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a b s t r a c t

Architecture Analysis and Design Language (AADL) is an architecture description language standard for
embedded real­time systems widely used in the avionics and aerospace industry to model safety­critical
applications. To verify and analyze the AADL models, model transformation technologies are often used
to automatically extract a formal specification suitable for analysis and verification. In this process, it
remains a challenge to prove that the model transformation preserves the semantics of the initial AADL
model or, at least, some of the specific properties or requirements it needs to satisfy. This paper presents a
machine checked semantics­preserving transformation of a subset of AADL (including periodic threads,
data port communications, mode changes, and the AADL behavior annex) into Timed Abstract State
Machines (TASM). The AADL standard itself lacks at present a formal semantics to make this translation
validation possible. Our contribution is to bridge this gap by providing two formal semantics for the sub­
set of AADL. The execution semantics provided by the AADL standard is formalized as Timed Transition
Systems (TTS). This formalization gives a reference expression of AADL semantics which can be com­
pared with the TASM­based translation (for verification purpose). Finally, the verified transformation is
mechanized in the theorem prover Coq.

1. Introduction

Embedded real­time systems, such as those for avionics and aerospace platforms, represent one of the most safety­critical categories
of system. Their system behaviors do not only rely on the software/hardware architecture, but also rely on the runtime environment, such
as scheduling, communication and reconfiguration. Moreover, they are more and more complex, so reducing the development cost and
time is an important element of design in these systems (van Vliet, 2008).

The Architecture Analysis and Design Language (AADL) (SAE, 2009) is an SAE International (formerly known as the Society of Automotive
Engineers) standard (SAE AS5506). AADL employs formal modeling concepts for the description of software/hardware architecture and
runtime environment in terms of distinct components and their interactions, and it is especially effective for model­driven design of
complex embedded real­time systems (Walker et al., 2013).

A safety­critical system is often required to pass stringent qualification and certification processes (for example DO­178C) before
its deployment. When described using an AADL model, such a system specification is often transformed to another formal model for
verification and analysis. Examples of such transformations are numerous: translations to Behavior Interaction Priority (BIP) (Chkouri
et al., 2008), to TLA+ (Rolland et al., 2008), to real­time process algebra ACSR (Sokolsky et al., 2006), to IF (Abdoul et al., 2008), to Fiacre
(Berthomieu et al., 2009), to Real­Time Maude (Ölveczky et al., 2010), to Lustre (Jahier et al., 2007), to Polychrony (Ma et al., 2009), etc. The
goal of such a translation is to reuse existing verification and analysis tools and their formal model of computation and communication
for the purpose of validating the AADL models.
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Fig. 1. A global view of the verified AADL model transformation.

One challenge, however, is the problem of proving that the translation itself preserves the intended semantics of the AADL model in
the first place or, at least, some of the specific properties or requirements it needs to satisfy (Cabot et al., 2010; Lano and Rahimi, 2013;
Giese et al., 2006; Narayanan and Karsai, 2008; Narayanan, 2008; Guerra et al., 2013; Kessentini et al., 2011; Mottu et al., 2008; Xiong et al.,
2007).

This paper presents a machine checked semantics­preserving transformation of a subset of AADL into Timed Abstract State Machines
(TASM) (Ouimet and Lundqvist, 2006, 2008). TASM is an extension of the Abstract State Machine (ASM) formalism (Börger, 2002), which
supports the specification of timing and resource consumption as well as behavior and communication. Compared with the existing
approaches such as translations to BIP, TLA+, ACSR, IF, Fiacre, Real­Time Maude, Lustre, etc., we consider some resource information in the
transformation. Furthermore, a formal proof of the semantics preservation of the transformation has not been considered by them. In this
work, the theorem prover Coq (Bertot and Castéran, 2004) is used to prove the methodology, i.e. the correctness of the translation.

Following the global idea, we would like to provide a verified tool chain for the end users (as shown in Fig. 1). The first version of the
model transformation tool prototype AADL2TASM has been implemented in ATL (ATLAS Transformation Language) (Jouault et al., 2006)
directly. AADL2TASM is a plug­in of the AADL modeling environment OSATE (CMU, 2006), which supports model checking using UPPAAL
(Behrmann et al., 2004) and simulation using the TASM Toolset (Ouimet and Lundqvist, 2007). It is a good way to provide a basis for the
Coq mechanization. Finally, we envision the extraction of a complete tool from the mechanization in the future, that is the verified tool
chain. Underlying the tool is the formal translational semantics (Combemale et al., 2009; Cleenewerck and Kurtev, 2007; Gargantini et al.,
2009) of AADL by a mapping to TASM, namely, the sentences of the target language express the semantics of AADL. To enable the proof
of semantics preservation of the model transformation: (1) the informal execution semantics formalized directly using Timed Transition
System (TTS), is considered as a reference semantics, because we cannot directly prove that the translational semantics is equivalent with
the informal one which is provided by the AADL standard; (2) combining the translational semantics (expressed by the TASM sentences)
with the semantics of TASM, we can obtain another way to execute the AADL model, and it is constructed as another TTS; (3) the reference
semantics is supposed to be correct, and if there is a simulation equivalence relation between the two TTSs, we say the translation preserves
the AADL semantics.

The goal of this paper is to verify the translation from AADL to TASM. The main contributions are as follows: (1) a reference semantics
of a subset of AADL is formalized in TTS, including periodic threads, data port communications, mode changes and the behavior annex; (2)
a formal translational semantics of the subset of AADL by translating it to TASM; (3) a mechanized proof of the semantics preservation of
the transformation from AADL to TASM based on (1) and (2).

The rest of the paper is organized as follows. Section 2 introduces Timed Transition System and its operations. Section 3 presents an
overview of the AADL and the abstract syntax of the chosen subset of AADL. The abstract syntax of TASM is expressed in Section 4. Section 5
presents the two formal semantics of the subset of AADL. Section 6 shows the mechanized proof of semantics preservation. We present some
discussion about the model transformation tool prototype AADL2TASM in Section 7. Section 8 discusses the related work, and Section 9
gives some concluding remarks.



2. Timed Transition Systems

TTS is a well­known model used to express real­time behaviors and is often used to compare semantics equivalence between different
real­time specification languages (Bérard et al., 2005, 2008). However, there are different definitions and operations on TTS for different
uses. For example, some definitions use clock variables to express time in TTS (Hune and Nielsen, 1998), others express time by associating
delays, or time intervals to transitions (Henzinger et al., 1994). In this paper, we use a variant of the TTS defined by Bérard et al. (2005,
2008), where we add a global state to allow communication through shared variables.

Given a global state SG with its initial set IG and R+ the set of nonnegative reals, a TTS is defined as follows.

Definition 1 (Timed Transition Systems). A TTS defined over SG and IG is a tuple Ŵ = 〈SL, IL, 6, P, → , L〉 such that:

• SL is a set of local states,
• IL ⊆ SL is the set of initial local states,
• 6 is a finite set of labels,
• P is a set of predicates,
• →⊆ S × (6 ∪ R+) × S is the transition relation,
• L : S → 2P is a labeling function, L maps each state to the set of predicates which are true in that state,

where S = SG × SL.

We write s
ı

−→s′ for (s, ı, s′)∈ →. Here s, s′ are values of the type S, and ı ∈ (6 ∪ R+). There are two kinds of transition relations: discrete
and continuous. Continuous transitions are typically required to obey the following properties (∀d, d′ ∈ R+):

• 0­delay: s
0

−→s′ ⇔ s = s′,

• additivity: s
d

−→s′ ∧ s′ d′

−→s′′ ⇒ s
d+d′

−→s′′,

• continuity: s
d+d′

−→s′ ⇒ (∃s′′)(s
d

−→s′′ ∧ s′′ d′

−→s′),

• time­determinism: s
d

−→s′ ∧ s
d

−→s′′ ⇒ s′ = s′′.

Then, we consider operations on TTS, including synchronous product and simulation equivalence.
Synchronous product (Arnold, 1994) is used to define the semantics of an AADL model as the composition of the semantics of its

constituents. This way, the equivalence proof can be obtained in a compositional way from the correctness of the translation of elementary
AADL model elements such as threads, connections and modes.

Definition 2 (Synchronous product). Consider n TTSs over the same alphabet 6 and the global state SG, Ŵi = 〈SL
i
, IL

i
, 6, Pi, →i, Li〉, i = 1, . . ., n,

where the set of predicates Pi are supposed to be pair­wise disjoint. The synchronous product is a TTS: Ŵ =

∏

i=1,...,n

Ŵi = 〈SL, IL, 6, P, →, L〉,

such that:

• SL = SL
1 × · · · × SL

i
× · · · × SL

n,
• IL = IL

1 × · · · × IL
i

× · · · × IL
n,

• P =
⋃

i=1,. . .,nPi,
• → satisfies the following rules:

∀i, (g, li)
e

→i(g
′, l′

i
)

(g, (l1, . . ., li, . . ., ln))
e

→(g′, (l′1, . . ., l′
i
, . . ., l′n))

, e ∈ 6

∀i, (g, li)
d
→i(g

′, l′
i
)

(g, (l1, . . ., li, . . ., ln))
d
→(g′, (l′1, . . ., l′

i
, . . ., l′n))

, d ∈ R+

The rules represent that all TTSs make a step at the same time with compatible updates of the global state, and we consider discrete
transitions and continuous transitions separately.

• L = {(g, (l1, . . ., ln)) 7→
⋃

i=1,. . .,nLi(g, li)}.

Bisimulation and its variants (Milner, 1989) are usually formulated over TTSs. In this work, what is proved in Coq is strong simulation
equivalence which implies ACTL (the universal fragment of Computation Tree Logic) and ECTL (the existential fragment of Computation
Tree Logic) preservation (Baier and Katoen, 2008) and thus preservation of the UPPAAL query language.

Definition 3 (Strong simulation). Given an alphabet 6 and two TTSs over the two global state SG
1 and SG

2 , Ŵ1 = 〈SL
1, IL

1, 6, P, →1, L1〉 and
Ŵ2 = 〈SL

2, IL
2, 6, P, →2, L2〉, we say that Ŵ2 strongly simulates Ŵ1, denoted Ŵ1 � Ŵ2, if there exists a relation R ⊆ S1 × S2 called a strong

simulation relation where S1 = SG
1 × SL

1 and S2 = SG
2 × SL

2, such that:



• ∀s0
1 ∈ IG

1 × IL
1, there exists s0

2 ∈ IG
2 × IL

2, such that (s0
1, s0

2) ∈ R,

• ∀(s1, s2) ∈ R, ∀e ∈ 6, ∀s′
1 such that s1

e
−→1s′

1, there exists s′
2 ∈ S2 such that s2

e
−→2s′

2 and (s′
1, s′

2) ∈ R,

• ∀(s1, s2) ∈ R, ∀d ∈ R+, ∀s′
1 such that s1

d
−→1s′

1, there exists s′
2 ∈ S2 such that s2

d
−→2s′

2 and (s′
1, s′

2) ∈ R,
• ∀(s1, s2) ∈ R, then L1(s1) = L2(s2).

