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On the hypergroup property

Laurent Miclo˚

Institut de Mathématiques de Toulouse, UMR 5219

Université de Toulouse and CNRS, France

Abstract

The hypergroup property satisfied by certain reversible Markov chains can be seen as a general-
ization of the convolution related features of class random walks on groups. Carlen, Geronimo and
Loss [3] developed a method for checking this property in the context of Jacobi eigen-polynomials.
A probabilistic extension of their approach is proposed here, enabling to recover the discrete exam-
ple of the biased Ehrenfest model due to Eagleson [8]. Next a spectral characterization is provided
for finite birth and death chains enjoying the hypergroup property with respect to one of the
boundary points.
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1 A theoretical result

There are several definitions of the hypergroup property for a reversible Markov kernel P . One of
them, recalled in (4) below, is the non-negativity of certain sums of products of quantities related
to the eigenfunctions associated to P . In the context of Jacobi polynomials, Carlen, Geronimo and
Loss [3] developed a method in order to check this property. Here we begin by extending it, giving
it a general probabilistic flavor by replacing in their criterion some mappings by Markov kernels.
Next we will see how the resulting abstract condition can be applied to recover the first instance
of the hypergroup property, namely the example of the biased Ehrenfest model due to Eagleson
[8]. We will investigate further the hypergroup property for birth and death Markov chains, by
providing a spectral criterion in the last section. For general motivations relative to the notion of
the hypergroup property, see for instance Diaconis and Griffiths [4] or Bakry and Huet [2].

Let pS̄, S̄, µ̄, P̄ q be a reversible Markov framework: pS̄, S̄q is a measurable space endowed with a
probability measure µ̄ and P̄ is a self-adjoint Markovian operator on L

2pµ̄q. Recall that the Markov
property consists in two assumptions: on one hand, for any non-negative function f P L

2pµ̄q, P̄ rf s
is non-negative, and on the other hand, P̄ r1s “ 1, where 1 P L

2pµ̄q is the constant function taking
the value 1 (µ̄-a.s.).

Consider another measurable space pS,Sq, as well as a Markov kernel Q from pS̄, S̄q to pS,Sq:
it is a mapping from S̄ˆS to r0, 1s such that for any x̄ P S̄, Qpx̄, ¨q is a probability distribution and
for any A P S, Qp¨, Aq is a measurable mapping (for our purpose, the requirements with respect to
the first variable only need to be satisfied µ̄-a.s.). The kernel Q can be seen as a Markov operator
from BpSq, the space of bounded measurable functions defined on pS,Sq, to BpS̄q, via the formula

@ f P BpSq, @ x̄ P S̄, Qrf spx̄q ≔

ż
fpxqQpx̄, dxq

Denote by µ the image of µ̄ by Q:

@ A P S, µpAq ≔

ż
Qpx̄, Aq µ̄pdx̄q

Then we have

@ f P BpSq, µrf s “ µ̄rQrf ss

and since by Cauchy-Schwarz inequality, pQrf sq2 ď Qrf2s, it appears that Q can be extended into
an operator of norm 1 from L

2pµq to L
2pµ̄q. Denote by Q˚ the adjoint operator of Q, it is in

particular an operator of norm 1 from L
2pµ̄q to L

2pµq. In fact we have a little better:

Lemma 1 The operator Q˚ is Markovian.

Proof

To check the preservation of non-negativeness, it is sufficient to see that for any non-negative
f P L

2pµ̄q and g P L
2pµq, xQ˚rf s, gyµ ě 0, where x¨, ¨yµ stands for the scalar product in L

2pµq. This
property is an immediate consequence of

xQ˚rf s, gyµ “ xf,Qrgsyµ̄
ě 0

For the computation of Q˚r1s, note that for any f P L
2pµq,

xQ˚r1s, fyµ “ x1, Qrf syµ̄
“ µ̄rQrf ss

“ µrf s

“ x1, fyµ
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Since this is valid for all f P L
2pµq, we conclude that Q˚r1s “ 1.

