n+1
j

)
,

if ∆Mn
r < 0 λn

r = ∆Mn
r

P

rp≤j≤(r+1)p−1(m
n
j
−u

n+1
j

)
,

if ∆Mn
r = 0 λn

r = 0.

(26)

The repair algorithm that we analyze in this paper consists of equations (2) to
(26).

International Journal on Finite Volumes 7
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2.4 Properties

Before proving our main convergence theorem, we state the stability lemma

Lemma 2.3 Whatever the value of p ∈ N⋆ is, for all time step n, the repair algorithm
is such that the total mass is preserved (conservation)

∑

j

un+1
j =

∑

j

un
j , (27)

the maxima and minima are respected (maximum principle)

mn
j ≤ un+1

j ≤Mn
j , ∀j, (28)

and the total variation is diminishing (TVD)

∑

j

|un+1
j − un+1

j−1 | ≤
∑

j

|un
j − un

j−1|. (29)

Remark: One notices that the scheme is TVD because of (29). Proof First one
has

∑

j∈Br

ûn+1
j =





∑

j∈Br

(un
j − ν(un

j − un
j−1))



− ν
(

dn
(r+1)p− 1

2
− dn

rp− 1
2

)

.

Since by construction un+1
j = ûn+1

j − ∆mn
j , then we get the relation

∆Mn
r +

∑

j∈Br

un+1
j =





∑

j∈Br

(un
j − ν(un

j − un
j−1))



− ν
(

dn
(r+1)p− 1

2
− dn

rp− 1
2

)

.

(30)

Assume for instance that ∆Mn
r > 0 (the other cases are easily deduced by mimicking

this one). Then the next stage of the algorithm consists in the computation of λn
r .

The key point is to prove that 0 ≤ λn
r ≤ 1 and the property follows. One has

∆Mn
r −∑j∈Br

(

Mn
j − un+1

j

)

=
(

∑

j∈Br
(un

j − ν(un
j − un

j−1) −Mn
j )
)

− ν
(

dn
(r+1)p− 1

2

− dn
rp− 1

2

)

,

and clearly

∆Mn
r −

∑

j∈Br

(

Mn
j − un+1

j

)

≤ 0, (31)

due to the correction step (21)-(22). Then ∆M n
r ≤∑j∈Br

(

Mn
j − un+1

j

)

that is

0 ≤ λn
r =

∆Mn
r

∑

j∈Br
Mn

j − un+1
j

≤ 1.

And finally
mn

j ≤ un+1
j = (1 − λn

r )un+1
j + λn

rM
n
j ≤Mn

j ,

International Journal on Finite Volumes 8
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since mn
j ≤ un+1

j ≤ Mn
j by construction. Thus (28) is proved for ∆M n

r > 0. (The
other case is proved using the same method.) It implies (29).
It remains to prove (27). The definition of λn

r associated with equation (30) yields
to

∑

j∈Br

un+1
j =

∑

j∈Br

un+1
j + λn

r

∑

j∈Br

(

Mn
j − un+1

j

)

=
∑

j∈Br

un+1
j + ∆Mn

r =
∑

j∈Br

(un
j − ν(un

j − un
j−1)) − ν(dn

(r+1)p− 1
2
− dn

rp− 1
2
).

Summing up with respect to r gives (27) and completes the proof. �

2.5 Finite Volume Form

The next step is to identify the algorithm (2) to (26) as a standard finite volume
scheme as stated in (35). For the simplicity of notations, assume that ∆M n

r > 0.
Due to the definition of the scheme (2) to (26), one has

un+1
j = un+1

j + λn
r (Mn

j − un+1
j ) = ûn

j − ∆mn
j + λn

r (Mn
j − un+1

j )

=
(

un
j − ν(un

j − un
j−1)

)

− ν(dn
j+ 1

2

− dn
j− 1

2

) +
(

−∆mn
j + λn

r (Mn
j − un+1

j )
)

.

