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a b s t r a c t

The increasing importance of ontologies has resulted in the development of a large number of ontologies

in both coordinated and non-coordinated efforts. The number and complexity of such ontologies make

hard to ontology and tool developers to select which ontologies to use and reuse. So far, there are no

mechanism for making such decisions in an informed manner. Consequently, methods for evaluating

ontology quality are required. OQuaRE is a method for ontology quality evaluation which adapts the

SQuaRE standard for software product quality to ontologies. OQuaRE has been applied to identify the

strengths and weaknesses of different ontologies but, so far, this framework has not been evaluated itself.

Therefore, in this paper we present the evaluation of OQuaRE, performed by an international panel of

experts in ontology engineering. The results include the positive and negative aspects of the current ver-

sion of OQuaRE, the completeness and utility of the quality metrics included in OQuaRE and the compar-

ison between the results of the manual evaluations done by the experts and the ones obtained by a

software implementation of OQuaRE.

1. Introduction

The increasing importance of ontologies has resulted in the

development of a large number of ontologies in both coordinated

and non-coordinated efforts. Ontologies for domains very different

like life sciences, e-commerce, city logistics or geospatial data can

be found in Ashburner et al. (2000), Beisswanger, Schulz,

Stenzhorn, and Hahn (2008), Hepp (2008), Anand, Yang, van Duin,

and Tavasszy (2012), or Tian and Huang (2012). The National

Center for Biomedical Ontology (NCBO) BioPortal (http://bioportal.

bioontology.org/) has more than two hundred biomedical ontolo-

gies and controlled vocabularies, the TONES repository (http://

owl.cs.manchester.ac.uk/repository/) contains more than two

hundred, and tools like Watson (http://kmi-web05.open.ac.uk/

WatsonWUI/) or Swoogle (http://swoogle.umbc.edu/) give access

to thousands.

Many ontology builders and application developers have usu-

ally several options for which ontology to use to support a partic-

ular intelligent software application or to reuse for building a new

ontology. Existing ontologies could fit for such purposes with little

(or even no) additional development if they have the appropriate

content. We regard the ideal scenario as the one in which users

are able to select ontology artefacts from a large repository, how-

ever, currently not the state of play. Nowadays, ontology builders

lack support for making an informed decision, because standard-

ized methods have not been developed for evaluating the quality

of ontologies.

In this work, the quality of an ontology is its degree of confor-

mance to functional and non-functional requirements and we as-

sume that such conformance can be measurable. Current work in

ontology evaluation can be classified according to the particular

evaluation aim: ranking, correctness, or quality evaluation. The

ranking approaches range from generic ontology rankings to the

selection of the most appropriate ontology for a particular task

(see, for instance Alani, Brewster, & Shadbolt, 2006; Lozano-Tello

& Gomez-Perez, 2004; Tartir & Arpinar, 2007). The correctness

category includes the approaches accounting for the formal cor-

rectness of the content represented in ontologies (see, for

instance, Corcho, Gómez-Pérez, González-Cabero, & del Carmen

Suárez-Figueroa, 2004; Guarino & Welty, 2004, chapter 8; Sleeman
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& Reul, 2006; Vrandecic, 2010). Finally, the quality category is

related to the evaluation of ontology quality (see for instance

Gangemi, Catenacci, Ciaramita, & Lehmann, 2006; Rogers, 2006;

Sabou, Lopez, Motta, & Uren, 2006; Stvilia, 2007). While each has

been addressed from different, heterogeneous ways, none has

become standard. The need for standardized methods for evaluat-

ing the quality of an ontology remains unfulfilled.

In this work, we also approach ontology evaluation as a tool for

helping developers to evaluate their ontologies in order to build

trust for sharing and reusing ontologies, which is one of the main

objectives of ontology evaluation according to Brank, Grobelnik,

and Mladenic (2005). For this purpose, our approach is in line with

the effort done by the approaches of the quality category, although

we propose the adaptation of an already existing standard from the

Software Engineering community. In Fernández-Breis, Egaña

Aranguren, and Stevens (2009), we presented an approach based

on ISO 9126, which is an international standard for software prod-

uct evaluation, which was applied to two versions of the same bio-

medical ontology. This evaluation process had the problem of the

excessive workload and dependence on human judgment, since

the method did not provide computer-support to the evaluator.

More recently, the ISO/IEC 25000:2005, which is a standard for

Software product Quality Requirements and Evaluation known as

SQuaRE ISO (2005), was used by us for evaluating the same two

biomedical ontologies, but in an automatic manner Duque-Ramos,

Lopez, Fernandez-Breis, and Stevens (2010). The results obtained in

that work showed the benefits of using an automatic framework to

support ontology evaluation processes, as presented in Duque-

Ramos, Fernández-Breis, Stevens, and Aussenac-Gilles (2011).