�

Define

P ≔ Q˚P̄Q (1)

By composition, P is a Markov operator from L
2pµq to L

2pµq, which is clearly self-adjoint, by
self-adjointness of P̄ . To get a more interesting property of P , we need to introduce the following
notion. A Markov operator G from L

2pµ̄q to itself is said to be Q-compatible if we have

QQ˚GQ “ GQ (2)

Lemma 2 If P̄ is Q-compatible, then the operators P̄ and P are intertwined through Q:

QP “ P̄Q

Proof

By definition, we have

QP “ QQ˚P̄Q

“ P̄Q

by Q-compatibility.
�

From now on, P̄ is assumed to be Q-compatible. It seems that an important tool to investigate
the Markov operator P intertwined with P̄ is the set G of Markov operators G from L

2pµ̄q to itself
which commute with P̄ , GP̄ “ P̄G, and which are Q-compatible. This set G has the structure of
a semi-group: for all G,G1 P G, GG1 P G. Indeed, GG1 clearly commutes with P̄ if both G and G1

commute with P̄ . If (2) is satisfied by G and G1, then the same is true for GG1, because

QQ˚GG1Q “ QQ˚GQQ˚G1Q

“ GQQ˚G1Q

“ GG1Q

In particular G contains tP̄n : n P Z`u, the semi-group generated by P̄ , but as it can be observed
on the example of the next section, G can be larger than a temporal evolution semi-group. Under
the above setting, to each G P G, we can associate a Markov operator KG on L

2pµq, via

KG ≔ Q˚GQ

Proposition 3 For all G P G, KG and P commute.

Proof

The argument is similar to that used in the proof of Lemma 2: using Lemma 5 and Assumption
(2), it appears that

KGP “ Q˚GQQ˚P̄Q

“ Q˚GP̄Q

“ Q˚P̄GQ

“ Q˚P̄QQ˚GQ

“ PKG
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It is time to come to the main application of the above considerations. Assume that S is a
finite set of cardinal N P N (then up to lumping some of its elements together, there is no loss of
generality in taking for S the σ-algebra consisting of all the subsets of S and up to removing the
µ-negligible points from S, we furthermore assume that µ gives a positive weight to all the points
of S). By symmetry, P is diagonalizable, let pϕlqlPJNK be an orthonormal basis of L2pµq consisting
of its eigenvectors. We make the hypothesis that all the eigenvalues of P are of multiplicity 1 and
that there exists x0 P S such that for all x1 P S, there exists G P G such that

KGpx0, ¨q “ δx1 (3)

Theorem 4 Under the above conditions, P satisfies the hypergroup property with respect to x0,

namely we have ϕlpx0q ­“ 0 for all l P JNK and

@ x, y, z P S,
ÿ

lPJNK

ϕlpxqϕlpyqϕlpzq

ϕlpx0q
ě 0 (4)

Proof

Fix l P JNK and denote θl the eigenvalue associated to the eigenvector ϕl. From P rϕls “ θlϕl and
Proposition 3, we deduce that for any G P G,

P rKGrϕlss “ KGrP rϕlss

“ θlKGrϕs

namely, either KGrϕls “ 0 or KGrϕls is an eigenvector of P associated to the eigenvalue θl. Due the
multiplicity 1 of this eigenvalue, we deduce that KGrϕls is proportional to ϕl (this being also true if
KGrϕls “ 0), say KGrϕls “ λpG, lqϕl. Since this is true for all l P JNK, the spectral decomposition
of KG is given by pλpG, lq, ϕlqlPJNK and we have

@ y, z P S, KGpy, zq “
ÿ

lPJNK

λpG, lqϕlpyqϕlpzqµpzq (5)

Fix x1 P S and let G P G be as in (3). We get from this equation that

λpG, lqϕpx0q “ KGrϕlspx0q

“ ϕpx1q

If ϕlpx0q was to vanish, the same would be true of ϕlpx1q, for all x1 P S, contradicting that ϕ is
a vector of norm 1. Thus ϕlpx0q ­“ 0 and λpG, lq “ ϕpx1q{ϕpx0q. It follows from (5) that for all
y, z P S,

ÿ

lPJNK

ϕlpx1qϕlpyqϕlpzq

ϕlpx0q
“

ÿ

lPJNK

λpG, lqϕlpyqϕlpzq

“
KGpy, zq

µpzq

ě 0

becauseKG is a Markovian matrix. This is the wanted hypergroup property, because x1 was chosen
arbitrarily.