Here the simulation relation R is general. It will be specialized when used in the proof (see Section 6). Additionally, discrete transitions
and continuous transitions are treated separately.

Definition 4 (Strong simulation equivalence). if Ŵ1 � Ŵ2 and Ŵ2 � Ŵ1, then we say there is a strong simulation equivalence relation between
Ŵ1 and Ŵ2, i.e. two­directions strong simulation, noted Ŵ1 ≃ Ŵ2.

3. A subset of AADL

In this section, we first give an overview of the AADL, and then we elaborate the language subset that we will consider for translation.
Finally, the abstract syntax of the considered subset is presented.

3.1. Overview of the AADL

AADL describes a system as a hierarchy of software and hardware components. It offers a set of predefined component categories as
follows:

• Software components: thread, thread group, subprogram, data and process.
• Hardware components: processor, memory, bus, device, virtual processor and virtual bus.
• System components which represent composite sets of software and hardware components.

A component is given by its type and its implementation. The type specifies the component’s external interface in terms of features.
Features can be ports, server subprograms or data accesses depending on the chosen communication paradigm. Implementations specify
the internal structure of the components in terms of a set of subcomponents, their connections, modes that represent operational states of
components, and properties that support specialized architecture analysis.

However, system behaviors do not only rely on the structure defined by the above components but also rely on the runtime environment
(like operating system or virtual machine) (Feiler and Gluch, 2013). AADL offers an execution model that covers most of the runtime needs
of real­time systems: (1) a set of execution model attributes can be attached to each AADL declaration, such as thread dispatch protocols,
communication protocols, scheduling policies, mode change protocols, and partition mechanisms (support of ARINC 653 standard in avionic
systems) (Delange et al., 2009), etc.; (2) the semantics of the execution model is also given, namely the execution semantics of AADL.

Moreover, the behavior annex (SAE, 2011) describes more precisely the behaviors of threads and subprograms. The behavior annex
has an independent syntax and semantics. So, an AADL model is composed of its structure, its execution model and its behavior annex.
Correspondingly, the AADL model transformation and translational semantics, should cover these three aspects (Abdoul et al., 2008).

3.2. The considered subset of AADL

AADL execution model mixes synchronous and asynchronous aspects (SAE, 2009; França et al., 2007; Filali­Amine and Lawall, 2010).
A synchronous execution model is obtained by considering logically synchronized periodic threads communicating through data ports. In
the asynchronous execution model, it is possible to raise events, to specify sporadic and aperiodic threads, communication through shared
variables, and remote procedure calls, etc. As a main difference with the existing approaches, we focus on the verification of the AADL model
transformation. However, describing the formal semantics of the whole AADL is a very hard and time consuming task, as well as formally
proving the correctness of its translation to another formalism. Thus we have identified a subset and restricted the correctness proof to
this subset. In this paper, we consider the synchronous one, including periodic threads, data port communications, mode changes and the
behavior annex. This subset is usually used in safety­critical systems, to guarantee the determinism and predictability of system behaviors.
Here multi­partitions and multi­processors mechanisms are excluded, and we just consider simple scheduling features: single­processor
and non­preemption.

A quick overview of the considered subset of AADL is given, including the structural elements and the execution model attributes. Its
execution semantics will be given and formalized in Section 5.

3.2.1. Periodic threads

Based on the modes of the system, a thread may be active, inactive, or halted. In AADL, only active threads can be dispatched and
scheduled for execution.

A thread can have input ports and output ports to receive and send messages. AADL defines three types of ports: data, event and event

data ports. Event and event data ports support queuing buffers, but data ports only keep the latest data. We consider data ports. However,
out event ports used to trigger mode changes are also considered.

AADL supports the classical thread dispatch protocols: Periodic, Aperiodic, Sporadic and Background. Periodic dispatch is the only protocol
considered in this paper, and its execution model attribute is expressed as: Dispatch Protocol ⇒Periodic.

Moreover, several properties can be assigned to a periodic thread, such as: period given by the Period property in the form of Period ⇒

100 ms (i.e. Frequency = 10 Hz), execution time through the Compute Execution Time property or the computation(BCET, WCET) statement
of the behavioral annex, and Deadline. By default, when the deadline is not specified it equals the period.



3.2.2. Data port communications

Port connections link ports to enable the exchange of messages among components. In order to ensure deterministic data communication
between the data ports of periodic threads, AADL offers two communication protocols: Immediate and Delayed. The execution model
attribute is attached to the data ports, and expressed as: Timing ⇒{Immediate, Delayed}.

For an immediate connection, the execution of the recipient thread is suspended until the sending thread completes its execution
when the dispatches of sender and receiver threads are simultaneous. For a delayed connection the output of the sending thread is not
transferred until the sending thread’s deadline, typically the end of the period. Notice that they have not necessarily the same period,
which allows over­sampling and under­sampling. A port connection can also be declared with modes specifying whether the connection
is part of specific modes or is part of the transition between two specific modes.

3.2.3. Mode change

A mode represents an operational state, which manifests itself as a configuration of contained sub components, connections, and mode­
specific property values. When multiple modes are declared for a component, a mode state machine identifies which event arrival fires
a mode transition, and the new mode. The clause in modes indicates which subcomponents and connections are active in a given mode.
Connections can also be active during mode transitions.

An AADL model is a tree of components, and each component has one or more operating modes. Thus, AADL uses the concept of system

operation mode (SOM) to define the hierarchical composition of component modes. A SOM is a vector of modes (Bertrand et al., 2008),
where each element is associated to a component. If a component is active, the associated element is valued with the current mode of the
component. If a component is inactive, the associated element is tagged inactive.

A system has exactly one initial SOM, which is the set of initial modes of each component. SOM transitions define how a system transits
from one SOM to another due to some stimulus. SOM transitions can be declared at each level, and extracting them from a set of mode
state machines can be based on a breadth­first walk algorithm among the component tree (Bertrand et al., 2008). When a mode change is
requested, a SOM transition is engaged. The new SOM is obtained from the old SOM, by changing the values of the vector elements that
are involved in the mode change. In this paper, we mainly consider the relation between SOM transitions and threads/connections.

AADL offers two mode change protocols: Emergency and Planned. They differ on the instant where mode change actually occurs. The
execution model attribute is attached to the mode transitions, and expressed as: Mode Transition Response ⇒{Emergency, Planned}. To
guarantee determinism, we consider the planned one.

3.2.4. Behavior annex

The behavior annex can be used to describe a set of legal behaviors for a thread or a subprogram. It is described using a transition system
with annotated states: initial specifies a start state, return specifies the end of a subprogram, complete specifies completion of a thread,
and zero or more intermediate execution states. Transitions define system transitions from a source state to a destination state. Transitions
may be guarded by conditions and trigger actions. Conditions and actions include sending or receiving messages, assigning variables and
execution abstractions such as use of CPU time or delay, etc. Here, the specification of dispatch conditions for sporadic or aperiodic threads,
and shared data communication, which imply loss of determinism, are excluded.

An AADL example. A simplified example of an Electronic Throttle Controller (ETC) (Ouimet et al., 2006) within our chosen subset is given
(Fig. 2). A car may cruise automatically or be controlled by the driver at different speeds. The system is split into a system component, a
process component (Cruise), and several thread components (wheel, throttle, speed, command, display). We focus on the modes of the process
component, which contains two modes (automatic, manual). In the manual mode, the command component reads data from the driver, the
throttle computes the voltage used to control the car, and display the speed parameter. When detecting the event a, the process switches
to automatic mode. In the automatic mode, the tasks wheel and speed are released, command is deleted, throttle and display continue to
execute. The speed component reads the tours of the wheel and computes the speed, then sends it to the throttle for controlling the car.
These threads are periodic with data port connections, and each thread has a behavior annex specification.

Fig. 2. Architecture of the electronic throttle controller system.



We show the Cruise process and the throttle thread as an example and a part of the textual specification is given in Fig. 3. The behavior
of the throttle thread is made very simple here: the computed voltage is the difference between the wanted speed and the current speed.

3.3. Abstract syntax of the subset of AADL

We give the abstract syntax of the considered subset: an AADL model contains several threads, connections, and a SOM automaton.
Each thread with its behavior annex belongs to a given SOM, and each connection can belong to a SOM or to a SOM transition. Here, the
structural elements and the execution model attributes are expressed in an uniform abstract syntax.

Please notice that: (1) DURATION is a predefined type, EXPRESSION describes the expression language used in the annex and is not
given here, VALUE is a type describing all possible values stored in ports, BASTATE and SOM are enumerations extracted from the actual
AADL model; (2) the action language of the annex being complex, we abstract it as a function computing outputs from the value of its input
ports. The CPU consumption of an action is directly modelled as a Time attribute.

Listing 1 The abstract syntax of the synchronous subset of AADL.

Type Thread:=
{ Iports: set of PORT; \ ∗ Input Ports ∗ \

Oports: se t of PO RT; \ ∗ Output Ports ∗ \
Period: DURATION;
BCET: DUR ATION;
WCET: DUR ATION;
Deadli ne: DUR ATION;
Behavior : Be haviorAnnex;
Modes: set of SOM;

}
Type Conn ection:=
{ SrcThread: Thread; \ ∗ Sourc e Thread ∗ \

DstThread: Thread; \ ∗ Desti natio n Thread ∗ \
Src Port : PO RT; \ ∗ Sourc e Port ∗ \
DstPort: PO RT; \ ∗ Desti natio n Port ∗ \
ConnectionType: {Immediate, Delayed};
Modes: set of SOM;

}
Type Be haviorAnnex:=
{ States : se t of BA STATE;

Tra nsitions: set of BA Transition;
}
Type BA Tra nsitio n:=
{ Src State: BA STATE; \ ∗ Sourc e State ∗ \

DstState : BA STATE; \ ∗ Destination State ∗ \
Time: DUR ATION;
Guar d: EXPRESSION;
Computation:((Iports(th) → VALUE) × Oports(th)) → VALUE;

}
Type SOM Tra nsitio n:=
{ Src Mode: SOM; \ ∗ Sourc e Mode ∗ \

DstMode: SOM; \ ∗ Desti nation Mode ∗ \
MCR Th: Thread;
MCR Port: Oports(MCR Th);

}
Type Model:=
{ Threads: se t of Thread;

Connections: se t of Conn ection;
Initial Mode: SOM;
Mode Transitions: set of SOM Transition;

}

4. Timed Abstract State Machine

In this section, we first introduce the basic concepts of the TASM language, then we give its abstract syntax.



process im plementa tion Prc_Cruise.impl

subcomponents

wheel : threa d Th_wh eel .imp l in modes ( autom atic );
command: thread Th_command.impl in modes (manual );

...

conn ectio ns

data port tour -> wheel.tour in modes (automatic );

...

modes

manual : initi al mod e;

automa tic : mod e ;
manual −[ event_ a ]→ automa tic ;
automa tic −[ event_ b ]→ manual;

end Prc_Cruise.impl;

thread imple mentation Th_throttle.impl

properties

Disp atch _Pr oto col => Periodic;

Period => 50ms;

Compute_Execution_Time => 15ms..15ms;

Deadli ne => 50 ms;
annex behavior_specification **

states

s0: initia l complete state;

tran sitio ns

s0 −[ ]→ s0 computati on (15 ms ); voltag e := speed_thro

- current_speed ;

** ;

end Th_throttle.impl;

{
}

}

Fig. 3. A part of textual specification of the AADL model of the ETC system.