The usage of a SQuaRE-based approach required the definition

of components like quality model and quality metrics. A SQuaRE-

based quality model is comprised of a series of quality characteris-

tics like functional adequacy or reliability. Each characteristic has a

series of subcharacteristics associated. For instance, reusability

can be a subcharacteristic of maintainability. Furthermore, each

quality subcharacteristic has a series of metrics associated. An

example of quality metrics for ontologies could be the mean num-

ber of properties per class. Thus, in order to design OQuaRE follow-

ing such principles, a few decisions had to be taken, like the sets of

characteristics, subcharacteristics and metrics, and the association

of metrics with subcharacteristics. Scores in SQuaRE are provided

in the range 1 (worst) and 5 (best), and the communities that apply

SQuaRE must define how the scores of the metrics are mapped

onto such range and how such scores are combined to provide

scores for the subcharacteristics and characteristics. In our previ-

ous works we mentioned that such decisions should be the result

of some community agreement: consequently, the objective of this

work will be to evaluate such decisions and provide new insights

about how ontology quality evaluation should be performed. It is

clear that if the community wants ontology quality evaluation to

be a engineering activity, there must be a standardization on

how such evaluation processes must be performed.

For such purpose, we will describe in this paper the evaluation

experiment for assessing both the quality model and quality met-

rics used in OQuaRE. The experiment will be based on the informed

judgment of experts in ontology construction. The experiment will

be divided in two rounds: the first one will evaluate the quality

model and the second one will evaluate the quality metrics. In both

rounds the experts will be asked to apply the evaluation method in

a different manner, in order for the authors to acquire a thorough

understanding of the different OQuaRE components.

The OQuaRE framework and the evaluation method used in this

work will be described in the following section. In Section 3, the re-

sults of theOQuaRE evaluationwill be presented. Resultswill be dis-

cussed in Section 4, which will also include the conclusions of this

work.

2. Methods

This sectionwill describe themain instruments used in this eval-

uation exercise. We will address the main aspects of OQuaRE and

how it has been applied so far (Section 2.1) and the methodological

approach for carrying out the evaluation process (Section 2.2).

2.1. OQuaRE

OQuaRE is the Ontology quality evaluation (OQuaRE) frame-

work based on the software product quality SQuaRE. OQuaRE aims

at defining all the elements required for ontology evaluation: eval-

uation support, evaluation process and metrics. However, the cur-

rent version of OQuaRE includes the quality model and the quality

metrics. This means that parts like evaluation requirements and

evaluation reports, to date, have not been addressed in depth.

The main objective of OQuaRE is to provide an objective, stan-

dardized framework for ontology quality evaluation, which could

be applied in a number of situations in a similar way, so the

strengths and weaknesses of ontologies can be identified. OQuaRE

reuses and adapts the following SQuaRE characteristics to evaluate

ontologies: reliability, operability, maintainability, compatibility,

transferability and functional adequacy. Most quality subcharac-

teristics suggested by SQuaRE were also adapted to ontologies in

OQuaRE. However, SQuaRE does not include the structural charac-

teristic, which is important in ontologies, as it can be drawn from

the number of state-of-the art approaches that use it. Therefore, we

included it into OQuaRE. The complete description of the quality

model can be found at http://miuras.inf.um.es/evaluation/oquare.

Next, we describe the OQuaRE quality characteristics and

subcharacteristics.

2.1.1. The quality characteristics

We describe as follows the quality characteristics of OQuaRE.

The definition of some subcharacteristics can be found in Table 1.

� Structural: Formal and semantic properties that are important

when evaluating ontologies. Some subcharacteristics are for-

malization, formal relations support, cohesion, tangledness,

redundancy and consistency. These subcharacteristics account

for the formal properties of the ontologies, the clarity of cogni-

tive distinctions, the appropriate use of ontology modelling

primitives and principles, etc.

� Functional adequacy: The capability of ontologies toprovide con-

crete functions that have been identified in literature. An ontol-

ogy is evaluated for this criterion according to the degree of

accomplishment of functional requirements, that is, the appro-

priateness for its intended purpose according to state-of-the-

art literature Stevens, Wroe, Gobel, and Lord (2008): reference

ontology, controlled vocabulary, schema and value reconcilia-

tion, consistent search and query, knowledge acquisition,

clustering and similarity, indexing and linking, results represen-

tation, classifying instances, text analysis, guidance and decision

trees, knowledge reuse, inferencing, and precision.

� Reliability: Capability of ontologies tomaintain their level of per-

formance under stated conditions for a given period of time.

Recoverability and availability are some of its subcharacteristics.