�

To put more flesh on the notion of Q-compatibility, let us present a traditional instance of the
above setting. Instead of a Markov kernel Q, assume that we are given a measurable mapping q
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from pS̄, S̄q to pS,Sq. It can also be seen as a “deterministic” Markov kernel from pS̄, S̄q to pS,Sq,
via

@ x P S̄, Qpx̄, ¨q ≔ δqpx̄qp¨q (6)

so that the above development applies.
Let T be the σ-field generated by q. In this context, the operator Q is an isometry from L

2pµq
to L

2pµ̄q, because for all f P BpSq, pQrf sq2 “ Qrf2s (this identity is in fact a characterization of
the µ̄-a.s. determinism of Q). A convenient property of Q˚ is:

Lemma 5 The Markov operator QQ˚ corresponds to the conditional expectation with respect to

T .

Proof

By composition, QQ˚ is a Markov operator from L
2pµ̄q to itself. To show that it corresponds to

the conditional expectation with respect to T , we must prove that

@ f, g P L
2pµ̄q, xQQ˚rf s, Qrgsyµ̄ “ xf,Qrgsyµ̄

This comes from the fact that Q is an isometry, which implies that the l.h.s. is equal to

µ̄rQrQ˚rf sgss “ µrQ˚rf sgs

“ xQ˚rf s, gyµ
“ xf,Qrgsyµ̄

�

The notion of Q-compatibility (2) of a Markov kernel G is then equivalent to

GQ is a Markov operator from L
2pµq to L

2pµ̄,T q (7)

where L
2pµ̄,T q is the subspace of L2pµq consisting of functions measurable with respect to T .

Thus in the context of a deterministic Q, Lemma 2 amounts to the famous criterion of Dynkin
[7] insuring that a function of a Markov chain is itself a Markov chain.

2 An example

Eagleson [8] proved that the biased Ehrenfest model satisfies the hypergroup property, let us show
how Theorem 4 enables to recover this result.

We begin by recalling the underlying birth and death Markov transition kernel P on S ≔ J0, NK,
with N P N

˚ (so there is a slight modification of the notations of Theorem 4: the cardinal of S is
now N ` 1), parametrized by p P p0, 1q:

@ x, y P J0, NK, P px, yq ≔

$
’’&
’’%

N´x
N

p , if y “ x` 1
x
N

p1 ´ pq , if y “ x´ 1
1 ´ p´ p1 ´ 2pq x

N
, if y “ x

0 , otherwise

(8)

This birth and death kernel is irreducible and its unique reversible probability measure µ is given
by

@ x P J0, NK, µpxq “

ˆ
N

x

˙
pxp1 ´ pqN´x (9)
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This can be computed directly or deduced, as in the previous section, from the existence of a simple
reversible Markov framework pS̄, S̄, µ̄, P̄ q “above” P . Indeed, take S̄ “ t0, 1uN , endowed with the
σ-field S̄ of all its subsets, and consider the mapping q going from S̄ to S defined by

@ x̄ ≔ px̄lqlPJ0,NK P S̄, qpx̄q ≔
ÿ

lPJNK

x̄l

The probability measure µ̄ is given by

@ x̄ P S̄, µ̄px̄q ≔ pqpx̄qp1 ´ pqqpx̄q

For any l P J0, NK, consider the Markov transition matrix P̄l defined by

@ x ≔ px̄kqkPJ0,NK, y ≔ pȳkqkPJ0,NK P S̄, P̄lpx̄, ȳq ≔

$
&
%

p , if ȳl “ 1 and ȳk “ x̄k, for k ­“ l

1 ´ p , if ȳl “ 0 and ȳk “ x̄k, for k ­“ l

0 , otherwise

The measure µ̄ is clearly reversible for P̄l, as well as for

P̄ ≔

1

N

ÿ

lPJNK

P̄l

As in the end of last section, we reinterpret the mapping q as the Markov kernel from pS̄, S̄q to
pS,Sq given in (6). The associated σ-field T Ă S consists of the events which are left invariant
by all the permutations of the indices. In particular, Assumption (2) is satisfied, P̄Q being clearly
a Markov operator from L

2pµq to L
2pµ̄,T q. Furthermore the Markovian matrix P defined in (1)

is given by (8) and the image of µ̄ by q coincides with µ described in (9). Thus µ is necessarily
reversible with respect to P .