In order to be able to rewrite the scheme as a finite volume scheme, we need to
construct some fluxes en

j+ 1
2

such that for all j

∆t(en
j+ 1

2
− en

j− 1
2
) = −∆mn

j + λn
r (Mn

j − un+1
j ). (32)

The solution can be constructed as

{

en
rp− 1

2

= 0, ∀r ∈ Z,

en
j+ 1

2

= 1
∆t

∑

rp≤k≤j

(

−∆mn
k + λn

r (Mn
k − un+1

k )
)

, rp < j.
(33)

This formula is correct because (24)-(26) implies that (33) is correct for j = (r +
1)p − 1 : en

(r+1)p− 1
2

= 0. If one (or more) of the ∆Mn
r < 0 is negative, the result

remains the same.

Lemma 2.4 The L1 norm of (en
j+ 1

2

) is bounded

||en||1 = ∆x
∑

j

|en
j+ 1

2
| ≤ 2C1(2k + 1)p||u||BV , (34)

where ||u||BV is the BV norm of the solution.

Proof Due to the definition (33) we deduce

||en||1 ≤ p

∆t
∆x
∑

j

|∆mn
j |.

International Journal on Finite Volumes 9
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But one always has

|∆mn
j | ≤ |ûn+1

j − (uj − ν(un
j − un

j−1))| ≤ ν(|dn
j+ 1

2
| + |dn

j− 1
2
|)

≤ ν(|cn
j+ 1

2
| + |cn

j− 1
2
|),

moreover due to the hypothesis (4) we finally get

∆x

∆t

∑

j

|∆mn
j | ≤ 2C1(2k + 1)

∑

j

|un
j − un

j−1| ≤ 2C1(2k + 1)||u||BV .

This ends the proof. �

Then we are able to write the repair algorithm as

un+1
j − un

j

∆t
+ a

un
j − un−1

j

∆t
= (sn

j − sn
j−1), (35)

where sn
j is defined by

sn
j = − 1

∆x
adn

j+ 1
2

+ en
j+ 1

2

. (36)

The L1 norm of sn is bounded by

||sn||1 ≤ C1(2k + 1)||u||BV + ||en||1 ≤ C1(2k + 1)(2p + 1)||u||BV . (37)

From (35) we get

un+1 − un

∆t
+

a

∆x
(I − T )un = (I − T )sn, (38)

where T is the translation operator to the right. This is equivalent to say that

un − (I + ν(T − I))nu0 = ∆t
n−1
∑

p=0

(I + ν(T − I))n−p−1(I − T )sp. (39)

The main convergence result is given by the

Theorem 2.5 Assume that ν < 1. The difference between the upwind scheme and
the repair algorithm (as defined by (2) to (26), or (35-36)) tends to zero with ∆x
in the sense that there exists a constant C2 > 0 which does not depend on k, p, C1,
such that

||un − (I + ν(T − I))nu0||1 ≤ C2C1(2k + 1)(2p + 1)||u||BV

√

(n∆t)∆x. (40)

Proof Equation (38-39) shows that the scheme exactly fits in the framework de-
veloped in [7] and applied in [8] for the convergence analysis of non linear schemes
for linear advection. The key estimate proved in [7] is that

||(I + ν(T − I))q+1(I − T )||1 ≤ C
1

ν(1 − ν)

1√
q
. (41)

International Journal on Finite Volumes 10
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The constant C is a universal one. A simplified proof is provided in appendix for the
case ν = 1

2 . This estimate means that the right hand side of (39) is made of terms
that are small with respect to n− p. The final stage of the proof is straightforward.
One has

||un − (I + ν(T − I))nu0||1 ≤ ∆tmax ||sp||1 ×
n−1
∑

p=0

||(I + ν(T − I))n−p−1(I − T )||1

≤ C
1

ν(1 − ν)
∆tmax ||sp||1

n
∑

q=1

1√
q
≤ C

1

ν(1 − ν)
∆tmax ||sp||1

∫ n

0

dy√
y

≤ C
1

ν(1 − ν)
∆tC1(2k + 1)(2p + 1)||u||BV

√
n

2

≤ C

2a
√

1 − ν
C1(2k + 1)(2p + 1)||u||BV

√
T∆x.

