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h i g h l i g h t s

• INTEGRAL/SPI X/γ -ray spectrometer data analysis.
• Large astronomical datasets arising from the simultaneous analysis of years of data.
• Resolution of a large sparse system of equations; the solution and its variance.
• The Multifrontal Massively Parallel Solver (MUMPS) to solve the equations.
• MUMPS A−1 feature to compute selected inverse entries (variance of the solution etc.).

a b s t r a c t

Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge,
especially for long cumulated observation times. The INTEGRAL/SPI X/γ -ray spectrometer is an instrument
for which it is essential to process many exposures at the same time in order to increase the low signal-
to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are
inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires
computing not only the solution of a large system of equations, but also the associated uncertainties. We
aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse,
we have used some popular methods for the solution of large sparse linear systems; we briefly review
these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution
of the system of equations. We also need to compute the variance of the solution, which amounts to
computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This
can be achieved through one of the latest features of the MUMPS software that has been partly motivated
by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness
on astrophysical problems requiring the processing of large datasets simultaneously, such as the study
of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising
from SPI data processing and to obtain both their solutions and the associated variances. In conclusion,
thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with
both a reasonable execution time and a low memory usage.

∗ Corresponding author at: Université de Toulouse, UPS-OMP, IRAP, Toulouse,
France. Tel.: +33 561558603.

E-mail address: lbouchet@irap.omp.eu (L. Bouchet).
1 Based on observations with INTEGRAL, an ESA project with instruments and

science data center funded by ESA member states (especially the PI countries:
Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic and
Poland with participation of Russia and the USA.

1. Introduction

Astronomy is increasingly becoming a computationally inten-
sive field due to the ever larger datasets delivered by observational
efforts to map ever larger volumes and provide ever finer de-
tails of the Universe. In consequence, conventionalmethods are of-
ten inadequate, requiring the development of new data reduction
techniques. The SPI X/γ -ray spectrometer, aboard the INTEGRAL



observatory, perfectly illustrates this trend. The telescope is ded-
icated to the analysis of both point-sources and diffuse emissions,
with a high energy resolution (Vedrenne et al., 2003). Its imaging
capabilities rely on a coded-mask aperture and a specific observa-
tion strategy based on a dithering procedure (Jensen et al., 2003).
After several years of operation, it also becomes important to be
able to handle simultaneously all the data, in order, for example,
to get a global view of the Galaxy emission and to determine the
contribution of the various emission components.

The sky imaging with SPI is not direct. The standard data analy-
sis consists in adjusting a model of the sky and instrumental back-
ground to the data through a chi-square function minimization or
a likelihood function maximization. The related system of equa-
tions is then solved for the intensities of both sources and back-
ground. The corresponding sky images are very incomplete and
contain only the intensities of some selected sky sources but not
the intensities in all the pixels of the image.Hence, images obtained
by processing small subsets of data simultaneously cannot always
be combined together (co-added) to produce a single image. In-
stead, in order to retrieve the low signal-to-noise ratio sources or to
map the low surface brightness ‘‘diffuse’’ emissions (Bouchet et al.,
2011), one has to process simultaneously several years of data and
consequently to solve a system of equations of large dimension.
Grouping all the data containing a signal related to a given source
of the sky allows to maximize the amount of information on this
specific source and to enhance the contrast between the sky and
the background.

Ideally, the system of equations that connects the data to the
sky model (where the unknown parameters are the pixels inten-
sities) should be solved for both source intensities and variability
timescales. This problem, alongwith the description and treatment
of sources variability, is the subject of another paper (Bouchet et al.,
in press).

It is mandatory, for example when studying large-scale and
weak structures in the sky, to be able to process large amounts
of data simultaneously. The spatial (position) and temporal (vari-
ability) description of sources leads to the determination of several
tens of thousands of parameters, if ∼6 years of SPI data are pro-
cessed at the same time. Consequently, without any optimization,
the systems to be solved can exceed rapidly the capacities of most
conventional machines. In this paper we describe a technique for
handling such large datasets.