But the interest of the above construction is that it enables to recover the hypergoup property
of P via Theorem 4. From now on, assume that p P p0, 1{2s (if p P p1{2, 1q, reverse the order of
the segment J0, NK to come back to the situation where p P p0, 1{2q). For l P JNK, consider the
Markov transition matrix Hl defined by

@ x ≔ px̄kqkPJNK, y ≔ pȳkqkPJNK P S̄,

Hlpx̄, ȳq ≔

$
’’&
’’%

1 , if x̄l “ 1, ȳl “ 0 and ȳk “ x̄k, for k ­“ l

p{p1 ´ pq , if x̄l “ 0, ȳl “ 1 and ȳk “ x̄k, for k ­“ l

p1 ´ 2pq{p1 ´ pq , if x̄l “ 0, ȳl “ 0 and ȳk “ x̄k, for k ­“ l

0 , otherwise

It is immediate to check that

P̄l “ pI ` p1 ´ pqHl

where I is the identity matrix (seen as the motionless Markov kernel). In particular, Hl commutes
with P̄l and with P̄ . More generally, for A Ă JNK, let HA be given by

HA ≔

ź

lPA

Hl

(in r.h.s. the order of the compositions of the Markov kernels does not matter, because they
commute among themselves). Again, HA is a Markov kernel commuting with P̄ . Nevertheless, it
lacks symmetry to belong to G. So for any l P JNK, consider

Gl ≔
1`
N
l

˘
ÿ

AĂJNK : cardpAq“l

HA

6



which is easily seen to belong to G.
This leads us to consider the Markov kernel KGl

on J0, NK. It appears without difficulty that

@ l P JNK, KGl
pN, ¨q “ δN´lp¨q

This observation enables to apply Theorem 4 to get that P satisfies the hypergroup property with
respect to the point N (if p ě 1{2, P satisfies the hypergroup property with respect to the point
0).

To investigate the extent of the applicability of the approach of the previous section, it would be
interesting to study the multidimensional Krawtchouk polynomials, which are a multidimensional
extension of the above example, cf. Diaconis and Griffiths [4, 5]. Nevertheless, to generalize the
result of this section, staying in the one-dimensional setting of finite birth and death chains, already
presents surprising challenges, as we are now going to see.

3 On birth and death chains

Instead of working with a “covering Markov framework” pS̄, S̄, µ̄, P̄ q, where hidden symmetries in
the initial model pS,S, µ, P q are more obvious, one can also try to find directly the commuting
Markov kernels. We investigate here the situation of finite birth and death chains, by providing
a spectral characterization of the hypergroup property with respect to the left boundary point.
This enables to construct a practical algorithm for checking this property. Next we conjecture
two seemingly natural discrete versions of Achour-Trimèche’s theorem [1] (see also Bakry and
Huet [2]), asserting the hypergroup property under certain log-concavity of the reversible measure.
Using numerical implementations of the proposed algorithm, it appears they are both wrong.

We begin by recalling the framework of finite birth and death chains. For some N P N, we take
S ≔ J0, NK endowed with its total σ-field S and an irreducible birth and death Markov kernel P ,
i.e. whose permitted transitions are those to the nearest neighbors, S being given its usual discrete
line graph structure (with self-connecting loop at each vertex, to allow non-zero diagonal entries
for P ). Then there exists a unique invariant probability measure µ for P and it is reversible. Our
purpose is to investigate the set of Markov kernels commuting with P , namely the set

K ≔ tK P M : KP “ PKu

where M is the set Markov kernels on S. Note that the elements of K admits µ as invariant
probability. Indeed, we have

µKP “ µPK

“ µK

This shows that µK is invariant by P , so that µK “ µ.
We are looking for conditions on P which ensure that for any probability distribution µ0, there

exists a Markov kernel Kµ0 P K such that Kµ0p0, ¨q “ µ0, namely we are trying to check the
hypergroup property with respect to 0. By convexity of K, this amounts to find, for any given
x1 P S, Kx1 P K such that Kx1p0, ¨q “ δx1p¨q, since we can next take for any probability distribution
µ0,