Defining C2 = C

2a
√

1−ν
ends the proof. �

Remark: Since the numerical solution of the upwind scheme converges to the
exact solution meaning

(I + ν(T − I))nu0 → u(n∆t) in L1(R) as ∆x→ 0,

then the inequality of theorem 2.5 is a convergence result. Of course this inequality
does not explain that the repair algorithm is better than the upwind scheme. Actu-
ally Repair is equivalent to the upwind scheme is one choose cn

j+ 1
2

= 0, for all j and

n. However the result shows that repair can not diverge if p2∆x→ 0.
Remark: On the other hand the error estimate blows up if p is too large. At

least we need p2∆x → 0 to get a vanishing error on the right hand side of the
estimate. This estimate is the reason why we have incorporated the correction step
in the repair algorithm.

Remark: One may wonder the reason of the 1
a
√

1−ν
contribution in the definition

of the constant C2. Indeed if a → 0 or ν → 1, then C2 can go to infinity which
makes the estimate of convergence meaningless. First of all, for a given computation
C2 < ∞. Second of all, it is possible to use sharper estimates to get rid of the 1

a
.

This is done in [7] for the convergence analysis of TVD schemes for instance. Finally
one may argue that a similar argument should be possible at the theoretical level
to get rid of the 1√

1−ν
. Nevertheless real computations use ν < 1 which is another

reason to use this hypothesis. At the numerical level, we never saw any dependence
of the rate of convergence with respect to this parameter. Thus we consider this as
an artifact of the analysis.

3 Repair algorithm for remapping

In this section we show how to extend the previous result to take into account some
very simple remapping algorithms. The main idea is that remapping is very close
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t

t

n+1

n

X j+1/2

X j+1/2

nXn
j−1/2

Xj−1/2
n+1 n+1

jun

jun+1

Figure 1: Remapping stage. The old and new densities are the bullets. The high

order reconstruction stage are represented with the slopes.

to transport. So let us consider a uniform mesh. (The uniformity of the mesh is not
absolutely necessary however this hypothesis simplifies a lot the proof.).

At time step n, the value of the unknown is un
j in the cell j. The boundaries of

cell j are xn
j− 1

2

and xn
j+ 1

2

= xn
j− 1

2

+ ∆x, where ∆x is the mesh size. Then the mesh

changes. We assume the simplest change: a uniform translation to the left, then

xn+1
j+ 1

2

= xn
j+ 1

2

− a∆t, ∀j, (42)

where a > 0 is a kind of mesh velocity and ∆t is an equivalent time step. We assume
that the mesh does not move too fast, that is we assume the CFL condition

ν = a
∆t

∆x
≤ 1.

A standard remapping algorithm is divided in two stages : first reconstruct a
high order profile using a MUSCL like algorithm, then project on the new mesh. Let
us detail these operations. An illustration is given in figure 1.

The reconstruction amounts to the definition of the slopes in function of the old
values. So we define

vn
j (x) = un

j + wn
j (x), (43)

where wn
j is the slope function which is added to the average value at step n. A

natural hypothesis is that the average value of wn
j (x) is zero

∫ xn

j+1
2

xn

j− 1
2

wn
j (x) = 0, (44)

and that wn
j (x) is a local reconstruction, that is

|wn
j (x)| ≤ C3

∑

j−k≤q≤j+k

|un
q − un

q−1|. (45)
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Then we project the reconstructed function onto the new mesh. Thus

un+1
j =

∫ xn+1

j+1
2

xn+1

j− 1
2

vn(x)dx. (46)

That is

un+1
j =

∫ xn

j− 1
2

xn+1

j− 1
2

vn
j−1(x)dx+

∫ xn+1

j+1
2

xn

j− 1
2

vn
j (x)dx.

Replacing vn
j (x) and vn

j−1(x) using (43), one gets

un+1
j = νun

j−1 + (1 − ν)un
j +

∫ xn

j− 1
2

xn+1

j− 1
2

wn
j−1(x)dx+

∫ xn+1

j+1
2

xn

j− 1
2

wn
j (x)dx.