� Performance efficiency: Relationship between the level of per-

formance and the amount of resources used, under stated con-

ditions, taking into account elements such as the time response,

or memory consumption. It has subcharacteristics like response

time and resource utilization.

� Operability: Effort needed for use, and in the individual assess-

ment of such use, by a stated or implied set of users, and it is

measured through subcharacteristics such as learnability.



� Compatibility: The ability of two or more ontologies to

exchange information and/or to perform their required func-

tions while sharing the same hardware or software environ-

ment. Replaceability and interoperability are examples of

subcharacteristics according to SQuaRE.

� Maintainability: The capability of ontologies to be modified for

changes in environments, in requirements or in functional spec-

ifications. Some subcharacteristics are modularity, reusability,

analysability, changeability, modification stability and

testability.

� Transferability: degree to which the ontology can be transferred

from one environment (e.g., operating system) to another. Por-

tability and adaptability are example of its subcharacteristics.

� Quality in use: Degree to which an ontology used by specific

users meets their needs to achieve specific goals. It has subchar-

acteristics associated with usability and flexibility in use.

2.1.2. The quality metrics

OQuare does not attempt to develop new metrics for ontology

quality evaluation but to reuse and adapt successful metrics from

both ontology and software engineering communities. In this

sense, some well-known metrics from Objected Oriented Program-

ming have been included in its adapted form to ontologies (see, for

instance Chidamber & Kemerer, 1994; Li & Henry, 1993). In addi-

tion to this, metrics for the structural properties like the ones pre-

sented in Yao, Orme, and Etzkorn (2005) and Tartir and Arpinar

(2007) have been reused from the ontology community. Table 2

contains the definition of these metrics for OWL ontologies.

2.1.3. Experiences with OQuaRE

OQuaRE has been applied in two case studies in the last years,

and the main results of such can be found at http://miu-

ras.inf.um.es/evaluation/oquare. It was used for the evaluation of

two versions of the Cell Type Ontology (see Bard, Rhee, &

Ashburner, 2005). A series of ontologies of units of measurement

were evaluated. In both cases, the ontologies were firstly manually

evaluated, and then automatically evaluated with a home-made

software tool developed to run the evaluation experiments. Such

tool takes an OWL ontology as input and generates a numeric re-

port as output. This report includes the scores for all the character-

istics, subcharacteristics and metrics involved in the evaluation

process. The analysis of such results was done in two ways. First,

the quality of the ontologies was evaluated and a series of

strengths and weaknesses were identified. Second, we identified

that doing a manual evaluation was perceived by the participants

as very hard and that the results without human intervention did

not seem too different. However, there might be several reasons

for this, since an evaluation of the appropriateness of the OQuaRE

configuration that leads to such results had not been externally

evaluated. By OQuaRe configuration we mean the quality charac-

teristics, quality subcharacteristics, quality metrics, which sub-

characteristics contribute and how much to a characteristic,

which metrics contribute and how much to a subcharacteristic,

and how score are scaled in the [1,5] range. Those are the main is-

sues under investigation in this paper.

2.2. The evaluation method

In this section we describe the experimental approach used for

evaluating OQuaRE, which follows the Goal/Question/Metric meth-

od van Solingen and Egon (1999).

2.2.1. Objectives

The research objectives of this experiment are to evaluate the

appropriateness, completeness and usability of the quality model

and quality metrics of OQuaRE. We also investigate the feasibility

of automatic evaluation processes, through the comparison of

manually and automatically calculated results. To achieve such

objectives the following goals were defined:

� Appropriateness of the quality subcharacteristics.

� Difficulty in applying the quality subcharacteristics.

� Relevance of metrics for measuring a particular sub-

characteristic.

� Usefulness of metrics for measuring a particular sub-

characteristic.

� Similarity between the results of the fully manual, metrics-sup-

ported manual, and fully automatic evaluation methods.

2.2.2. Participants

The set of participants were selected by applying the following

criteria: all the participants should be experts in ontology con-

struction, should be active and interested in ontology quality,

should be from different research institutions and from different

countries, should represent different ‘‘ontology modelling schools’’,

and should not have played an active role in the design of OQuaRE.

An additional constraint was imposed by the case study: given that

the ontology under evaluation in the experiment was biomedical,

background and expertise in biomedical ontologies was required.

Three experts were selected for this experiment.

Table 1

Some subcharacteristics of OQuaRE.

STRUCTURAL

Formalization: An efficient ontology has to be built on top of a formal model to support reasoning.

Formal relations support: Most ontologies only have formal support for taxonomy. The usage of additional formal theories would be a positive indicator.

Cohesion: An ontology has a high cohesion if the classes are strongly related.