4.1. A brief introduction to TASM

TASM extends the Abstract State Machine (Börger, 2002) to enable the expression of timing and resource consumption. A basic definition
of a TASM specification is given as follows:

Definition 5 (A TASM specification). A TASM specification is a pair 〈E, ASM〉 where:

• E = 〈EV, TU, ER〉 is the environment, including:
– EV denotes the Environment Variables, which are the global variables that affect and are updated by machine execution,
– TU is the Types of environment variables that include integer, boolean, and user­defined types,
– ER is the set of named Resources, ER = {(rn, rs)|rn is a resource name, and rs is the resource size}. Examples of resources include memory,

power, bus bandwidth, etc.
• ASM = 〈MV, CV, IV, R〉 is a machine, including:

– MV denotes the Monitored Variables, which are the set of environment variables that affect the machine execution,
– CV denotes the Controlled Variables, which are the set of environment variables that the machine updates,
– IV denotes the Internal Variables, which are the set of local variables, and their scope being limited to the machine where they are

defined,
– R is the set of Rules, R = { (n, t, RR, r) |n is the rule name; t is the duration of the rule execution, which can take the form of a single value,

an interval [tmin, tmax], or the keyword next, the “next” construct essentially states that time should elapse until an event of interest
occurs, which is especially helpful for a machine which has no enabled rules, but which does not wish to terminate; RR is the resource
consumption during the rule execution with the form rn : = rs; r is a rule of the form “if condition then action”, where condition is an
expression depending on the monitored variables, and action is a set of updates of the controlled variables. We can also use the rule
“else then action”.}. A restriction on the set of rules is that they are mutually exclusive, that is, only one rule can be executed at each
step.

The concepts of hierarchical composition, parallelism, and communication are also supported by TASM. It uses a set of main machines

that execute in parallel, to support the specification of parallel behaviors, and provides sub­machine and function­machine calls to support
the specification of hierarchical behaviors. Communications are only between main machines and can use channel synchronization and
shared variables.

Simply, the semantics of a main machine can be given as follows: read the shared variables, select a rule of which condition is satisfied,
wait for the duration of the execution while consuming the resources, and apply the update set. If there are communications with other
machines, it also needs to synchronize.

We give a simplified TASM specification of the throttle thread in the example of Section 3 (Fig. 4), and we assume power and memory
are consumed during the execution. Rule1 defines the actual execution of the thread. Rule2 is triggered at completion and updates the
thread state at the next dispatch. Notice that this TASM translation of an AADL thread is correct only if the thread execution time is exactly
known and no other threads have access to the processor. The actual translation will need two TASM machines (see Section 5).



ENVIRONMENT:

USER -DEFINE D TYPES :
State := dispatc h ,completed ;

RESOUR CES :
Power :=[0 ,100]; Memory :=[0 ,100];

VARIAB LES :
State CurrentSta te := dispatch;

MAIN MACHIN E Thro ttle

MONITORED VARIABLES:

CurrentState;

CONTROLLED VARIABLES:

CurrentState;

RULES :
Rule1: execution

t:= 15;
Power:= [5 ,10];

Memory := [20 ,50];

if CurrentS tat e = dispa tch then

CurrentState := completed;

Rule2 : ne xt_period

t :=35;
if CurrentS tat e = complet ed then

CurrentState := dispatch;

{

{

{

}

}

}

Fig. 4. A TASM example.

4.2. Abstract syntax of TASM

The abstract syntax of TASM is given as follows:

P ::= x := exp

| skip

| if Bexp then P

| else then P

| time (tmin, tmax) ⊲ P

| time next ⊲ P

| resource r (rmin, rmax) ⊲ P

| P ⊕ P

| P ⊗ P

TASM ::= 〈E, P||P||· · ·||P〉

In this paper, we use shared variables to achieve communication. P defines the behaviors of a main machine, x : = exp updates the value
of the controlled variable x, time specifies the duration of P, resource specifies the resource usage during the execution of P, r is the name of
a resource, P ⊕ P is the choice operator that connects several rules within a main machine, P ⊗ P is a synchronous parallel operator which
connects statements within rule actions, the statements must not update the same variables, and P||P is a parallel operator which connects
main machines. Composition is synchronous if updates are simultaneous, else asynchronous.

To get a complete formalization of TASM, an interested reader can refer to (Ouimet and Lundqvist, 2006).

5. Two formal semantics for the subset of AADL

In order to enable the proof of semantics preservation of the model transformation, the informal execution semantics of the subset
of AADL formalized directly using TTS, is considered as a reference semantics, because we cannot directly prove that the translational
semantics is equivalent with the informal one which is provided by the AADL standard. As the behavior is explicitly expressed by atomic
transitions, the TTS­based semantics is easy to understand. However, TTSs are mainly a mathematical model which cannot be used to
automatically verify properties of a given AADL model. TASM­based translational semantics (for verification purpose) is more complex
than the TTS­based one, because we need to know the rather complex TASM semantics to understand the translated TASM sentences. In
this paper, the TTS­based semantics is supposed to be correct, and it gives a reference expression of AADL semantics which can be compared
with the TASM­based translational semantics.

The TTS­based semantics will be defined as a synchronous product of TTSs communicating through a global state (shared variables). For
this purpose, each TTS can leave some variables unspecified, and these variables are assigned by other parallel TTSs; other variables will be
modified using the record update notation s′ = s with { · · · }. So, variables not present in the record update and not declared as unspecified
are supposed to be unchanged. Furthermore, in order to avoid deadlocks, we suppose that each deadlock state has a default transition



which lets all the variables unchanged. Moreover, as communication between TTSs relies on shared variables, discrete labels are not used
and considered to be �, that is 6 = {�}.

As mentioned in Section 3.3, an AADL model (m) contains several threads, connections, and a SOM automaton. Each thread (th) with its
behavior annex belongs to a given SOM, and each connection (cn) can belong to a SOM or to a SOM transition (tr). Concretely speaking, the
operational semantics of a periodic thread with data port communications is defined as the synchronous product of two TTSs: TTSthread basic

and TTSdispatcher, while the computation of the thread will be refined by the behavior annex. For an immediate connection, the execution of
the recipient thread is suspended until the sending thread completes its execution when the dispatches of sender and receiver threads are
simultaneous. We use an abstract scheduler to manage it and the scheduler only ensures the static alignment of thread execution order
implied by the immediate connection. The operational semantics of the scheduler is defined as TTSscheduler. The operational semantics of
the SOM automaton is defined as TTSmode change. Thus, the operational semantics of the considered subset of AADL is the composition of a
set of TTSs. The definitions of these TTSs will be given later.

Here, we first define the sets SG and IG.

• The global state is defined by the partial valuation of a set of variables. An IportBuffer variable is defined for each input port of each thread.
The sender copies values of output ports to the buffer, and the recipient copies values from the buffer to the input ports. Each IportBuffer

is associated to a boolean variable NewData which is true when the input buffer has got the latest data. It is used to guarantee the deadline
of the sender occurs before the dispatch of the recipient when they are logically simultaneous and the connection type between them is
Delayed. CurrentTime represents the global current time.

SG = { CurrentMode : SOM,

Activation TH(th ) : {true , false },
Activation CN(cn ) : {true , false },
State(th) : { waiting mode, waiting dispatch,

waiting executio n, executio n,

computed , comp leted },
Dispat ch(th ) : {true , false },
Get CPU(th) : {true, false},
Iport(th ) : Iports(th ) → V AL UE,

Oport(th ) : Oports(th ) → V AL UE,

IportB uffer(th ) : Iports(th ) → V AL UE,

NewData(th ) : Iports(th ) → {true , false},
Dispat chTime(th ) : DURAT ION,

CurrentTime : DURATION}.

• IG = { CurrentMode &→ Init Mode (m),

Activation TH &→
















th &→ true | Init Mode (m) ∈ Modes (th )
th &→ false | Init Mode(m) )∈ Modes(th)

,

Activation CN &→
cn &→ true | Init Mode (m) ∈ Modes (cn )
cn &→ false | Init Mode(m) )∈ Modes(cn)

,

State(th ) &→ waiting mode,

Dispat ch(th ) &→ false,

Get CPU(th ) &→ false,

Iport(th) {→& ip &→ 0 | ip ∈ Iports(th)},
Oport(th ) {→& op &→ 0 | op ∈ Oports(th )},
IportB uffer(th ) {→& ip &→ 0 | ip ∈ Iports(th )},
NewData(th ) {→& ip &→ true | ip ∈ Iports(th)},
Dispat chTime(th ) &→ 0,

CurrentTime &→ 0}.

Here, messages exchanged by threads are supposed to be of type Integer.

As the analysis of AADL in Section 3, the translational semantics should take into account the structural aspect, the execution model
and the behavior annex. The semantics function has two parts: the mapping of the structural aspect to the TASM environment (such as
thread­related variables, connection­related variables, and mode­related variables), and the mapping of the dynamic aspect to the TASM



machines (such as the execution of threads, connections, mode change and the behavior annex). The auxiliary functions, for example
Trans ThreadData(th) and Trans Thread(th), will be defined later.

Translate(m : Model) =
〈

⋃

th∈Threads(m)

Trans ThreadData(th)

⋃

(
⋃

th∈Threads(m)

Trans BehaviorAnnexData(th))

⋃

(
⋃

cn∈Connections(m)

Trans ConnectionData(cn))

⋃

Trans SchedulerData,
⋃

Trans ModeData,

‖th∈Threads(m) Trans Thread(th)
‖ (‖th∈Threads(m) Trans BehaviorAnnex(th))
‖ (‖cn∈Connections (m) Trans Connection(cn))
‖ Trans Scheduler

‖ Trans Mode 〉

We will give the informal interpretation, the operational semantics using TTSs, and the translational semantics by translating into TASM
of the subset of AADL in a modular manner.