2. Material and methods

2.1. The SPI spectrometer

SPI is a spectrometer providedwith an imaging system sensitive
both to point-sources and extended source/diffuse emission.
The instrument characteristics and performances can be found
in Vedrenne et al. (2003) and Roques et al. (2003). Data are
collected thanks to 19 high purity Ge detectors illuminated
by the sky through a coded-mask. The resulting Field-of-View
(FoV) is ∼30° and the energy ranges from 20 keV to 8 MeV. The
instrument can locate intense sources with an accuracy of a few
arc minutes (Dubath et al., 2005).

2.2. Functioning of the ‘‘spectro-imager’’ SPI

The coded mask consists of elements which are opaque (made
of tungsten) or transparent to the radiation. Photons coming from
a certain direction cast a shadow of the mask onto the detectors
plane. The shadowgram depends on the direction of the source
(Fig. 1). The recorded counts rate in each detector of the camera
is the sum of the contribution from all the sources in the FoV.
The deconvolution consists of solving a system of equation which
relates a sky model to the data through a transfer function. In the
case of SPI, the imaging properties rely on the coded aperture, but
also on a specific observing strategy: the dithering.

Fig. 1. SPI imaging principle. The mask consists of elements transparent or opaque
to the radiation. The opaque elements (made of tungsten) are shown in black. The
shadowgram of the mask casts onto the detector plane (camera) depends on the
source direction. Here the counts in the different detectors of source-1 and source-
2 are shown in black and red. The counts recorded by the detectors are the sum
of all the contributions from all the sources in the FoV. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

2.2.1. Dithering and sources variability

The reconstruction of all the pixels of the sky image enclosed in
the FoV is not possible from a single exposure. Indeed, dividing the
sky into ∼ 2° pixels (the angular resolution), we obtain, for a 30°
FoV, ∼(30°/2°)2 = 225 unknowns. However, a single exposure
contains only 19 data values which are the number of observed
counts in the 19 Ge detectors and does not permit us to obtain the
parameters necessary to determine themodel of the sky and back-
ground. The related system of equations is thus undetermined. The
dithering observation technique aims to overcome this difficulty.

By introducing multiple exposures for a given field that are
shifted by an offset that is small compared to the size of the FoV,
it is possible to increase the number of equations, by grouping ex-
posures, until the system becomes determined and thus solvable.
An appropriate dithering strategy (Jensen et al., 2003) has been
used where the spacecraft continuously follows a dithering pat-
tern throughout an observation. In general, the pointing direction
varies around a target by steps of 2°within a five-by-five square or
a seven-point hexagonal pattern. A pointing (exposure) lasts be-
tween 30 and 60 min. Thus, the dithering allows to construct a
solvable system of equations.

However, in addition to the variable instrumental background,
sources are also variable on various timescales ranging from hours
(roughly the duration of an exposure) to years. This is not a
major problem at high energy (E & 100 keV), since there are only
few emitting sources, whose intensities are rather stable in time
with respect to the statistics. At lower energies (E . 100 keV)
and in most cases, the source intensities vary during the time
spanned by the all the exposures. The chi-square, of the associated
least-square problem, for this group can be relatively high, if
sources intensity variations are not taken into account. In spite of
this, it is possible to include a model of the source intensity
variations in the formulation of the problem and to re-optimize the
system of equations accordingly (Bouchet et al., in press).
Nevertheless, including sources variability in the system of
equations increases the number of unknowns to determine (2.2.3)
since intensities, in each ‘‘time-bin’’ (a segment of time where the
intensity of a given source does not change statistically), are to
be determined simultaneously along with the parameters which
model the instrumental background.



2.2.2. Cases where it is better to process large amount of data
simultaneously

It is impossible from a single exposure (19 data values) to ob-
tain the sky image in the 30° FoV; only a coarse image containing
at most 19 sources can be obtained. This coarse image is under-
sampled and contains information on only 19 pixels (there is no
information on the other pixels). Hence, images cannot always be
combined together (co-added) to produce a single image. Further-
more, crowded regions like the Galactic Center contain hundreds
of sources and thus a single exposure cannot provide the amount of
information needed, even to build only a coarse image. The group-
ing of the exposures, by selecting all those that contain signal on a
specific sky target, can provide the necessary information. The FoV
spanned by these exposures is large (30°–60°) and contains nu-
merous sources. Finally, as the ‘‘diffuse’’ emission study involves
the entire sky, it is necessary to process large amounts of data to-
gether to enhance the contrast between the sky and the instrumen-
tal background, which implies to solve a large system of equation.