Tangledness: This measures the distribution of multiple parent categories, so that it is related to the existence of multiple inheritance, which is usually a sign of

suboptimal design.

FUNCTIONAL ADEQUACY

Schema and value reconciliation: An ontology can provide a common data model that can be applied to particular views for their reconciliation and integration.

Ontologies facilitate the achievement of semantic interoperability if they are able to provide the semantic context for data and information.

Consistent search and query: The formal model of the ontology allows for better querying and searching methods. The ontology structure can guide search processes if

they provide a semantic context to evaluate the data wanted by the users. This semantic context is not just provided by the concepts, but also by all the machine

computable properties and axioms.

Knowledge reuse: The degree to which the knowledge of an ontology can be used to build other ontologies.

Knowledge acquisition: Ontologies can be seen as templates for generating the forms by which instances are acquired.

MAINTAINABILITY

Modularity: The degree to which the ontology is composed of discrete components such that a change to one component has a minimal impact on other components.

Reusability: The degree to which an asset (part of) the ontology can be used in more than one ontology, or in building other assets.

Analysability: The degree to which the ontology can be diagnosed for deficiencies or causes of failures (inconsistences), or for the parts to be modified to be identified.



2.2.3. Experimental material

In this section we describe the ontology, documents and tools

used in the experiment:

� Ontology: The existence of an ontology of units was considered

important by the W3C Semantic Web Best Practices and Devel-

opment working group (http://www.w3.org/2003/12/swa/

swbpd-charter). Since then, a series of ontologies of units of

measurement have been developed. Ontologies of units are rel-

evant not only for biomedical domains, but also in any other sci-

ence and engineering domain (see Rijgersberg, Wigham, & Top,

2011). In Duque-Ramos et al. (2011), a series of ontologies of

units were evaluated, and we have selected one of them for this

experiment, the Measurement Units Ontology SWEET 2.0 Scien-

tific Units Ontology (SCIUNITS), which can be found at http://

sweet.jpl.nasa.gov/2.0/sciUnits.owl. This ontology has 326 clas-

ses, 54 object properties, 22 data properties, 103 individuals,

103 class assertion axioms, 134 object property assertion axi-

oms and 76 data property assertion axioms. This ontology was

selected because its size and design was found appropriate for

this experiment, given our objectives and the constraints asso-

ciated with the effort.

� Documents: The OQuaRE website was used by the experts as

the reference for retrieving all the information about the frame-

work, the quality model, the quality metrics, etc. That website

also hosted a page describing the experiment and the forms

to be filled by the experts.

� Tools: A home-made software tool that implements the OQuaRE

metrics was used. This tool takes an OWL ontology as input and

generates a numeric report as output. This report includes the

scores for all the characteristics, subcharacteristics and metrics

involved in the evaluation process. This tool was not used by the

participants for the evaluation although they were provided

with the corresponding scores.

2.2.4. Data collection

As mentioned, this experiment was designed in two rounds,

each of them having different objectives. Both rounds served us

for collecting the data needed for analysing our evaluation goals.

In the first round, the experts were asked:

� Read the instructions and get used to the OQuaRE quality

model, that is, characteristics and subcharacteristics.

� Apply OQuaRE manually to the target ontology, that is, assign-

ing values in the range [1,5] to each subcharacteristic.

� Answer a questionnaire which contained questions about the

difficulty and appropriateness of each subcharacteristic.

In the second round, the experts were asked for:

� Read the instructions and get used to the OQuaRE quality met-

rics. This step includes to download from the website the scores

for each metric calculated by our tool.

� Apply OQuaRE to the target ontology, that is, assigning values in

the range [1,5] to each subcharacteristic. For that purpose, they

could use the metrics score as a reference.

� Answer a questionnaire which contained questions about the

usefulness and relevance of each metric.

2.2.5. Data analysis

The techniques used in the analysis of the data collected depend

on the nature of data and on the particular goal. We have com-

pared the results of the manual, computer-supported and auto-

matic evaluation methods using descriptive statistics to obtain a

basic description of the samples. ANOVA procedures have been

used to test whether there are significant differences between

sample means.

With respect to the data collected in round 1, we have applied

agglomerative hierarchical clustering to the mean of the answers

provided by the experts about the difficulty of getting a score for

the quality subcharacteristics in the manual approach and the

appropriateness of the quality subcharacteristics for grouping the

subcharacteristics into classes. Hence, similar ones in terms of dif-

ficulty and appropriateness are in the same class. The procedure

has been similar for round 2, looking for clusters of metrics based

on their usefulness and relevance. Finally, k-means algorithms

have been used to describe particular behaviours of the subcharac-

teristics in the three evaluation methods.