5.1. Periodic threads with data port communications

5.1.1. Informal interpretation

The current mode determines the set of threads that are considered active. Only the active threads can be dispatched and scheduled for
execution and other threads are in the waiting mode state or the halted state.

Periodic threads. A periodic thread is dispatched periodically, and its inputs received from other threads are frozen at dispatch time (by
default), i.e. at time zero of the period. As a result the computation performed by a thread is not affected by the arrival of new inputs.
Similarly, the outputs are made available to other threads at completion or deadline time, depending on the connection.

Data port communications between periodic threads. First, the communication affects the input/output timing of the periodic threads. (1)
For an immediate connection, the execution of the recipient is suspended until the sender completes its execution. As mentioned above,
the inputs have been copied at dispatch time, so the recipient needs to replace the old data using the data got from the sender at the start
of execution. (2) For a delayed connection, the value from the sender is transmitted at its deadline and is available to the recipient at its
next dispatch. The recipient just needs the last dispatch data from the sender. Second, the immediate connection implies a static alignment
of thread execution order, i.e., it deals with the scheduling of the sending of messages and the processing of the received messages.

In conclusion, the time line of a periodic thread with data port communications is represented in Fig. 5.

5.1.2. Operational semantics

Now we give the operational semantics of a periodic thread (th) with data port communications, which is defined as the synchronous
product of two TTSs: TTSthread basic and TTSdispatcher.

Definition 6 (TTSthread basic). The basic behavior of a periodic thread (th) with data port communications is a timed transition system
defined over SG and IG, that is TTSthread basic = 〈SL, IL, 6, →〉 where:

• SL = {StartofExeTime(th) : DURATION}.
As mentioned above, for an immediate connection, the execution of the recipient is suspended until the sender completes its execution.

So we save the start time of execution of the thread.
• IL = {StartofExeTime(th) 7→ 0}.
• 6 = {�}.
• → is defined by the following rules, including discrete transitions and continuous transitions. s and s′ are values of the type S (S = SG × SL).

The shared variables State(th), Iport(th), Oport(th), IportBuffer(th), NewData(th), DispatchTime(th), and CurrentTime will be modified
by this TTS using the schema s′ = s with { . . . }, while CurrentMode, Activation TH(th), Activation CN(cn), Dispatch(th) and Get CPU(th)
are declared as unspecified (namely, they will be modified by other TTSs). We also use the overloading operator <+, which is defined as
s <+{e 7→ v} = {e′ 7→ v

′|(e′ 7→ v
′) ∈ s ∧ e′ /= e} ∪ {e 7→ v}.

Fig. 5. The time line of an AADL periodic thread with data port communications.



ACTIVATION. Two rules are used to deal with the relation between the periodic thread th and mode change (in Section 5.3). A shared
variable Activation TH(th) : {true, false} is used. ACTIVATION[1] means the thread is in the current mode, while ACTIVATION[2] represents
the thread waits to be active. The delay is controlled by the TTS associated to the mode change.

s(State(th )) = waiting mode,

s(Activation T H(th )) = true,

s′ = s with {State(th) = waiting dispatch}

s −→ s′
ACTIV ATION [1]

s(State(th )) = waiting mode,

s(Activation T H(th )) = false,

s′ = s with {CurrentT ime =
s(CurrentT ime) + d}

s
d
−→ s′

ACTIV ATION [2]

DISPATCH. The rule DISPATCH[1] represents the dispatch of a thread. On the dispatch event, the input ports are read. For this purpose,
we must wait for the data transfer made by the sender threads through delayed connections when their deadline occurs at the same logical
time as the dispatch of the recipient thread. This condition is defined by the DelayedSyncCond predicate. As mentioned in Section 3.2, the
thread can trigger mode change requests (MCRs) by raising an event. Here we use the same ports for data and event, and say that event
is a value satisfying the isEvent predicate. The event buffer can be reset by writing the None value. This is done at dispatch time. The rule
DISPATCH[2] represents the thread waits to be dispatched. The delay is controlled by the TTS associated to the dispatcher.

s(State(th )) = waiting dispatch,

s(Dispatch(th )) = true,

DelayedS yncCond (th, s),
s′ = s with {

State(th ) = waiting executio n,

DispatchT ime (th ) = s(CurrentT ime ),
Ipo rt(th ) = {ip &→ s(Ipo rtBuffer (th , ip)) | ip ∈ Iports(th)},
‖ip∈Iports(th) NewData(th , ip ) = false,

‖
op∈Oports(th)|isEvent(s(Oport(th,op)))

Opo rt(th , op ) = None

}

s −→ s′
DISPATCH[1]

where Del ayedSyncCond(th , s) ≡
∀cn ∈ Connections (m),
s(Dispatch Time (SrcT hread(cn)) ) +
P eriod (SrcT hread(cn )) = s(CurrentT ime)
∧ DstThread(cn) = th

∧ Connection T ype (cn ) = Delayed

⇒ s(NewData(th, DstPort(cn))) = true

s(State(th )) = waiting dispatch,

s(Dispatch(th )) = false,

s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

DISPATCH[2]

WAITING EXE. When the thread is dispatched, its execution is managed by a scheduler. Specially, in presence of immediate connection,
the scheduler must ensure that the sender completes before the start of execution of the recipient. Moreover, ports of which incoming
connection is immediate must be rewritten. The rule WAITING EXE[1] means that the thread gets CPU, while the rule WAITING EXE[2]
represents the thread waits to be scheduled. The delay is controlled by a TTS associated to the scheduler (in Section 5.2).



s(State(th)) = waiting execution,

s(Get CP U(th )) = true,

s′ = s with {
State(th) = execution,

Ipo rt(th ) = s(Ipo rt(th)) <+
{ip &→ s(Ipo rtBuffer (th , ip)) | is Imme diate(th, ip)},

StartofExeT ime(th) = s(CurrentT ime)
}

s −→ s′
WAITING EXE[1]

where isImmediate(th, ip) checks if the input port ip of thread th is the destination of
an immediate connection. This predicate is defined as follows:

∃cn ∈ Connections (m), Dst P ort(cn ) = ip

∧ Connection T ype (cn) = Immediate

∧ ip ∈ Iports(th)

s(State(th )) = waiting executio n,

s(Get CPU(th)) = false,

s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

WAITING EXE[2]

EXECUTION. Here, the execution is abstracted by a function Computation (Inputs : Iports(th) → VALUE) : Oports(th) → VALUE which con­
sumes CPU time during the interval [BCET, WCET] of the thread, and it will be refined by the AADL behavior annex (in Section 5.4). The
rule EXECUTION[1] represents that the thread is in the progress of its execution. The rule EXECUTION[2] is used to write the computation
results into the output ports of the thread.

s(State(th )) = executio n,

s(CurrentT ime) − s(Sta rto fExe Time (th )) + d ≤ W CET (th),
s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

EXECUTION [1]

s(State(th )) = executio n,

BCET (th) ≤ (s(CurrentT ime)−
s(Sta rtofExe Time (th))) ≤ WCET (th),

s′ = s with {State(th ) = computed,

Oport(th ) =‖op∈Opo rts (th ) Computation

({ip &→ s(Iport(th)) | ip ∈ Iports(th)}, op)
}

s −→ s′
EXECUTION [2]

WRITE IMM DATA. It is used to copy the data of the output ports of the sender to the IportBuffer of the recipient at the completion time
of the sender. This copy is only done when the two threads are dispatched at the same time.

s(State(th )) = computed,

s′ = s with {
IportBuffer = Ipo rtBuffer <+

{Dst T hread(cn ) &→ s(Oport(th)) |
cn ∈ Conn ections(m)
∧ SrcT hread(cn ) = th

∧ ConnectionType(cn) = Immediate

∧ s(DispatchT ime(th )) =
s(DispatchT ime(DstThread(cn)))

},
State(th) = completed

}

s −→ s′
WRITE IMM DATA



WAITING DEADLINE. This rule is used to wait for the deadline (i.e. the period here for the sake of simplicity) of the thread.

s(State(th )) = completed,

s(Get CP U(th )) = false,

s(CurrentT ime) + d
≤ s(DispatchT ime(th)) + Period(th),

s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

WAITING DEADLINE

Definition 7 (TTSdispatcher). The behavior of the dispatcher of a periodic thread (th) is a timed transition system defined over SG and IG, that
is TTSdispatcher = 〈SL, IL, 6, → 〉 where:

• SL = {WaitNextDispatch(th) : {true, false}}.
Here, an auxiliary variable WaitNextDispatch(th) is used.

• IL = {WaitNextDispatch(th) 7→ false}.
• 6 = {�}.
• → is defined by the following rules. The shared variables State(th), IportBuffer(th), NewData(th), Dispatch(th) and CurrentTime will be

modified by this TTS, while others are declared as unspecified.

DISPATCH THREAD. This rule is used to dispatch the thread, and synchronize with the thread using the shared variable Dispatch(th).

s(Activation TH(th)) = true,

s(State(th )) = waiting dispatch,

s(Dispatch(th )) = false,

s′ = s with {Dispatch(th) = true,

WaitNextDispatch(th) = true}

s −→ s′
DISPATCH THREAD

WAITING PERIOD. This rule does nothing, and it is just used to wait the period of the thread.

s(Wait Next Dispatch(th )) = true,

s(CurrentT ime) + d
≤ s(Dis patchT ime(th )) + P eriod(th ),

s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

WAITING PERIOD

REACH PERIOD. This rule represents that the thread arrives at its period. The output of the delay connections is also expressed in this
rule, namely, copy the data of the output ports of the sender to the IportBuffer of the recipient at the deadline of the sender. We also set
the NewData variable to true in order to indicate the data transfer has been done.

s(Wait Next Dispatch(th )) = true,

s(CurrentT ime) = s(DispatchT ime(th)) + Period(th),
s′ = s with {

State(th ) = waiting mode,

Wait Next Dispatch(th ) = false,

Dispatch(th) = false,

Ipo rtBuffer = Ipo rtBuffer <+
{DstThread(cn) &→ s(Oport(th))} | isDelayOut(th),

NewData(DstThread(cn)) = true

}

s −→ s′
REACH PERIOD

where isDelayOut(th) checks if the thread th is the source thread of a delayed connection.