Let us define

cn
j− 1

2
= − 1

xn
j− 1

2

− xn+1
j− 1

2

∫ xn

j− 1
2

xn+1

j− 1
2

wn
j−1(x)dx = − 1

a∆t

∫ xn+1

j− 1
2

+a∆t

xn+1

j− 1
2

wn
j−1(x)dx. (47)

Hypothesis (45) turns into

|cn
j+ 1

2

| ≤ C3

∑

j−k≤q≤j+k

|un
q − un

q−1|. (48)

Moreover using (44) — the fact that the mean value of the correction is zero —
yields to the definition of the new value un+1

j

un+1
j − un

j

∆t
+ a

un
j + cn

j+ 1
2

− un
j−1 − cn

j− 1
2

∆x
= 0. (49)

With these notations the remapping algorithm is equivalent to a non linear transport.
Thus we easily generalize the results of the previous section to remapping.

The repair algorithm for remapping is then :

1) reconstruct a high order approximation as in (43-45) ;
2) make the correction step as in subsection 2.2 ;
3) repair.

The generalization of the correction step of subsection 2.2 is easy to write down,
since the notations are quite similar between section 2 and section 3. It is sufficient
to notice that once p ∈ N⋆, the size of the boxes, has been chosen, then the correction
step checks if the inequalities (7-8) become true. If one of them is not true, then we
need to minimize the value of cn

j+ 1
2

at the borders of the boxes until the inequalities

are true.
Then the convergence result of theorem 2.5 is extended to Repair remapping

algorithms. For a given size of the boxes p, the difference between the Repair
Algorithm and the upwind or donor cell method is bounded by estimate (40) (with
C1 = C3).
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4 Numerical results

In the numerical result presented, we tried the Lax-Wendroff scheme plus Repair
and the Downwind scheme plus Repair. The velocity is a = 1.

The Lax-Wendroff scheme is given by

(LW)
un+1

j − un
j

∆t
+
un

j + 1
2(1 − ν)(un

j+1 − un
j ) − un

j−1 + 1
2 (1 − ν)(un

j − un
j−1)

∆x
= 0.

The Downwind scheme is

(DW)
un+1

j − un
j

∆t
+
un

j+1 − un
j

∆x
= 0.

The LW intends to be representative of high-order prediction schemes. The DW
scheme intends to be representative of highly anti-dissipative prediction schemes.
Concerning the Repair algorithm we used different box sizes.
We advected two initial profiles: a smooth one (u0(x) = − cos 2πx on [0, 1]) and a
discontinuous one (u0(x) = 1 for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1) on a
domain with periodic boundary conditions.

4.1 Figures

Essentially the results LW+Repair show good convergence properties independently
to the size of the box p. See Figures 2 and 3. However one sees for the cosine initial
condition that p = 1 leads to some discrepancy at the extrema of the solution, that
p = 50, 100 leads to a prediction of the extrema that is less accurate. On the other
hand a relative small box of size p = 4 gives the best result. On this case, a small
amount of local repairing gives good results. For the step initial condition of Figure
3, the spreading is quite the same with all box sizes.

On the other hand the DW+repair results may be very sensitive to the size of the
box. For a given number of cells, one gets the best results for the smaller size of the
box, see Figure 4, staircases appear, exactly as with the UltraBee scheme as reported
in [6], see also [2] and [12]. For a given box size the numerical solution converges
to the exact one as the number of cells increases, see Figure 5. Unfortunately the
global algorithm where the size of the box is equal to the number of cells (i.e. p = n)
seems to diverge as the time increases, see Figure 6. Our experiments showed that
this pathology is highly sensitive to the CFL number. For CFL = .5, the global
algorithm seems to be correct. We retain that the global algorithm is not reliable
for such test cases.

4.2 Order of convergence

In tables 1 to 3 are gathered some errors in various norms. The size of the boxes is
p = 4. The final time is t = 1. We increase the number of cells from 100 to 1600.
The order of convergence of the Lax-Wendroff plus Repair algorithm is ≈ 1