Kµ0 “
ÿ

x1PS

µ0px1qKx1 (10)

Remark 6 The commutation relation KP “ PK can be seen as a discrete wave equation in K,
by interpreting the first (respectively, second) variable in the matrix K as a time (resp., space)
variable. More precisely, denote k the density kernel associated to K:

@ t, x P J0, NK, kpt, xq ≔
Kpt, xq

µpxq

7



Using that for all x, y P J0, NK, µpxqP px, yq “ µpyqP py, xq, we can transform the equality

@ t, x P J0, NK,
ÿ

yPS

Kpt, yqP py, xq “
ÿ

yPS

P pt, yqKpy, xq

into

@ t, x P J0, NK, µpxq
ÿ

yPS

P px, yqkpt, yq “ µpxq
ÿ

yPS

P pt, yqkpy, xq

Dividing by µpxq and considering the generator matrix L “ P ´ I, we get

@ t, x P J0, NK, Lp1qrkspt, xq “ Lp2qrkspt, xq

where for i P t1, 2u, Lpiq stands for the generator acting on the i-th variable as L. A least formally,
one recognizes a wave equation. Thus our objective is to see when a wave equation starting from
a non-negative initial condition remains non-negative.

˝

The biased Ehrenfest birth and death processes of the previous section with p P r1{2, 1q provide
examples of the Markov kernels we want to characterize. We will denote byMp the Markov matrix
defined in (8) with p P r1{2, 1q. Here is a simpler example where the discrete wave interpretation
is particularly obvious:

Example 7 Consider the birth and death random walk on J0, NK: its Markov kernel M0 (not to
be confused with the notation Mp, for p P r1{2, 1q, defined above) is given by

@ x, y P J0, NK, M0px, yq “

$
&
%

1 , if px, yq “ p0, 1q or px, yq “ pN,N ´ 1q
1{2 , if |x´ y| “ 1 and x P t0, Nu
0 , otherwise

For any x0 P J0, NK and ε P t´1, 1u, let pψx0,εpxqqxPZ`
the deterministic and discrete time evolution

in J0, NK constructed in the following way: ψx0,εp0q “ x0 and if x0 P J1, N´1K, then we take ψx0,εp1q
to be x0 ` ε. If x0 “ 0 (respectively x0 “ N), we take ψx0,εp1q “ 1 (resp. ψx0,εp1q “ N ´ 1). Next
for x P N, if ψx0,εpx ´ 1q and ψx0,εpxq have been constructed with dx0,εpxq ≔ ψx0,εpxq ´ ψx0,εpx ´
1q P t´1, 1u, then we take ψx0,εpx ` 1q “ ψx0,εpxq ` dx0,εpxq, except if it is not possible (i.e.
ψx0,εpxq P t0, Nu), in which case we consider ψx0,εpx ` 1q “ ψx0,εpxq ´ dx0,εpxq. Visually, it
corresponds to a trajectory of a particle issued from x0, starting to go to x0 ` ε and keeping in the
same direction until it is reflected on one of the “walls at ´1 and N ` 1”.

We leave to the reader as an exercise to check that for any x0 P J0, NK, the Markov kernel Kx0

defined by

@ x, y P J0, NK, Kx0px, yq “
1

2

´
δψx0,1

pyq ` δψx0,´1pyq

¯

does commute with M0.
˝

We come back to the situation of a general irreducible birth and death Markov kernel P . To
describe the main theoretical result of this section, we need some further notations. For n P
J0, N ´ 1K, denote by ´1 ă θn,0 ă θn,1 ă ¨ ¨ ¨ ă θn,n´1 ă 1 the n eigenvalues of the minor of P
corresponding to the rows and columns indexed by J0, n´ 1K.

8



Proposition 8 The Markov kernel P satisfies the hypergroup property with respect to 0 if and

only if for all n P J0, N ´ 1K, the matrix

pP ´ θn,0qpP ´ θn,1q ¨ ¨ ¨ pP ´ θn,n´1q

has non-negative entries.

We excluded the case n “ N , because the corresponding product matrix vanishes by the Hamilton-
Cayley theorem.