This predicate is defined as follows:

∃cn ∈ Connections(m), SrcT hread (cn ) = th

∧ ConnectionType(cn) = Delayed



WAIT. This rule is used to deal with the waiting time when the conditions of other rules are not satisfied.

s(Activation TH(th)) = false,

s′ = s with {CurrentT ime = s(CurrentT ime) + d}

s
d
−→ s′

WAIT

5.1.3. Translational semantics

The TASM environment associated to each thread is defined as a set of typed variables such as the state and the resource consumption of
the thread. Messages exchanged by threads are supposed to be of type Integer. The variables associated to connections are defined as well.

Listing 2 The TASM enviro nme nt of an AADL periodic thread with
dat a por t commun ications.

Trans ThreadData(th) =
{ State:{waiti ng mode, waiti ng dis pat ch, waiting execution, execution,

compute d, com pleted } := waiting mode;
Iport: Iports(th) → Integer;
Oport:O ports(th) → Integer;
RscUsage:RESOU RCE → Integer;
WaitNextDis patch:Boolean;
...

}

The dynamic behavior of a periodic thread with data port communications is defined as two TASM machines in parallel: TASM Thread(th)

and Periodic Dispatcher(th), as shown in Listing 3.

• A periodic thread (th) is expressed by TASM Thread(th) with six rules: Activation, Dispatch, Waiting Execution, Execution, Write Immediate

Data, and Waiting Next Event. In the rule Execution, the duration of execution is [BCET,WCET] and processor consumption is 100%. The rule
Waiting Next Event is used to deal with the waiting time when activation, dispatch and execution conditions are not satisfied. Additionally,
the behavior of a connection is separated in two parts: Read and Write.

• The dispatcher of a periodic thread (th) is expressed by Periodic Dispatcher(th) with three rules: Dispatch Thread, Waiting Period, and
Waiting Next Event. The rule Waiting Period corresponds to the rules WAITING PERIOD and REACH PERIOD of TTSdispatcher (Definition 7).
According to the TASM semantics (Section 4.1), the system will wait for the duration of the execution of the rule, then apply the update
set (i.e. actions). Thus, the TASM­based translational semantics hides implicit behaviors provided by the TASM semantics.

Translation rules are written using an ML­like language (close to the Coq notations) with bold font keywords as follows. References to
other TASM machines are also bold.

• LET name = P AND . . . IN TASM.
• IF condition THEN P ELSE P.

Listing 3 The TASM ma chines of an AADL periodic thread with
dat a por t communications.

Trans Thread(th)=
LET TASM Thread(t h)=
// Rule Activation
Time 0 (if State(th)= waiting mode and Activation TH(th)=true then

State(th):=waiting dispatch)
⊕ //Rule Dis pat ch
Time 0 (if State(th)= waiting dis pat ch and Dispatch(th)=true then

State(th):=waiting exec ution
⊗ Iport(th):=IportBuffer(th)
⊗ ⊗

op∈Oports(th)|isEvent(Oport(th,op))

Oport(th,op):= None)

⊕ //Rule Waiting Exec ution
Time 0 (if State(th)=waiting executio n and Get CPU(t h)=tr ue then

State(th):=execution ⊗ Trans Connection Read(th))
⊕ //Rule Exec ution
Time (BCET(th), WCET(th)) Resourc e Processor 100

(if State(th)=exec ution then
Oport(th):=Compu tation(Iport(th)) ⊗ State(th):=computed)

⊕ //Rule Write Immediate Data
Time 0 (if State(th)=compute d then

State(th):=completed ⊗ Trans Connection Write Imm(th))
⊕ //Rule Waiting Next Event
Time next (else then

skip)



AND Peri odic Dis pat cher(t h)=
//Rule Dis pat ch Thread
time 0 (if Acti vation TH(th)=true and State(th)=waiting dispatch

and Dispat ch(t h)=fals e then
Dispat ch(t h):=tr ue ⊗ WaitNextDispatch(th):=true)

⊕ //R ule Waiti ng Period
time Period(t h) (i f WaitNextDis pat ch(t h)=tr ue then

WaitNextDis pat ch(t h):=false
⊗ Trans Connection Write Delay(th)
⊗ State(th):=waiting mode
⊗ Dis pat ch(t h):=false)

⊕ //R ule Waiti ng Next Event
time next (else then

skip)
IN TASM Thread(t h) ‖ Peri od Dis patcher(th)
Trans Connection Read(th)=

⊗

ip ∈ Ipo rts (th )
∧cn ∈ Connectio ns(m)
∧DstP ort(cn ) = ip

∧ConnectionType(cn) = Immediate

ip:=IportBuffer(th,ip)

Trans Connection Write Imm(th)=

⊗
op ∈ Opo rts (th )
∧cn ∈ Connectio ns(m)
∧SrcP ort(cn ) = op

∧ConnectionType(cn) = Immediate

IportBuffer(DstThread(cn),DstPort(cn)):=op

Trans Connection Write Delay(th)=

⊗
op ∈ Opo rts (th )
∧cn ∈ Connectio ns(m)
∧SrcP ort(cn ) = op

∧ConnectionType(cn) = Delayed

IportBuffer(DstThread(cn),DstPort(cn)):=op

5.2. Scheduler

5.2.1. Informal interpretation

As mentioned above, in presence of immediate connection, the scheduler must ensure that the sender completes before the start of
execution of the recipient. Here, we give an abstract view of the scheduler. The given behavior allocates the CPU to a waiting thread th of
which immediate data emitters that have been synchronously dispatched with th have completed their task.

5.2.2. Operational semantics

Definition 8 (TTSscheduler). The behavior of the scheduler is a timed transition system defined over SG and IG, that is TTSscheduler = 〈SL, IL, 6,
→ 〉 where:

• SL =∅.
• IL =∅.
• 6 = {�}.
• → is defined by the following rules. The shared variables Get CPU(th) will be modified by this TTS, while others are declared as unspecified.

ALLOCATE CPU. This rule is used to allocate the CPU to a waiting thread.
s(State(th )) = waiting execution,

∀th′ ∈ T hreads(m)
s(Get CP U(th′)) = false,

∀cn ∈ Connectio ns(m)
Connectio nT ype (cn ) = Immediate

∧DstPort(cn) ∈ Iports(th)
∧s(DispatchT ime (th )) = s(Dispatch Time (SrcT hread(cn)))
→ s(State(SrcT hread(cn))) ∈ {comp leted, waiting mode},

s′ = s with {Get CPU(th) = true}

s −→ s′
ALLOCATE CPU



FREE CPU. This rule frees the CPU allocated to a thread which has completed its task.

s(Get CP U(th )) = true,

s(State(th )) = completed,

s′ = s with {Get CPU(th) = false}

s −→ s′
FREE CPU

5.2.3. Translational semantics

The scheduler should avoid giving the processor to several threads at the same time. Its behavior is defined as a TASM machine with
three rules: Allocate CPU, Free CPU, and Waiting Next Event.

Listing 4 The TASM ma chine of the scheduler.

Trans Scheduler=
// Rule Allocate CPU
Time 0 (if State(th)=waiting exec ution

∧
th′∈Threads(m)

(Get CPU(th’)=false)

∧

cn∈Connections(m)










Conn ectio nT ype (cn ) = Immediate

∧ Dst P ort(cn ) ∈ Ipo rts (th)
∧ Dispatch Time (th )

= Dis patch Time (SrcT hread(cn))
∧ State (SrcT hread(cn))
∈ {completed, waiting mode}










then
Get CPU(th):=true)

⊕ //Rule Fre e CPU
Time 0 (if State(th)=completed and Get CPU(th)=true then

Get CPU(th):=false
⊕ //Rule Waiting Next Event
Time next (else then

skip)

5.3. Mode change

5.3.1. Informal interpretation

The behaviors of a SOM transition. The AADL mode change protocol comprises two phases: (1) waiting SOM transition; (2) SOM transition.
In this paper, we consider the planned one. Fig. 6 shows the time line of an AADL SOM transition.

At the beginning, the system is in the source mode of a SOM transition (i.e. oldSOM). After a mode change request (MCR) has
occurred, execution continues under the oldSOM until the dispatches of a set of critical threads that are active align at their hyper­period
(called Hyper(oldSOM)), then the mode transition in progress state is entered. A periodic thread is considered as critical if its Synchro­

nized Component property is true. That means, the duration from the oldSOM state to the mode transition in progress state is the distance
to the next hyper­period of these critical threads.

In the mode transition in progress state, some threads enter the new mode (become active), some threads exit the old mode, the critical
threads of both new and old modes continue to execute, and the connections belong to oldSOM will be deleted. The system is in the
mode transition in progress state for a limited amount of time, which is the distance to a multiple of the hyper­period of the critical threads
that continue to execute (called Hyper(newSOM)*). Finally, the system enters the destination mode of the SOM transition (i.e. newSOM).

When a MCR is responded, all of the other incoming MCRs will be ignored, and we don’t consider the higher priority requests here.

Fig. 6. The time line of an AADL SOM transition.



5.3.2. Operational semantics

Now, we give the operational semantics of the SOM automaton of the AADL model (m).

Definition 9 (TTSmode change). The behavior of the SOM automaton is a timed transition system defined over SG and IG, that is
TTSmode change = 〈SL, IL, 6, → 〉 where:

• SL =

{

ModeTransitionInProgress : {true, false},

GetMCR(tr) : {true, false}

}

.

Here, two auxiliary variables are used.

• IL =

{

ModeTransitionInProgress 7→ false,

GetMCR(tr) 7→ false

}

.

• 6 = {�}.
• → is defined by the following rules. The shared variables CurrentMode, Activation TH(th), Activation CN(cn), and CurrentTime will be

modified by this TTS, while others are declared as unspecified.

GET MCR. This rule gets events sent by threads and selects a corresponding mode transition.

s(CurrentMode) = SrcMode(tr),
isEvent( s(Opo rt(th , op ))),
MCR T h(tr ) = th,

MCR P ort(tr ) = op,

s′ = s with {
GetMCR(tr) = true}

s −→ s′
GET MCR

ENTER MC PL. This rule makes a random choice of one of the MCRs, other MCRs are disabled. The system goes to the
mode transition in progress state, old threads and connections are deactivated, while new threads are activated.

s(CurrentMode) = SrcMode(tr),
s(GetMCR(tr )) = true,

s(CurrentT ime) mo d Hyper(CurrentMode ) = 0,

s(ModeTransitionInProgress) = false,

s′ = s with {
GetMCR = {tr′ &→ (tr = tr′)},

Activation TH =
th &→ true | Dst Mode (tr ) ∈ Modes (th )
th &→ false | otherwise

,

Activation CN =

















cn &→ true |
SrcMode (tr ) ∈ Modes (cn )
∧ Dst Mode (tr) ∈ Modes(cn)

cn &→ false | othe rwise

,

ModeTransitionInProgress = true}

s −→ s′
ENTER MC PL

MC PL. This rule means that the system enters the new SOM.

s(Mode T ransitionInP rogress) = true,

s(GetMCR(tr )) = true,

s(CurrentT ime) mod Hyper(DstMode(tr)) = 0,

s′ = s with {
CurrentMode = Dst Mode (tr ),

Activation CN =








cn &→ true | Dst Mode (tr ) ∈ Modes(cn)
cn &→ false | othe rwise

,

Mode T ransitionInP rogress = false,

GetMCR(tr) = false}

s −→ s′
MC PL



5.3.3. Translational semantics

In the TASM environment, we introduce the CurrentMode variable valued in the set of SOM, and two booleans ArriveHyperPeriod and
ModeTransitionInProgress.