2 in L1 for
a discontinuous profile. This is in accordance with the theoretical result of Theorem
2.5. For a smooth profile the order is ≈ 2 in all norms.
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Figure 2: Lax-Wendroff plus Repair : 100 cells. The initial condition is u0(x) =
− cos 2πx. The size of the box is p = 1, 2, 4, 10, 50, 100 from top left to bottom right.
The final time is t = 10
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Figure 3: Lax-Wendroff plus Repair : 100 cells. The initial condition is u0(x) = 1
for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p =
1, 2, 4, 10, 50, 100 from top left to bottom right. The final time is t = 1
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Figure 4: Downwind plus Repair. The initial condition is u0(x) = − cos 2πx. The
size of the box is p = 1, 2, 4, 10, 50, 100 from top left to bottom right. The number
of cells is N = 100. The Courant number is CFL = 0.12345. The final time is t = 1
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Figure 5: Downwind plus Repair. The initial condition is u0(x) = − cos 2πx. The
size of the box is p = 4. The number of cells is n = 100, 200, 400, 800, 1600, 3200.
The final time is t = 1
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Figure 6: Downwind plus Repair : 100 cells. The initial condition is u0(x) = 1
for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p =
1, 2, 4, 10, 50, 100 from top left to bottom right. The final time is t = 1. The results
are quite good, except for the global algorithm which seems to be in advance.
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Figure 7: Downwind plus Repair : 100 cells. The initial condition is u0(x) = 1 for
0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p = 100. The
final time is t = 1, 2, 3, 4, 5, 6. The global algorithm is in advance.
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cells L1 L2 L∞

100 0.00285 0.00306 0.00469
200 0.000705 0.000762 0.00149
400 0.000172 0.000187 0.000416
800 0.0000425 0.0000426 0.000123
1600 0.0000105 0.0000115 0.0000322

order ≈ 2 ≈ 2 ≈ 2

Table 1: Errors with respect to the size of the mesh. Lax-Wendroff plus Repair
p = 4. The initial condition is u0(x) = − cos 2πx. The order is approximatively 2.
The Courant number is CFL = 0.25. Compare with figure 2.

cells L1 L2 L∞

100 0.0475 0.120 0.518
200 0.0297 0.0959 0.534
400 0.0187 0.0762 0.547
800 0.0117 0.0607 0.557
1600 0.00741 0.0483 0.566

order ≈ 1
2 ≈ 1

4 ≈ 0

Table 2: Errors with respect to the size of the mesh. Lax-Wendroff plus Repair
p = 4. The initial condition is u0(x) = 1 for 0 < x < 0.5 and u0(x) = 0 for
0.5 < x < 1. The final time is t = 1. The Courant number is CFL = 0.12345.
Compare with figure 3.

The order of convergence of the Downwind plus Repair algorithm is approxima-
tively one in all norms for a smooth profile. It seems that Downwind plus Repair
finds the closest step profile to the initial profile in a few time steps. Therefore
Downwind plus Repair is almost exact for a step profile. This is very similar with
what has been reported in [6] for the Downwind TVD scheme (also known in the
literature as the Ultra-Bee scheme).

For the discontinuous profile u0(x) = 1 for 0 < x < 0.5 and u0(x) = 0 for
0.5 < x < 1, the result are almost exact for 200 and more cells.

5 Gas dynamics in 1D

In this section we are solving the gas dynamics equations in 1D with a Lagrange+Remap
code. This code is built on two components: a Lagrangian scheme and a Remap
strategy which may need repair.
The primitive variables are ρ the density, u the velocity and ε the specific internal
energy, whereas, the conservative variables are m the mass, µ = mu the momentum
and E = E +K = mε+ 1

2mu
2 the total energy (as the internal energy plus the ki-

netic energy). Density and specific internal energy are given on cell centers whereas
velocity is given on nodes.
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cells L1 L2 L∞

100 0.090947985213994 0.115785613616216 0.2710309
200 0.041511107024698 0.051893396383501 0.124615354
400 0.023674021241459 0.031497599561389 0.101446636
800 0.012277712311722 0.016193499317599 0.052800138
1600 0.006085189480290 0.008036148646353 0.029193723

order ≈ 1 ≈ 1 ≈ 1

Table 3: Errors with respect to the size of the mesh. Downwind plus Repair. The
initial condition is u0(x) = − cos 2πx. The order is approximatively 1. Compare
with figure 5.