Remark 9 Markov kernels usually refer to discrete time processes. Continuous time processes
rather use Markov generators. A matrix L is called a Markov generator if its off-diagonal entries
are non-negative and if the raw-sums all vanish. It is equivalent to the fact that we can find a
positive number l ą 0 and a Markov kernel P such that L “ lpP ´ Iq, where I is the corresponding
identity matrix. A technical advantage of Markov generators over Markov kernels is that it is
straightforward to perturb them (in addition to the fact that continuous time is often easier to
manage than discrete time). It is convenient for them to rewrite the above result under the following
form.

Consider an irreducible birth and death Markov L generator on J0, NK. For n P J0, N ´ 1K,
denote by ´1 ă λn,0 ă λn,1 ă ¨ ¨ ¨ ă λn,n´1 ă 1 the eigenvalues of the minor of L corresponding to
the rows and columns indexed by J0, nK. The Markov generator L satisfies the hypergroup property
(4) with respect to x0 “ 0 (and N replaced by N ` 1) if and only if for all n P J0, N ´ 1K, the
matrix

pL´ λn,0qpL ´ λn,1q ¨ ¨ ¨ pL ´ λn,n´1q

has non-negative entries.
˝

At the end of this section, we will explain how Proposition 8 enables to construct a relatively
efficient algorithm to check the hypergroup property. First we prove Proposition 8 through a
sequence of intermediate results.

We begin by showing that it is always possible to solve the commutation equationKµ0P “ PKµ0

explicitly in terms of P and µ0. It will remain to see if the obtained solution is non-negative, but
the condition Kµ01 “ 1 will be automatically satisfied. Indeed, for any matrix K commuting with
P , we have

K1 “ KP1 “ PK1

so that K1 is an eigenfunction associated to the eigenvalue 1 and thus must be constant by
irreducibility of P . The first component of Kµ01 is equal to δ0Kµ01 “ µ0p1q “ 1, so that we get
Kµ01 “ 1.

Define

@ n,m P J0, NK, apn,mq ≔ Pnp0,mq

(note that apn, nq ą 0 for n P J0, NK) and for n P J0, NK, the polynomial RnpXq given by

RnpXq ≔
1

apn, nq
Xn ´

1

apn, nq

ÿ

n1PJ0,n´1K

apn, n1q
1

apn1, n1q
Xn1

`
1

apn, nq

ÿ

n1PJ0,n´1K

ÿ

n2PJ0,n1´1K

apn, n1q
1

apn1, n1q
apn1, n2q

1

apn2, n2q
Xn2 ` ¨ ¨ ¨

`p´1qn
1

apn, nq

ÿ

n1PJ0,n´1K

ÿ

n2PJ0,n1´1K

¨ ¨ ¨
ÿ

nnPJ0,nn´1´1K

apn, n1q
1

apn1, n1q
apn1, n2q

1

apn2, n2q

¨ ¨ ¨ apnn´1, nnq
1

apnn, nnq
Xnn
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This polynomial has degree n and the last sum over nn is empty except if nn´1 “ 1, because for
any l P J0, nK, nl ď n´ l. The interest of Rn comes from

Lemma 10 For any probability distribution µ0, there exists a unique matrix Kµ0 commuting with

P and whose first line coincides with µ0. It is given by

@ n P J0, NK, Kµ0pn, ¨q “ µ0RnpP qp¨q (11)

Proof

We begin by showing that a solution K satisfying the two requirements of this proposition is
necessarily given by the above formula. To simplify the notations, we consider the case where
µ0 “ δx1 , with x1 P J0, NK given. Fix some n P J1, NK. From the commutation relation, we get
that PnK “ KPn. The first line of this matrix identity reads

ÿ

mPJ0,nK

Pnp0,mqKpm, ¨q “ Pnpx1, ¨q

because Pnp0,mq “ 0 for m P Jn` 1, NK. It follows that

Kpn, ¨q “
1

apn, nq

¨
˝Pnpx1, ¨q ´

ÿ

mPJ0,n´1K

apn,mqKpm, ¨q

˛
‚

which provides an iteration formula for the computations of Kpn, ¨q, starting from Kp0, ¨q “ δx1 .
It leads without difficulty to the announced expression, Kpn, ¨q “ δx1RnpP qp¨q. These arguments
extend to the situation of a general probability measure µ0. Conversely, the matrix defined by (11)
satisfies on one hand, Kµ0p0, ¨q “ µ0p¨q and on the other hand, for all n P J0, NK,