3. Results

In this section, we present the main results of this experiment.

The complete results and the materials used in this experiment can

be found at the following website: http://miuras.inf.um.es/evalua-

tion/oquare/SCIUNITS/Experiment.html.

3.1. Hypotheses, variables and experimental design

Hypotheses and variables are established according to the re-

search goals. The variables Difficulty and Appropriateness are ob-

tained from the sample means of the values given by the experts

about difficulty and appropriateness of the subcharacteristics in

the questionnaire of round 1.

Our main statistical or null hypothesis says that there is no sta-

tistical difference on the mean score by using either the manual,

manual assisted or the automatic method. The variables to contrast

this hypothesis are obtained from the mean of the assigned values

by the experts in each quality subcharacteristic in manual and as-

sisted manual evaluation methods and the scores obtained by the

automatic evaluation method, which are called M1, M2 and M3,

respectively.

We have chosen an experimental design which tries to identify

sources of variability in the experimental units (subcharacteris-

tics), reduce the effect of such sources and improve the precision

of the answers to questions of interest. This experimental design

involves two factors, the method and the evaluated subcharacter-

istic. The method of evaluation will be the main factor whose mea-

sures (scores) are matched by subcharacteristic producing

homogeneous blocks. In other words, the design is a multisample

generalization of matched-pairs design. The subcharacteristics

with no assigned value in M3 will be discarded in those procedures

that need complete blocks.

3.2. Evaluating the answers of the expert

Before obtaining the variables of our study, we analysed the

answers obtained from the methods M1 and M2. One way ANOVA

applied to the corresponding data allows concluding that there

are some pairs of sample means statistically different (P-value <

0.0001). The only two significant differences can be observed

between Expert 1 with respect to Expert 2 and Expert 3 in M2.

On the other hand, the experts do not modify significantly their

mean judgment from M1 to M2.

Fig. 1 shows a basic description of the answers of experts in

both methods by means of a boxplot, where the symbol inside

the box represents the mean sample, and 95 percent confidence

intervals for the means.



3.3. Comparison of the evaluation methods

3.3.1. Univariate description

We described the experimental data through summary statis-

tics and graphics. Table 3 shows the basic statistics for the scores

given to the case study ontology by using the three methods.

Those statistics are represented in the multiple boxplot in Fig. 2,

where the line in the middle of each box corresponds to the med-

ian and the sides correspond to the first and third quartiles, respec-

tively. The mean of M3 variable is greater than mean of M2 and M1

but we investigated whether some of these differences are signifi-

cant. We analyse it in the next section.

3.3.2. Two way ANOVA

We have used the two way analysis of variance procedure with

a single observation per cell, that is, by means of an additive model,

to analyse whether the observed means scores of the three evalu-

ation methods are statistically different, isolating and removing

from the error term the variation attributable to the blocks (sub-

characteristics). For this purpose, only complete blocks have been

used, thus discarding subcharacteristics with missing values in M3.

The difference between the means of M1 and M3 methods is

significant at 0.05 significance level but smaller than 0.04

(P-value = 0.044 in two-way additive ANOVA). Through this test

we also obtain that the block factor does not explain a significant

proportion of the total variance (P-value = 0.129 associated with

this source of variation). According to this, if we only take into

consideration the main factor there is not enough evidence that

the means are different. Hence, the means score of the three

methods are not statistically different at 0.05 of significance level

(P-value = 0.055 in one-way ANOVA layout).

Given that the normality and homoscedasticity assumptions of

ANOVAmodel cannot be accepted with this data set, non-paramet-

ric procedures were applied to obtain that the observed medians

are not statistically different (P-value = 0.119 in Friedman test

blocked by subcharacteristic).

The previous results show the lack of evidence to reject the null

hypothesis, thus we can conclude that neither the mean nor the

median depend on the evaluation method.

Table 2

Definition of the metrics used in OQuaRE.

Lack of Cohesion in Methods (LCOMOnto): the length of the path from the leaf class to Thing, divided by the total number of paths in the ontology

Weighted Method Count (WMCOnto): Mean number of Datatype Properties, Object Properties and subclasses per class

Depth of Inheritance Tree (DITOnto): Length of the largest path from Thing to a leaf class of the ontology

Number of Ancestor Classes (NACOnto): Mean number of superclasses per leaf class

Number of Children (NOCOnto): Mean number of the direct superclasses per class minus the subclasses of Thing

Response for a class (RFCOnto): Number of Datatype Properties and Object Properties that can be directly accessed from the class

Number of properties (NOMOnto): Mean number of Datatype Properties and Object Properties per class

Properties Richness (PROnto): Ratio of the number of Datatype Properties and Object Properties defined in the ontology divided by the number of subclasses, Datatype

Properties and Object Properties

Attributes Richness (AROnto): Number of restrictions of the ontology divided by the number of classes

Relationships per class (INROnto): Mean number of subclasses per class

Inheritance relationships richness (CROnto): Mean number of individuals per class

Annotation Richness (ANOnto): Mean number of annotation properties per class

Fig. 1. Boxplots representing a basic description of the answers of experts in both methods and 95 percent confidence intervals for the means.