The Lagrangian scheme is based on a compatible discretisation as described in [5],
[4] and [3]. This Lagrangian scheme is associated with a high-order remapping algo-
rithm based on [9]. This remapping algorithm is conservative in mass, momentum
and total energy, reversible (if the old and new meshes are identical, the primitive
variables remain unchanged) and high-order as a piecewise linear reconstruction is
performed for each variable before remapping as [9].

When solving the Euler equations we have to ensure that the density, the spe-
cific internal energy and the pressure remain positive during the calculation. Our
Lagrangian scheme ensures this property whereas the remapping algorithm does not
necessarily: a Repair method has then been added. Moreover the control of spuri-
ous oscillations is performed because a maximum principle is enforced by the repair
method which was not an intrinsic property of the remapping method (see [10]).
The repair process has to be embedded into the remapping process as the primitive
variables (ρ, u, ε) are not independent from the conservative variables (m,µ,E); for
example momentum is computed using velocity (which may need repair) and mass.
However the mass is computed using the density which may need repair as well.
Therefore the Remap+Repair algorithm performs the following three steps:

1. Remap mass, then repair density — mass and density are final values;

2. Remap momentum, then repair velocity — momentum and velocity are final
values;

3. Remap internal energy and kinetic energy, then repair specific internal energy
— energies are final values.

The repair algorithm finally brings several new properties to the overall scheme, the
respect of positivity and the preservation of a maximum principle.
It is well known that any numerical scheme which does not preserve the positivity
by construction has to have a “kind” of non-conservative repair method such as
ρ̃ = max(0, ρ) and ε̃ = max(0, ε) to exactly ensure positivity of density and specific
internal energy. However we believe that a repair has to be performed more carefully
especially to ensure the conservation.
The problems chosen to test the method in 1D are the Sod Riemann problem, the
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cells L1 L2 L∞

100 0.007557530 0.01467060 0.0859691
200 0.004063840 0.00905263 0.0589657
400 0.002238250 0.00622884 0.0570818
800 0.001238270 0.00452951 0.0678852

order ≤ 1 ≤ 0.5 0

Table 4: Errors for density with respect to the size of the mesh. Sod Riemann
problem — Euler regime (as Lagrange+Remap) with Repair process.
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Figure 8: Sod Riemann problem — Euler regime (as Lagrange+Remap) with Repair
process — Density for a 100, 200, 800 mesh sizes vs exact solution.

Le Blanc Riemann problem and the Collela-Woodward blastwave. For each of these
problems the code is run in Euler regime as Lagrange+Remap with a local repair
method.

5.1 Sod Riemann problem

The Sod Riemann problem is defined on Ω = [0; 1] by two states of the same ideal gas
γ = 1.4, separated at X = 1

2 : (ρl, ul, pl) = (1, 0, 1) and (ρr, ur, pr) = (0.125, 0, 0.1).
The CFL is chosen equal to 0.25. In table 4 are gathered the convergence results in
Lp norms (p = 1, 2,∞) for mesh sizes from 100 to 1600.

In Figure 8 are presented the density and the specific internal energy versus the
exact solution for several mesh sizes 100, 200, 800. The Sod Riemann problem is a
mild problem in the sense that the repair process can be canceled without generating
any problem on the numerical solution. On the other hand this problem shows that
a repair method, even not needed, is not polluting the numerical solution.

5.2 Le Blanc Riemann problem

The Le Blanc Riemann problem is defined on Ω = [0; 9] by two states of the same
fluid γ = 5

3 , separated at X = 3: (ρl, ul, pl) = (1, 0, 2
310−1) and (ρr, ur, pr) =

(10−3, 0, 2
310−9). The CFL is chosen equal to 0.25. In table 5 is gathered the

convergence results in Lp norms (p = 1, 2,∞) for a mesh size from 180 to 2880. In
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cells L1 L2 L∞

180 0.0698808 0.0894762 0.198472
360 0.0148312 0.0107787 0.0330398
720 0.00909984 0.00849729 0.040686
1440 0.00507182 0.00586531 0.0406224
2880 0.00278987 0.00431683 0.0426995

order ≤ 1 ≤ 0.5 0

Table 5: Errors for specific internal energy with respect to the size of the mesh
— Le Blanc Riemann problem — Euler regime (as Lagrange+Remap) with Repair
process.
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Figure 9: Le Blanc Riemann problem — Euler regime (as Lagrange+Remap) with
Repair process — Specific internal energy for a 180, 720, 1440 mesh sizes vs exact
solution — Full size (left) and zoom (right).