Listing 5 The TASM environment of the SOM automaton.

Trans ModeData=
{ CurrentMode: SOM;

ArriveHyper Peri od: SOM → Boolean;
ModeTransitionInProgress: Boolean;
...

}

The dynamic behavior of the SOM automaton is defined as two TASM machines in parallel: SOM Transition and Manage Hyper(mode).

• The basic behavior of the SOM automaton is expressed by SOM Transition with three rules: Get MCR, Mode Transition In Progress and Mode

Transition. The machine uses the shared variable Activation TH(th) to synchronize with the execution of periodic threads. The rule Get

MCR gets events sent by threads and selects a corresponding mode transition. The rule Mode Transition In Progress expresses the behavior
when waiting for the actual SOM transition after a MCR. The rule Mode Transition expresses the actual SOM transition.

• We use the machine Manage Hyper(mode) to manage the time Hyper(oldSOM) and Hyper(newSOM)*.

Listing 6 The TASM machines of the SOM automaton.

Trans Mode =
LET SOM Transition=⊕

tr

(

LET oldSOM=Src Mode(tr)
AND newSOM=DstMode(tr)
IN
//Rule Ge t MCR
time 0 (if CurrentMode=oldS OM and

isEvent(O port(MCR Th(tr), MCR Port(tr)))=true then
GetMCR(tr):=tr ue)

⊕ //R ule Mode Tra nsitio n In Progress
time 0 (if CurrentMode=oldS OM and Get MCR(tr)=tr ue

and Arri veHyper Period(oldS OM)=tr ue
and ModeTra nsitionIn Progress=fals e then
⊗

tr′ #=tr

GetMCR(tr’):=false

⊗ ModeTra nsitionInProgress:=tr ue
⊗ ArriveHyperPeriod(newSOM):=false
⊗ ⊗

th|newSOM∈Modes(th )\old SOM∈Modes(th)

Activation TH(th):=true

⊗ ⊗
th|oldSOM∈Modes(th )\ne wSOM∈Modes(th)

Activation TH(th):=false

⊗ ⊗
cn|old SOM∈Modes(cn)\newSOM∈Modes(cn)

Activation CN(cn):=false)

⊕ //Rule Mode Transition
time 0 (if GetMCR(tr)=true and ModeTra nsitionInProgress=tr ue

and ArriveHy per Period(new SOM)=true then
CurrentMode:=newSOM
⊗ ⊗

cn|ne wSOM∈Modes(cn )\old SOM∈Modes (cn )

Activation CN(cn):=true

⊗ ModeTra nsitionInProgress:=false
⊗ ArriveHyperPeriod(oldSOM):=false
⊗ GetMCR(tr):=false)

AND Manage Hy per(mode)=
time Hyper(mode) (if true then

ArriveHyper Peri od(m ode):=tr ue)
IN SOM Transition ‖ (‖mode∈SOM Manage Hyper(mode))

5.4. Behavior annex

AADL supports an input­compute­output model of computation and communication for threads. The input/output timing is defined by
the execution model, and the computation can be refined by the behavior annex. So, there is a close relation between the AADL execution
model and the behavior annex. The execution model specifies when the behavior annex is executed and on which data it is executed, while



the behavior annex acts in a thread (or a subprogram) and describes behaviors more precisely. Thus, the semantics specifications given as
above will be enriched by the behavior annex.

5.4.1. Informal interpretation

The behavior annex is described using a transition system in the following form:

annex behavior_specification

{**
<st ate _var iab les >

<initializatio n >

<stat es >
<transi tions >

**};

State Variables represent the variables with the scope of the behavior annex, and they may hold the inputs, the intermediate results,
and the outputs. States: initial specifies a start state, return specifies the end of a subprogram, complete specifies completion of a thread,
and other states represent intermediate execution steps. Transitions define system transitions from a source state to a destination state.
A transition can be guarded with execution conditions. An action part can be attached to a transition and it performs message sending,
assignments or time consuming activities. However, the action part is related to the transition and not to the states: if a transition is
enabled, the action part is performed and then the current state becomes the transition destination state. When the transition reaches a
complete or return state, the thread or the subprogram will be completed.

5.4.2. Operational semantics

The operational semantics of the behavior annex is defined as the refinement of the “Execution” rule of TTSthread basic, where the state
SL extends the semantics state of TTSthread basic with CurrentBAState and StartTransitionTime. The initial value of CurrentBAState is the initial
state of the behavior annex. StartTransitionTime is used to save the start time of the execution of the transition, and its initial value is the
StartofExeTime of the thread.

BA EXECUTION. This rule expresses the execution of each transition of the behavior annex, and the StartTransitionTime is accumulated
for each transition.

s(State(th )) = executio n,

s(CurrentBAState) = SrcState(BA tr ),
s(CurrentT ime) = s(StartTransitionT ime) + Time(BA tr),
s′ = s with {

CurrentBAState = Dst State(BA tr ),
Oport(th ) = Action(BA tr)( Ipo rt(th)) ,

StartTransitionT ime = s(CurrentT ime)}

s −→ s′
BA EXECUTION

if Guard(BA tr)=true, ∀BA tr ∈ Transitions(BA) ∧ BA = Behavior(th)
BA COMPLETE. This rule means the execution of the behavior annex is completed. An auxiliary variable isFinal is used to denote the

complete state of the behavior annex.

s(State(th )) = executio n,

isF inal (s(CurrentBAState)) = true,

s′ = s with {State(th) = computed}

s −→ s′
BA COMPLETE

5.4.3. Translational semantics

The translational semantics specification of the behavior annex contains three parts: structure, guards and actions.
Structure. State Variables are mapped to the TASM environment variables with general types such as integer, real numbers and booleans.

States are translated into TASM internal variables. Each transition of the behavior annex is translated into a TASM rule. These rules will take
the place of the “Execution” rule of the periodic thread.

In each TASM rule, the condition is built from the current state of the thread (State(th)), the source state of the transition, and the guards

of the transition, while the actions of the rule include the actions of the transition and the destination state of the transition.
When all the transitions are translated, a new rule (Behavior Annex Completion) is added. Then the TASM machine executes the next

rule (i.e. Write Immediate Data) of the periodic thread.
Guards. The execution conditions which are logical expressions based on the state variables are considered. Here, we do not detail the

translation of behavior expressions. The corresponding function is denoted vGuardb.
Actions. We mainly consider the basic actions including message sending, assignments to variables, and timing. (1) Message sending is

expressed by the assignment of the port variables. (2) Assignments are expressed by the assignment of the corresponding environment
variables. (3) The behavior annex introduces the statements computation(min,max) and delay(min,max), which express the use of the CPU
and the suspension for a possibly non­deterministic period of time between min and max respectively. They are related to the transitions
and not to the states, which is consistent with the TASM semantics. Thus, the timing actions are translated into the duration of the
corresponding TASM rule.



In the TASM environment, we introduce the CurrentBAState variable valued in the set of states of the behavior annex and two booleans:
isInitial and isFinal.

Listing 7 The TASM enviro nme nt of the behavior annex of a periodic thread.

Trans BehaviorAnnexData(th)=
{ CurrentBAState: BAState;

isInitial: BA State → Boolean;
isFinal: BAState → Boolean;
...

}

We consider all the transitions of the behavior annex of a periodic thread, and the basic semantics specification is presented in Listing
8. It can be detailed when more complex guards and actions are considered.

Listing 8 The TASM rule s of the behavior annex of a periodic thread.

Trans Thread(th)=
...
⊕ //R ule Exec ution
Trans BehaviorAnnex(th)
⊕ //R ule Write Immediate Data
...
Trans BehaviorAnnex(th)=

⊗

BA = Beha vior(th )
∧BA tr ∈ Transitions(BA)

Time Time(BA tr)

(if State(th)=exec ution and CurrentBA State=SrcState(BA tr)
and Guar d(BA tr) =true then
CurrentBAState:=Dst State(BA tr)
⊗ Oport(th):=Actio n(BA tr)(Iport(th))

⊕ //R ule Behavio r Ann ex Com pletion
Time 0 (i f isFinal(CurrentBA State)=true then

State(th):=computed)

6. The proof of semantics preservation

In this section, we give the main idea of the proof of semantics preservation of the transformation from AADL to TASM, i.e. the exact
correspondence between execution steps defined by the AADL operational semantics and those defined by the semantics of the target
TASM model. Here, the semantics preservation is defined as a strong­simulation equivalence between the TTSs related to the AADL model
and to the TASM model respectively, which implies ACTL (the universal fragment of Computation Tree Logic) and ECTL (the existential
fragment of Computation Tree Logic) preservation and thus preservation of the UPPAAL query language. After a brief introduction to Coq,
we introduce the property language used to express atomic observers. Then, we introduce a generic definition of simulation equivalence
based on a mapping function on states and a mapping function on predicates. At last, simulation equivalence is applied in a compositional
manner on AADL and the obtained TASM models.

6.1. A brief introduction to Coq

Coq (Bertot and Castéran, 2004) is a theorem prover based on the Calculus of Inductive Constructions which is a variant of type theory,
following the “Curry­Howard Isomorphism” paradigm, enriched with support for inductive and co­inductive definitions of data types and
predicates. From the specification perspective, Coq offers a rich specification language to define problems and state theorems. From the
proof perspective, proofs are developed interactively using tactics, which can reduce the workload of the users. Moreover, the type­checking
performed by Coq is the key point of proof verification.

Here, we try to give an intuitive introduction to the Coq terminologies which are used in this paper. In the spirit of “Curry­Howard
Isomorphism” paradigm, types may represent programming data­types or logical propositions. So, the Coq objects used in this paper can
be sorted into two categories: the Type sort and the Prop sort:

• Type is the sort for data types and mathematical structures, i.e. well­formed types or structures are of type Type. Data types can be basic
types such as nat, bool, nat → nat, etc., and can be Inductive structures or Record. We use Fixpoint definitions to define functions over
inductive data types.