Table 3

Basic statistics for the scores of the three methods (1 = lowest; 5 = highest).

Method Mean StDev Minimum Q1 Median Q3 Maximum

M1 2.76 1.19 1.00 2.00 2.50 3.50 5.00

M2 3.08 0.68 2.00 2.66 3.00 3.66 5.00

M3 3.33 1.16 1.00 2.66 3.00 4.50 5.00

Fig. 2. Boxplot representing basic statistics of scores methods.



3.4. Trivariate description and classification

We calculated the matrix of sample correlations of M1, M2 and

M3 variables, which are shown in Table 4 together with their asso-

ciated P-values. The lack of correlation between M1 and M3 and

between M2 and M3 and the significant correlation between M1

and M2 are useful because they mean that we could represent

the experimental units (subcharacteristics) in two dimensions, dis-

carding only a small proportion of the variation in the data and giv-

ing a proper interpretation of the new variables in terms of M1, M2

and M3.

Finally, we attempted to classify the subcharacteristics in three

homogeneous groups according to their scores in M1, M2 and M3

by means of k-means clustering. The final partition of the iterative

process produces three groups whose centroids appear in Table 5.

The subcharacteristics belonging to Cluster 1 tend to have a profile

with higher score than the mean in the three methods. The sub-

characteristics belonging to Cluster 2 have a high score in M3

and have low score in M1 and M2. The subcharacteristics belong-

ing to Cluster 3 tend to have a profile with lower score than the

mean in the three methods.

3.5. Round 1: the quality model

Wewant to classify the subcharacteristics into clusters in such a

way the profile of subcharacteristics in the Difficulty and Appropri-

ateness variables in the same cluster are very similar, whereas the

profile of subcharacteristics in different clusters are very different.

Cluster Analysis operates on the matrix of Euclidean distances

between all pairs of characteristics and proceeds sequentially

yielding a nested arrangement of characteristics in groups, in a

hierarchical agglomerative process. We have also chosen Ward’s

linkage method to determine the distance between two clusters.

We obtained a partition in three clusters or groups of subcharac-

teristics with a maximum of distance 3.46 between them. Table 6

shows the centroid of the clusters and the grand centroid. The sub-

characteristics belonging to Cluster 1 have a profile similar to the

grand centroid and can be described as appropriate and difficult.

The subcharacteristics of Cluster 2 can be described as difficult

and not appropriate. Finally, the subcharacteristics of Cluster 3

can be described as appropriate and not difficult.

Table 7 shows the subcharacteristics bellowing to each group

by applying of hierarchical cluster to Difficulty and Appropriateness

variables.

Table 4

Sample correlation of M1, M2 and M3.

M1 M2

M2 0.649

P-value 0.000

M3 ÿ0.095 0.001

P-value 0.624 0.994

Table 5

The correlations between the original and new variables.

Variable Cluster centroid Grand centroid

Cluster 1 Cluster 2 Cluster 3

M1 3.66 1.00 2.12 2.68

M2 3.48 2.00 2.88 3.07

M3 3.97 5.00 2.61 3.33

Table 6

Cluster Analysis using Difficulty and Appropriateness variables.

Variable Cluster centroid Grand centroid

Cluster 1 Cluster 2 Cluster 3

Difficulty 3.34 4.75 1.95 2.90

Appropriateness 3.84 2.16 4.28 3.87

Table 7

The subcharacteristics included in each cluster.

Cluster 1 Cluster 2 Cluster 3

Formalization Cohesion Tangledness

Formal relations support Recoverability Consistency

Redundancy Learneability Controlled vocabulary

Reference ontology Helpfulness Text analysis

Schema and value

reconciliation

Guidance and decision

trees

Consistent search and query Knowledge reuse

Knowledge acquisition Inference

Clustering and similarity Availability

Indexing and linking Modularity

Results representation Analysability

Reusability Modification stability

Changeability Testability

Structural accuracy Cycles

Domain coverage Classifying instances

Precision Ease of use

Error detection Interoperability

Response time Effectiveness

Resource utilization Efficiency

Portability Context extensibility

Replaceability

Satisfaction

Context conformity

Adaptability

Table 8

Cluster Analysis using the variables Usefulness and Relevance.