this problem the specific internal energy simulation is the most difficult part because
most of the numerical schemes (Eulerian or Lagrangian) converge very slowly on this
problem. In Figure 9 are presented the energy for different mesh sizes (180,720 and
1440). The Le Blanc Riemann problem is a more severe test case where the repair
method is necessary, otherwize negative internal energies are created and the code
fails if no special treatment is provided. Moreover if only positivity is ensured then
the overshoot observed in Figure 9 is much more pronounced.

5.3 Collela-Woodward blastwave

The Collela-Woodward blastwave problem simulates on Ω = [0, 1] the interaction
of two Riemann problems defined by the three states (ρl, ul, pl) = (1, 0, 1000),
(ρm, um, pm) = (1, 0, 0.001), (ρr, ur, pr) = (1, 0, 100) of the same ideal fluid γ = 1.4
separated at X1 = 0.1 and X2 = 0.9. The CFL is chosen to be equal to 0.7. In figure
10 are presented the density for 200, 400, 1600 mesh sizes compared to a reference
solution showing numerically the convergence of the method. This problem, as the
Le blanc Riemann problem, can not run without a repair method. The repair pro-
cess actually fixes the unphysical densities and specific internal energies and ensures
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Figure 10: Collela-Woordward blastwave problem — Euler regime (as La-
grange+Remap) with Repair process — Density for 200, 400, 1600 mesh sizes vs

reference solution — Full size (left) and zoom (right).

a maximum principle1.

6 Conclusion

In this paper we investigated the convergence in 1D of a repair algorithm. A Repair
algorithm can be defined as a post-processing to conservatively ensure a maximum
principle (hence the positivity) for any numerical scheme. In order to prove the
main convergence result we introduced a box of size p in which the distribution of
the excess of mass is performed. It seems that the size of the box (parameter p) is
not necessarily an important parameter if one uses a high-order prediction scheme
as the Lax-Wendroff scheme for non oscillating computations. But with a more anti-
dissipative prediction scheme as the Downwind scheme, the results can vary with
p. When p is too large the numerical solution may not be correct. It gives some
indication that it is much preferable to restrict ourselves to local Repair (i.e with a
local redistribution of the mass).

An important feature of the Repair paradigm is the simplicity and versatility in
any dimension. Moreover the repair process is independent of the kind of mesh used;
cell-centered values or nodal values can be repaired the same way. We only need
the notion of neighborhood to define the bounds and to redistribute the amount
of conservative variable. Therefore any repair algorithm is suitable for staggered
formulation where physical variables are not defined at the same place — classical
Lagrangian schemes in CFD deal with cell-centered density, nodal velocity etc.
The test cases in 1D show non only the convergence of the repair process on transport
equation but on 1D gas dynamics as well. We have shown on several problems that
the repair process is usefull to correct some bad behaviors of Lagrange+Remap
schemes for a non-linear system of PDEs.

1For gas dynamics, the maximum principle means that if m, µ, E are remapped and ρ, u, ε are

the associated repaired variables, then no new ewtrema is created in the solution ρ, u, ε of this

system. For a general system it is an open problem to design a criterion for repairing
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A A simple proof of inequality 41 in the case ν =
1
2

We prove here that there exists C > 0 such that for ν = 1
2 one has

||(I + ∆t(T − I))q(T − I)|| ≤ C
1√
q + 1

. (50)

A complete proof is in given [7], that also takes into account variable time steps.
One has
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For a positive number m, the Stirling formula [1] gives that m! ≈
√

2πm(m
e
)m.

Plugging in the right hand side of our last inequality, one gets that

q!

( q
2 !)2

≈
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. (53)

From (51-53) one gets

||(I +
1

2
(T − I))q(T − I)|| .

(

2

√

2

π

)

1√
q + 1

.

It ends the proof of the lemma in the case ν = 1
2 . This proof can easily be generalized

for ν 6= 1
2 .
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