• Prop is the sort for propositions, i.e. well­formed propositions are of type Prop. We can define new predicates using Inductive and Record

(for conjunctions of properties).



6.2. Properties

In order to express complex properties on the models, we first introduce the atomic observers (Predicate) as for example “port p of

thread th has value v”, “thread th is in the given state s”, and “thread th gets the CPU”. From these observers, we build propositional formulas
(LP), and give their semantics over the TTS states (through the LPSat function).

We now give the corresponding Coq definitions:

Variable P r e d i cat e : Type .
Inductive LP: Type :=

LPPr ed : Pre d i ca t e → LP
| LPA nd : LP → LP → LP
| LPNot : LP → LP.

Variable Stat e : Type .
Variable Sa t : St ate → P r e d i cat e → Prop .
Fixpoin t LP Sat s t f : Prop :=

match f wit h
LPPr ed p ⇒ Sa t s t p

| LPAnd f 1 f 2 ⇒ LPSa t s t f 1 ∧ LPSat s t f 2
| LPNot f1 ⇒ ¬LPSat s t f 1
end .

Complex properties expressed using such as LTL, CTL, ACTL and ECTL logics are built from these atomic observers. In order to auto­
matically verify them, the high­level model (AADL) is transformed into the lower­level model (TASM) which can be checked and so that
properties are preserved. We consider the ACTL and ECTL logics, which are preserved through the simulation equivalence.

6.3. Simulation equivalence

Here, we just give a generic definition of strong simulation between two TTSs named TTS A (abstract semantics) and TTS C (concrete
semantics) respectively, including a mapping function on states and a mapping function on predicates. It will be concretized as two
instances in the proof, one for each direction (Section 6.4).

6.3.1. Mapping function on states

We introduce a rather complex definition of a mapping between the set of states (StateC) of TTS C and the set of states (StateA) of TTS A.
However, in order to build the image of abstract state, some other information may be needed. For this purpose, we introduce an auxiliary
state (mState) and define its evolution (mInit, mNext and mDelay).

Consequently, a generic definition of the mapping function on states is defined in Coq as follows:

Recor d ma pping : Ty pe := mkMapping {
mState : Type ;
mInit : StateC → mState ;
mNext : mSta te → State C → mStat e ;
mDelay : mStat e → State C → Tim e → mState ;
mabs : mState → StateC → StateA

} .

6.3.2. Mapping function on predicates

During the model transformation, atomic observers defined on the StateC must be expressed using a formula defined with atomic
observers over StateA (the p2lp function). This transformation is extended (LPTransfo) to any complex formula (f) over StateC.

The corresponding Coq definition is given as follows:

Fixpoint LPTransf o Pre d1 Pred 2 p2l p
( f : LP Pred1 ) : LP Pred2 :=

match f with
LPPr ed p ⇒ p2l p p

| LPAnd f1 f2 ⇒ LPAnd ( LPTransfo Pred1 Pred2 p2lp f1 )
( LPTransfo Pre d1 Pred 2 p2l p f 2 )

| LPNot f1 ⇒ LPNot ( LPTransfo Pred1 Pred2 p2lp f1 )
end .

6.3.3. Strong simulation

We now introduce the definition of strong simulation. It is based on the mapping function on states and the mapping function on
predicates. The simulation relation takes as parameters the functions tra and trc which translate common observers (defined by Pred)



Fig. 7. The refined strong simulation.

to propositional formulas on TTS A and TTS C respectively. Moreover, in order to restrict the set of considered states, we introduce an
invariant over the concrete state (StateC) and the auxiliary state (mState), which defines a superset of reachable states. It comes to having
a partial mapping from concrete states to abstract states. invInit, invNext and invDelay express the invariance property of inv. simuInit,
simuNext, simuDelay and simuPred express the strong simulation property between the two TTSs, including the correspondence of initial
state, discrete transitions, continuous transitions, and predicates.

Thus, the definition of strong simulation (Definition 3) is refined, as shown in Fig. 7.
The Coq definition is shown in the following:

Variable m: mapping .
Record simu ( Pred : Type) ( a : TTS StateA )

( c : TTS State C ) ( t r a : Pre d → LP ( Pre d ic a t e a ) )
( t r c : Pred → LP ( Pre d i cat e c ) ) : Type:= simuPrf {
inv : ( mSta te m) → State C → Prop ;
i n v I n i t : ∀ st , I n i t c s t
→ inv ( mIn it m s t ) s t ;

invDel ay : ∀ ex 1 s t1 s t2 d , Delay c s t1 d s t2
→ inv ex 1 s t 1
→ inv (mDelay m ex1 s t1 d) s t2 ;

invNext : ∀ ex1 s t1 st2 , Next c s t1 s t2
→ inv ex 1 s t 1
→ inv (mNext m ex1 s t 1 ) s t2 ;

s imuIn i t : ∀ st , I n i t c s t
→ I n i t a (ma bs m ( mIn it m s t ) s t ) ;

simuDe lay : ∀ ex 1 s t1 s t2 d , Delay c s t1 d s t2
→ inv ex 1 s t 1
→ De lay a (ma bs m ex 1 s t 1 ) d ( mabs m (mDelay m ex1 s t1 d) s t2 ) ;

simuNex t : ∀ ex 1 s t1 st2 , Next c s t1 s t2
→ inv ex 1 s t 1
→ Next a (ma bs m ex 1 s t 1 ) (ma bs m (mNext m ex1 s t1 ) s t2 ) ;

simuPred : ∀ ext st , inv ex t s t
→ ( ∀ p , LP Sat ( S a t i s f y c ) s t ( t r c p )
↔ LPSat ( S a t i s f y a ) (mabs m ext s t ) ( t ra p ) )

} .

We should notice that, in Coq, it is possible to ask the system to infer arbitrary terms, by writing underscores in place of specific values.
You may have noticed that we have been calling functions without specifying all of their arguments. For instance, the functions invInit,
invDelay and invNext omit the StateC argument. Coq’s synthesis mechanism automatically inserts underscores for arguments that it will
probably be able to infer.

An important property of strong simulation is preservation of ACTL (Baier and Katoen, 2008). More precisely, (1) if TTS A satisfies an
ACTL property, then TTS C satisfies it also; (2) if TTS C satisfies an ECTL property, then TTS A also satisfies it. In the following, we prove
strong simulation in both directions, which is called simulation equivalence. Thus it preserves ACTL and ECTL.

6.4. Simulation equivalence between the AADL semantics and its TASM transformation

We have given the operational semantics of the subset of AADL in TTS, named AADL TTS. Moreover, we get a second TTS which is named
TASM TTS. It is the TTS corresponding to the semantics of the TASM model obtained by translating the considered AADL model. The TTS
semantics of the subset of AADL, its translation to TASM and the TTS semantics of TASM, are constructed in the proof system (Coq).



Fig. 8. The proof sketch of the strong simulation equivalence.

Here, we use a subset of the proof mechanized by Coq to interpret the idea, which takes into account delayed connections between
periodic threads.

6.4.1. Compositional proof methodology

An AADL model can contain several periodic threads. We would like to prove the simulation equivalence between the operational
semantics of a thread and its translational semantics in TASM, and then the full semantics will be preserved by using synchronous product
in both sides. This method is called as compositional proof and it will reduce the complexity of the proof.

The theorem of simulation of synchronous product is given as follows.

Theorem 1. Let
∏

i=1,...,n

TTS(Ai) be the synchronous product of TTS(Ai), and
∏

i=1,...,n

TTS(Bi) be the synchronous product of TTS(Bi). If

∀iTTS(Ai) � TTS(Bi), then
∏

i=1,...,n

TTS(Ai) �

∏

i=1,...,n

TTS(Bi).

The proof of this theorem relies on the definition of simulation relation, including the correspondence of invInit, invNext, invDelay,
simuInit, simuNext, simuDelay, and simuPred.

6.4.2. Applying the compositional principle

Firstly, the abstract syntax and the operational semantics of the subset of AADL, the abstract syntax and the operational semantics of
TASM (named MM TTS), and the translation from AADL to TASM are specified in Coq.

Secondly, we prove the following theorems:

Theorem 2. For every periodic thread with delayed connections Th(i), its operational semantics is strongly simulated by its translational

semantics into TASM, noted TTS(Th(i)) � MM TTS(Trans Thread(Th(i))).

Theorem 3. For every periodic thread with delayed connections Th(i), its translational semantics into TASM is strongly simulated by its

operational semantics, noted MM TTS(Trans Thread(Th(i))) � TTS(Th(i)).

Here, TTS(Th(i)) is the synchronous product of TTSthread basic and TTSdispatcher defined in Definitions 6 and 7, respectively.
Trans Thread(Th(i)) is the parallel composition of TASM Thread(th) and Periodic Dispatcher(th) defined in Listing 3.

The sketch of the proof is shown in Fig. 8. Theorem AADL2TASM simu1 is declared for the direction from AADL to TASM, and Theorem
AADL2TASM simu2 is declared for the direction from TASM to AADL. The generic definition of strong simulation is concretized as two
instances: SR and SR’.

• In SR, the generic definition of mapping function on states is concretized as A2T: S → {env : Env ; upds : Upds}, namely, according to the
state S in the AADL TTS, we can get the corresponding environment Env and the next update set Upds in the TASM TTS; the generic
definition of mapping function on predicates is concretized as AP2TP; we also construct invariant instances (getInvariant AADL) on the
AADL TTS to restrict to a superset of reachable states.

• In SR’, the generic definition of mapping function on states is concretized as T2A: Env × mState → S, namely, according to the environment
Env in the TASM TTS, we can get the corresponding S in the AADL TTS, some information are given explicitly in the AADL TTS, but they are
implicit in the TASM rules, so these information need to be complemented into the TASM TTS (getAuxiliary TASM); the generic definition
of mapping function on predicates is concretized as TP2AP; we also construct invariant instances (getInvariant TASM) on the TASM TTS.

The actual definition of A2T and T2A are complex, because they depend on the management of the TASM update set which introduces
delays in assignments.

A Coq formalization of a subset of the paper contents restricted to delayed connections can be downloaded at
http://www.irit.fr/ Jean­Paul.Bodeveix/COQ/AADL2TASM/V0/. The proof represents about 1200 lines of Coq. The definitions of TTS, syn­
chronous product, simulation relation and some relative lemmas represent 13% of this code. The abstract syntax and formal semantics of



Fig. 9. The model transformation tool prototype AADL2TASM.

both AADL and TASM represent 27% of the code. The transformation from AADL to TASM represents 10% of this code. The rest of the code
corresponds to the simulation equivalence proofs (50% of the code).