Variable Cluster centroid Grand centroid

Cluster 1 Cluster 2 Cluster 3

Relevance 2.83 1.74 3.72 2.47

Usefulness 2.44 1.32 3.51 2.09

Table 9

The associations included in Cluster 1, which can be considered with intermediate

relevance and usefulness.

Subcharacteristic Metric Cluster 1

Consistent search and query ANOnto, INROnto, Formalization

Knowledge acquisition; clustering

and similarity

RROnto

Formal relations support, indexing

and linking

Results representation CROnto

Knowledge reuse ANOnto, Formalization, LCOMOnto

Learneability WMCOnto, LCOMOnto, NOMOnto,

CBOnto, NOCOnto

Modularity WMCOnto

Reusability DITOnto, NOCOnto

Analysability CBOnto

Changeability WMCOnto, DITOnto, LCOMOnto,

RFCOnto, NOMOnto

Modification stability WMCOnto, CBOnto, LCOMOnto,

RFCOnto, NOCOnto

Replaceability NOCOnto, NOMOnto

Adaptability WMCOnto, RFCOnto, CBOOnto



3.6. Round 2 results: the quality metrics

We analysed the answers provided by the experts about the rel-

evance and usefulness of metrics in the questionnaire of round 2.

Given that one metric may be associated with multiple subcharac-

teristics, the experts might have considered one metric useful or

relevant for some subcharacteristics but not for some other ones.

For each pair (subcharacteristic, metric), the experts were asked

to give a value between 1 (lowest) and 5 (highest).

We applied k-means clustering to the mean of those answers

for classifying those pairs (subcharacteristic, metric) in homoge-

neous groups according to their profiles in Relevance and Useful-

ness. The centroids of the three clusters obtained appear in

Table 8. The pairs (subcharacteristic, metric) belonging to Cluster

1 tend to have profile with scores slightly higher than the mean

in Relevance and Usefulness (see Table 9). The pairs belonging to

Cluster 2 have profile with scores lower than the mean in Relevance

and Usefulness (see Table 10). Finally, the pairs belonging to Cluster

3 have profile with scores greater than the mean in Relevance and

Usefulness (see Table 11).

4. Discussion and conclusions

In this paper we have presented and evaluated the OQuaRe

framework for ontology quality evaluation. The results have been

presented in the previous section and the major findings and con-

clusions associated with such results are presented and discussed

next.

4.1. Evaluation methods and evaluations of the experts

The ontology of the case study has been evaluated using three

different methods. First, the experts were asked to evaluate manu-

ally the ontology, with no support except their own expertise and

resources. Second, the experts were asked to repeat the process

with the support of a series of pre-calculated metrics. Finally, the

ontology was given a score by using only those metrics. The results

show that we cannot say that there are significant differences be-

tween the scores of the three methods, and that the scores with the

support of the metrics are higher. The scores of the second evalu-

ation can be higher than in the first one due to several reasons.

The experts might have become more familiar with the subcharac-

teristics due to the previous evaluation or due to the fact that the

availability of the metrics may have contributed to a more precise

understanding of the subcharacteristics and has provided addi-

tional information to the experts. The interesting result is that

the same behaviour was found in the results of all the experts

and that, even the mean of M2 is higher, there is no evidence of sta-

tistical difference, and there is no statistical difference between the

scores in M1 and M2 of the experts when measured individually.

4.2. The quality model

According to the results, three clusters of quality subcharacter-

istics have been identified by grouping them in terms of difficulty

and appropriateness. The largest cluster is Cluster 1, which in-

cludes the subcharacteristics that are moderately appropriate

and moderately difficult, with means between 3 and 4, whereas

the smallest is Cluster 2, which includes the difficult and not very

appropriate ones. Consequently, it can be said that the set of sub-

characteristics included in the quality model are of interest for the

participating experts.

The experts found that the definition of some subcharacteristics

should be improved since their understandability was part of the

difficulty they found in their application. The lack of knowing the

intended contexts of use of the ontology was key in the difficulty

found by the experts in scoring some subcharacteristics. In the cur-

rent model, the functional adequacy characteristics include sub-

characteristics which might account for that, but this does not

mean that they are the intended uses for the ontology under eval-

uation. SQuaRE includes a quality requirements module which has

not been defined so far in OQuare and which would fulfill such

requirement. Ontology developers would then determine which

properties of the ontology should be evaluated, the functional

requirements and the competency questions. The experts also

made suggestions about the subcharacteristics. For instance, a divi-

sion of structural accuracy into a series of subcharacteristics is pro-

posed for being a broad notion. This deserves further study and

analysis since some suggestions might be considered metrics in-

stead of subcharacteristics.