Kµ0pn, ¨q “
1

apn, nq

¨
˝µ0Pnp¨q ´

ÿ

mPJ0,n´1K

apn,mqKµ0pm, ¨q

˛
‚

namely
ÿ

mPJ0,nK

Pnp0,mqKµ0pm, ¨q “ µ0P
np¨q

or equivalently, we have the equality of the first line of PnKµ0 and Kµ0P
n:

δ0P
nKµ0 “ δ0Kµ0P

n

Since this is true for all n P J0, NK, we deduce that

@ n P J1, NK, δ0P
n´1PKµ0 “ δ0P

n´1Kµ0P

Note that the support of the measure δ0P
n´1 is exactly J0, n´1K, thus by iteration, it follows that

all the lines of PKµ0 coincide with the corresponding ones of Kµ0P , i.e. Kµ0 commutes with P .
�

It is natural to wonder if, for given n P J0, NK, the polynomial Rn is uniquely by the property
(11). Indeed, assume that rRn is another polynomial of degree n satisfying the same equation. Since
it must be true for all probability measure µ0, we get that RnpP q “ rRnpP q. Thus a priori, Rn is
only determined up to an additional term belonging to the ideal generated by the unital minimal
polynomial Q associated to the matrix P . Since P is an irreducible birth and death transition
kernel, it is diagonalizable and all its eigenvalues are different.This implies that Q is of degree N .
Thus if n P J0, N ´ 1K, Rn is uniquely determined, due to the fact that its degree is n. But this
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argument doesn’t seem to work for n “ N . There is a more convenient way to see that Rn is
uniquely determined for all n P J0, NK, even under an apparently weaker requirement, as we are to
see.

Note that if µ0 “ δ0, the identity matrix I is a trivial solution to the problem corresponding to
K0. By the uniqueness statement of Lemma 10, we conclude that K0 “ I. In the wave equation
interpretation, K0 corresponds to a wave initially localized at 0 and which travels at speed 1 to
the right, until it reaches N at time N . The polynomial Rn is in fact characterized by (11) with
µ0 “ δ0:

Lemma 11 For all n P J0, NK, there is a unique polynomial Rn of degree n such that

δnp¨q “ δ0RnpP qp¨q (12)

Proof

Let us fix n P J0, NK and write

RnpXq “
ÿ

pPJ0,nK

rpX
p

Since the support of the probability measure δ0P
p is J0, pK, for all p P J0, nK, we deduce from (12)

applied at n that 1 “ rnP
np0, nq, namely rn “ 1{apn, nq. Next applying (12) at n´ 1, we deduce

that 0 “ rn´1P
n´1p0, n´ 1q ` rnP

np0, n´ 1q, i.e. rn´1 “ ´apn, n´ 1q{papn, nqapn ´ 1, n´ 1qq. It
appears that we can deduce iteratively the values of rn´2, rn´3, ..., r0.

�

The previous result enables an interesting interpretation of Rn, for fixed n P J0, NK, from which
Proposition 8 follows at once. Consider the matrix rPn, indexed by J0, nK ˆ J0, nK and given by

@ k, l P J0, nK, rPnpk, lq ≔

"
P pk, lq , if k P J0, n ´ 1K
δnplq , if k “ n

It is a Markov transition matrix absorbed at n. Its eigenvalue are θn,n ≔ 1 and the eigenvalues
´1 ă θn,0 ă θn,1 ă ¨ ¨ ¨ ă θn,n´1 ă 1 introduced before Proposition 8 and corresponding to
eigenvectors vanishing at n.

Lemma 12 For n P J0, NK fixed as above, we have

RnpXq “
1

apn, nq
pX ´ θn,0qpX ´ θn,1q ¨ ¨ ¨ pX ´ θn,n´1q

Proof

Since P is a birth and death transition matrix, we have

@ x P J0, nK, δ0RnpP qpxq “ δ0Rnp rPnqpxq

thus reinterpreting (12) on J0, nK, we get

δnp¨q “ δ0Rnp rPnqp¨q (13)

The same arguments as in the proof of Lemma 11 show that this equation determine the polynomial
RnpXq, in particular the coefficient of Xn is 1{apn, nq.