7. Towards a verified tool chain

Actually, the first version of the model transformation tool prototype has been implemented in ATL (ATLAS Transformation Language)
directly. It is a good way to provide a basis for the Coq mechanization. Finally, we envision the extraction of a complete tool from the
mechanization in the future, that is the verified tool chain. Here we present the prototype.

The prototype is named as AADL2TASM. It has been designed as a plug­in of the OSATE modelling environment, as shown in Fig. 9.
The model transformation language ATL is used as the automatic transformation engine to express the mapping from AADL models to

TASM models. The source meta­model is the standard AADL meta­model, and the destination one is defined using the KM3 language.
The first technique of verification is achieved with UPPAAL by mapping each machine to a timed automaton. Here we reuse the translation

principle from TASM to UPPAAL given by the authors of TASM (Ouimet, 2008), and implement it using ATL. The verification properties can
be expressed by the UPPAAL’s query language which is a subset of ACTL ∪ ECTL. Notice that, the behavior annex is an abstraction of the
real system behavior where complex data manipulations are replaced by their duration (i.e. Time(BA tr) as shown in Listing 8). Moreover,
the translation to UPPAAL accepts the data types that are recognized by UPPAAL (records, arrays, bounded integers, enumerated types).
Furthermore, as with any model checking approach, the explored state space must not be too large, so the data usage inside the annex
should not be complex. In these contexts, we can verify data related safety, and liveness properties as well as schedulability (through
deadlock­detection). Other real­time properties (which need observer automata) will be considered in the future.

The second technique of verification is by using TASM Toolset to analyze the timing sequences and resource consumptions. First, it
generates graphs showing the time progression of individual main machines, to perform different kinds of analysis, such as average time
consumption and minimal and maximal time consumption regarding a specific rule. Second, it generates graphs showing the aggregate
resource consumption for each resource versus the time axis, to calculate the minimum, maximum, and average resource consumption
for each resource.

In order to extract a complete verified tool chain, a research perspective is to consider how executable code for dedicated model
transformation language such as ATL could be extracted from Coq.

8. Related work

The AADL description language is a widely used and largely studied standard for the specification of embedded real­time architectures
in the avionics and aerospace industry. To extract executable specifications from AADL descriptions in a way suitable for formal verification,
one of the easiest ways certainly is to use model transformation technologies, while taking the outmost care to guarantee the preservation
of the specification’s meaning through the process of its translation in the target modeling framework.

8.1. AADL model transformations

Chkouri et al. (2008) translate most of the AADL concepts into the BIP language, except for the mode change. BIP is a framework for
modeling heterogeneous real­time components using three layers: the lower layer describes behaviors, the intermediate layer describes
interactions, and the upper layer describes scheduling policies. It provides two categories of verification properties: deadlock detection by
using the tool Aldebaran, and some simple timing properties using observers.

Rolland et al. (2008) translate the AADL models into TLA+. TLA+expresses discrete time only. Moreover, the only tool for TLA+is TLC and
it is not very efficient.



The translation proposed by Sokolsky et al. (2006) mainly focus on the schedulability analysis of AADL models, a smaller subset (modes
and the behavior annex are excluded) is translated into the real­time process algebra ACSR, and use the ACSR­based tool VERSA to explore
the state space of the model, looking for violations of timing requirements. ACSR can express the notation of resource explicit in system
models.

Abdoul et al. (2008) translate a behavioral subset, minus mode changes, to IF, where they can analyze some safety properties of the
system. The behaviors are, however, not expressed using AADL’s behavior annex, but their own behavioral language.

In the work of Berthomieu et al. (2009), a synchronous subset of AADL with the behavior annex is translated into Fiacre, and then the
Fiacre model is compiled into Timed Petri Nets (TPN) for verification. However, the paper does not explain their semantics, and it just
presents the translation principle.

In the work of Ölveczky et al. (2010), a subset of AADL is translated into Real­Time Maude, and it provides an AADL simulator and LTL
model checking tool called AADL2Maude. Real­Time Maude is a formal real­time rewriting logic.

The translation proposed by Jahier et al. (2007) covers a subset of AADL except for the behavior annex, and is instead given as a program
in the synchronous language Lustre. The translation into Polychrony (Ma et al., 2009) mainly focuses on the multi­partitions structure of
an embedded architecture and aims at simulating and verifying a GALS (globally asynchronous locally synchronous) model from the given
AADL specifications.

Monteverde et al. (2008) propose Visual Timed Scenarios (VTS) as a graphical language for the specification of AADL behavioral prop­
erties. Then a translation from VTS to Timed Petri Nets is presented. Model­checking of properties expressed in VTS is enabled using
TPN­based tools.

Rugina et al. (2008) propose a dependability analysis tool (called ADAPT) on the AADL models. Its input is an AADL model annotated
with dependability­related information (through the AADL error model annex), and its output is a dependability evaluation model in the
form of a Generalized Stochastic Petri Net (GSPN). The GSPN model can be processed by existing dependability evaluation tools, to compute
quantitative measures such as reliability, availability, etc.

Bozzano et al. (2011, 2010) present a graphical toolset, called the COMPASS platform, for verifying AADL models by capturing functional,
probabilistic and hybrid aspects. Analyses are implemented on top of mature model checking tools and range from requirements validation
to functional verification, safety assessment via automatic derivation of FMEA (Failure Mode and Effects Analysis) tables and dynamic fault
trees, to performability evaluation, and diagnosability analysis.

The problem of formally analyzing AADL models is an absolutely crucial problem that has been addressed by a number of research groups
recently. Most of those efforts have targeted subsets of the large AADL for “functional analysis”, “schedulability analysis”, or “dependability
analysis”, etc. In this work, we consider a behavioral subset for functional analysis. Compared with the existing approaches, the main
advantage of TASM is its ability to manage resources. Indeed, now we just consider simple resource information such as processor usage in
the transformation. However, all the resource declarations contained in an AADL model can be translated to TASM resources. Their usage
could be checked by dedicated predicates. Then it would be possible to verify that a given resource is not overloaded. Furthermore, a formal
proof of the semantics preservation of the transformation has not been considered by them. Thus, the novel aspects of this work are the
verification of the AADL transformation and the ability to consider resource usage.

8.2. The verification methods of model transformations

There are many approaches to gain assurance that the transformation or the translation of a specification or a program is semantic­
preserving. This can be done by directly building a theorem­prover­verified compiler (Leroy, 2012, 2009), by using translation validation
(Pnueli et al., 1998; Necula, 2000), proof­carrying code (Necula, 1997), semantics­anchoring method (Chen et al., 2005; Narayanan and
Karsai, 2006), etc.

A verified compiler is one specified with a theorem prover to formally check that its transformation algorithm defines a perfect match
between the semantics of the source and target languages. This is the approach adopted in this paper.

Translation validation consists of using software model­checking techniques to verify the equivalence between a program and its
translation.

Proof­carrying consists of returning the transformed program together with a proof of its correctness (the traces of deductions which
yield the program) and to check that proof afterwards.

Semantics anchoring is a technique to specify the semantics of DSMLs (Domain Specific Modeling Languages). It relies on the observation
that the semantics of DSMLs can be represented by a small set of semantics units such as FSMs (Finite State Machines), Timed Automata, etc.,
and these semantics units have a common semantics framework, that is ASMs (Abstract State Machines). Based on the semantics­anchoring
method, the source and target models can be transformed to the semantics unit respectively, thus verify their equivalence.

Except for semantics preservation, there is another viewpoint for the verification of model transformations, such as the work of Guerra
et al. (2013) and Kessentini et al. (2011). They verify some transformation requirements or properties on the execution of actual model
transformations written by a dedicated language like ATL, QVT or Kermeta. Lin et al. (2005) and Mottu et al. (2008) research model
transformation testing methods. Cariou et al. (2009) propose to specify model transformation using pre and post conditions on the source
and target meta­model expressed using OCL (Object Constraint Language) constraints. Cabot et al. (2010) propose verification and validation
techniques for model­to­model transformations based on the analysis of a set of OCL invariants automatically derived from the declarative
description of the transformations. These invariants state the conditions that must hold between a source and a target model in order to
satisfy the transformation definition, i.e. in order to represent a valid mapping.

In the area of AADL research, the related work always use manual validation. The work of Bodeveix et al. (2005) formalizes a subset of
the AADL meta­model using the B specification language and the Isabelle proof assistant in order to prove transformations of AADL models
correct. Filali­Amine and Lawall (2010) define a refinement of a synchronous subset of AADL using the Event B method, and give simplified
proof obligations. Bertrand et al. (2008) translate the AADL mode change protocol into Timed Petri Nets, and verify some properties to
validate the proposed translation. Another way is to compare alternative semantics for the same language. In one of our preview work (Pi
et al., 2009), we present a comparative study of Fiacre and TASM to define an AADL subset.



9. Conclusion and future work

We have presented a translation of AADL into TASM and a methodology to prove the semantics preservation under the assumption that
the reference semantics expressed in TTS are correct. However, giving two semantics, the TTS­based one and the translational­based one,
which are proved to be equivalent, increases the confidence on the interpretation of the informal semantics. Generally, we hope the idea,
i.e., writing a prototype first, doing mechanization based on the prototype and then extracting a verified model transformation tool from
the mechanization, can be common to other model to model transformation processes.

The subset of AADL we consider includes periodic threads, data port communications, mode changes and the behavior annex. First,
the reference semantics is formalized as a TTS. Second, the translational semantics is formalized by a family of semantics function which
inductively associates a TASM fragment with each AADL construct. Third, the theorems and proof of simulation equivalence between the
two formal semantics are mechanized by the Coq proof assistant. Our formal semantics and proof of semantics preservation for AADL is
an important contribution to the use of AADL for developing safety­critical applications.

Our experience is encouraging, but much more work remains ahead.
Firstly, increasingly larger AADL subsets should be formalized to achieve the goal of giving a formal semantics to the entire AADL

standard and having verification and simulation tools for AADL models based on such semantics. For example, a larger subset including
such as sporadic and aperiodic thread, event port, event data port, data component, complex scheduling, etc., has been considered in our
tool prototype. We will consider this larger subset in the formal proof part in future.

Secondly, in this paper, we just consider simple resource information in the transformation. However, all the resource declaration in
the AADL models can be translated to TASM resources. Their usage could be checked by dedicated predicates. Then it would be possible
to verify that a given resource is not overloaded. To add such capability, we will extend the definition of TTS with resource information.
Intuitionally, the resource properties are also preserved during the transformation.

Thirdly, we will consider how executable code for dedicated model transformation language such as ATL could be extracted from Coq.
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