4.3. The quality metrics

The objective of the second round was to evaluate the OQuaRE

quality metrics and their usage in the framework. The associations

between metrics and subcharacteristics have also produced three

clusters. Cluster 1 includes the associations with intermediate rel-

evance and usefulness, Cluster 2 contains the low relevance and

usefulness metrics, and Cluster 3 contains the relevant and useful

associations. It can be said that Clusters 1 and 3 contain positively

considered associations and more than 50% of the associations be-

long to such clusters. Most metrics have been considered useful

and relevant for at least one subcharacteristic, but three of them

have been considered not useful for all its associations. Such re-

sults suggest that a redesign of the set of metrics is needed.

Table 10

The associations included in Cluster 2, which can be considered with low relevance

and usefulness.

Subcharacteristic Metric Cluster 2

Cohesion; availability LCOMOnto

Redundancy ANOnto

Schema and value reconciliation;

consistent search and query

RROnto, AROnto

Knowledge acquisition ANOnto, NOMOnto

Clustering and similarity; indexing and

linking; results representation;

guidance and decision trees;

knowledge reuse

AROnto

Text analysis Formalization

Recoverability WMCOnto, DITOnto, NOMOnto,

LCOMOnto

Learneability RFCOnto

Reusability WMCOnto, RFCOnto, NOMOnto,

CBOnto

Analysability WMCOnto, DITOnto, LCOMOnto,

RFCOnto, NOMOnto

Testability WMCOnto, DITOnto, LCOMOnto,

RFCOnto, NOMOnto, CBOnto

Replaceability WMCOnto, DITOnto

Adaptability DITOnto

Table 11

The associations included in Cluster 1, which can be considered relevant and useful.

Subcharacteristic Metric Cluster 3

Tangledness TMOnto

Controlled vocabulary ANOnto

Schema and value reconciliation Formalization, Consistency

Indexing and linking; guidance and decision

trees

INROnto

Knowledge reuse INROnto, NOMOnto,

Consistency

Modularity CBOnto

Changeability CBOnto, NOCOnto



The experts consider that some metrics makes sense only in a

given context of use, and that making such distinction is important

because, in the absence of additional information, it might be not

possible to assess some task-based metrics. This affects specially

to the functional category subcharacteristics and their metrics

associated, which explains the bad results of such metrics associa-

tions. Thus, this result seems to be in line with the discussion of

round 1.

The experts found difficult some metrics because of their defini-

tion in an OWL-independent way, whereas the ontologies under

evaluation are OWL. This is due to the fact that OQuaRE has been

designed to be applicable to ontologies in different formats and

with different level of formalization. In this way, the experts miss

some metrics relevant for OWL ontologies. They suggested new

metrics, like relations in use or new associations between metrics

and subcharacteristics, like ANOnto for Learnability. In some cases,

they recommended having a limited number of metrics per sub-

characteristic. This is consistent with the result obtained about

the low relevance and usefulness of many pairs (metric,

subcharacteristic).

4.4. Evolution of OQuaRE

According to the results, OQuaRE should be improved in several

ways before being a candidate for supporting ontology evaluation

processes. On the one hand, OQuaRE should be extended with

the quality requirements module, which would allow for deter-

mining potential contexts of use that would be useful for the hu-

man evaluators. Given its relation with SQuaRE, OQuaRE provides

a family of evaluation methods. New methods can be defined by

just adapting the number of subcharacteristics associated with

each characteristic, the number of metrics associated with each

subcharacteristics, and the corresponding weights. This would

then satisfy the expert suggestions of evaluation profiles, since dif-

ferent combinations could be associated with the different con-

texts of use of the ontologies. The set of subcharacteristics

should also be refined, which can also be done given the philoso-

phy of SQuaRE-based approaches.

It should be noted that our goal differ from other approaches

like Oh and Yeom (2012), which focus on the evaluation of ontol-

ogy modularization, although we plan to see how their results

could be used to improve our framework. We are currently extend-

ing the home-made tool that has been used in this experiment

which would allow the definition of different evaluation methods

based on the OQuaRE framework, including profiles for OWL ontol-

ogies. This seems a sensible way of proceeding according to the ex-

perts suggestions, and this would require to select not only generic

metrics that could be applied to ontologies but also metrics specif-

ically designed for OWL ontologies, like the ones provided by

http://owl.cs.manchester.ac.uk/metrics/ or the Ontology Pitfall

Scanner Poveda, Suárez-Figueroa, and Gomez-Perez (2010). In

addition to this, the work developed by the Ontology Usage

Framework http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySum-

mit2011_ApplicationFramework_Synthesis is certainly of interest

for OQuaRE since they attempt to define a set of ontology usage

characteristics and ontology value metrics that could be mapped

onto ours.
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