Consider the polynomial

QpXq ≔ pX ´ θn,0qpX ´ θn,1q ¨ ¨ ¨ pX ´ θn,n´1q

11



Hamilton-Cayley theorem says that Qp rPnqp rPn ´ Iq “ 0 and in particular δ0Qp rPnqp rPn ´ Iq “ 0,
which means that δ0Qp rPnq is an invariant measure for rPn. Since the invariant measures of rPn are
proportional to δn, we deduce that there exists a constant cn P R such that

cnδnp¨q “ δ0Qp rPnqp¨q

Applying this inequality at n, we get that cn “ Pnp0, nq “ apn, nq and the announced result is a
consequence of the uniqueness statement of Lemma 11.

�

Proposition 8 suggests the following algorithm to check for the hypergroup property at 0 of
a finite birth and death Markov kernel P : for all n P J0, N ´ 1K, one computes the eigenvalues
θn,0, θn,1, . . . , θn,n´1 and checks the non-negativity of its entries pP ´θn,0qpP ´θn,1q ¨ ¨ ¨ pP ´θn,n´1q.
From a theoretical point of view, it may seem simpler to compute the normalized eigenvectors
pϕnqnPJ0,NK and to check directly the hypergroup property as it stated in (4) (with x0 “ 0 and the
appropriate change of indices of the eigenvectors). But in practice it is more delicate to compute
eigenvectors than eigenvalues and in the numerical experiments we made (using Scilab), first just to
check the Markov kernels Mp for p P r1{2, 1q andM0 (defined in Example 7) satisfy the hypergroup
property, the algorithm based on Proposition 8 is more stable.

Thus we rather used the latter to proceed to the numerical experiments described below (the
codes are available on request).

Let us recall the Achour-Trimèche’s theorem [1]. Consider the differential operator L “ B2´U 1B
on r0, 1s with Neumann boundary conditions, where U : r0, 1s Ñ R is a smooth convex potential,
which is assumed to be either non-increasing or symmetric with respect to the point 1{2. Then
L satisfies the hypergroup property with respect to 0 (the finite sum in (4) has to be naturally
extended into a denumerable sum, see for instance Bakry and Huet [2]).

We would like to find an extension of this result to its discrete analogous setting of finite
birth and death processes. Seeing B2 ´ U 1B as a Metropolis modification of B2 with respect to
the probability measure admitting a density proportional to expp´Uq (for this point of view, cf.
e.g. [6]), a first guess is as follows. Let U be a convex and non-increasing function on r0, N s and
consider the probability measure µ defined as

@ x P J0, NK, µpxq ≔
1

Z
expp´Upxqqπ0pxq (14)

where Z is the normalizing constant and π0 is the invariant probability of M0, namely

@ x P J0, NK, π0pxq “

"
1{N , if x P J1, N ´ 1K
1{p2Nq , if x P t0, Nu

The usual choice for a Markov kernel admitting µ as reversible measure is the Metropolis pertur-
bation of M0 (initiated in Metropolis et al. [9]) given here by

@ x ­“ y P J0, NK, P px, yq ≔ M0px, yq expp´pUpyq ´ Upxqq`q

“

"
M0px, yq , if x ă y

M0px, yq expp´pUpyq ´ Upxqqq , if x ą y

Numerical experiments based on Proposition 8 show that the conjecture that P satisfy the
hypergroup property with respect to 0 is wrong. We checked this assertion by taking N “ 10 and
by sampling the convex function U according to the following procedure: let pV pxqqxPJ0,N´1K be
independent exponential random variables of parameter 1{N , we take

@ x P J1, NK, Upx´ 1q ´ Upxq ≔
ÿ

nPJ0,N´xK

V pnq

12



Finally, we replaced in the above considerations the exploration kernel M0 by Mp, for p P
r1{2, 1q. This should reinforce the log-concavity of the probability measure µ defined as in (14),
where π0 is replaced by the invariant probability measure πp of the Markov kernelMp. Nevertheless
the conjecture still seems to be wrong (but less so when p becomes closer to 1).

Of course these experiments suggest that the right notion of log-concavity of a measure (or
rather of a Markov kernel) has yet to be found in the discrete setting.
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