2.2.3. Problem formulation

The signal (counts and energies) recorded by the SPI camera
on the 19 Ge detectors is composed of contributions from each
source in the FoV plus the background. For ns sources located in
the field of view, the data Draw

dp obtained from detector d during an
exposure (pointing) p, for a given energy band, can be expressed
by the relation:

Draw
dp =

ns
∑

j=1

Rdp,jI
s
p,j + B

bg
dp + ǫdp (1)

where Rdp,j is the response of the instrument for source j (function
of the source direction relative to the telescope pointing axis), Isp,j

is the flux of source j during pointing p and B
bg
dp the background

both recorded during the pointing p for detector d. ǫdp are the
measurement errors on the data Draw

dp , they are assumed to have
zero mean, to be independent and normally distributed with a

known variance σdp (ǫdp ∼ N(0, [σ 2
dp]) and ǫdp =

√

Draw
dp ).

For a given pointing p, Draw
dp , Rdp,j, and B

bg
dp are vectors of nd (say

nd = 19 detectors2) elements. For a given set of np exposures, we
have a system of np × nd equations (Eq. (1)). To reduce the number
of free parameters related to background, we take advantage of the
stability of relative counts rate between detectors and rewrite the
background term as:

B
bg
dp = Ibgp × Ud × tdp (2)

where I
bg
p is a normalization coefficient per pointing related to

the background intensity, Ud is a background count rate pattern
(uniformity map) on the SPI camera for detector d, and tdp the
effective observation time for pointing p and detector d. The
number of parameters necessary tomodel the background reduces
to np if U is assumed to be known.3 However, in some cases it can
be determined while processing the data (Appendix A.4).

The two extreme cases, in terms of number of parameters to be
determined, are

• First, when the sources and background intensities are assumed
to be constant throughout all the observation (time spanned by
the exposures), the relation between the data and the skymodel
can be written, omitting the detector indices, as

2 The number of functioning detectors could be nd = 16, 17, 18 or 19 for single
events and up to 141, when all themultiple events are used in addition to the single
events (Roques et al., 2003).
3 Derived from ‘‘empty-field’’ observations (Bouchet et al., 2010).

Draw
p =

ns
∑

j=1

RpjI
s
j + PpI

bg + ǫp

with Pp = tdp × Ud.

(3)

The aim is to compute the intensities Is(j) of the ns sources and
the background relative intensity Ibg . Therefore, the relation can
be written in matrix form, as
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We can rewrite the system in a more compact form as

y = H0x + ǫ or yi =
ns+1
∑

j=1

hijxj + ǫi for i = 1, . . . ,M (4)

where H0 (elements hij) is an M × (ns + 1) matrix and M =
nd × np. The parameters to be determined, x = (Ibg , Is1, . . . , I

s
ns

)
is a vectors of length ns+1. The data y = (Draw

1 ,Draw
2 , . . . ,Draw

np
)

and the associated statistical errors ǫ = (ǫ1, ǫ2, . . . , ǫnp) are
vectors of lengthM .

• Second, if the background or the sources are variable on the
exposure timescale, the number of unknowns (free parameters)
of the set of np × nd equations is then (ns + 1) × np (for
the ns sources and the background intensities, namely Is and
Ibg ). This leads, unless the number of sources is small, to an
underdetermined system of equations.4

Fortunately, in real applications, many sources vary on timescales
larger than the exposure. This leads to a further reduction of the
number of parameters compared to the case where all sources
vary on the exposure timescale. In addition, many point sources
are weak enough to be considered as having constant flux within
the statistical errors, especially for higher energies (E & 100 keV).
Then the np × ns parameters related to sources will reduce into

N
eff
s parameters and, similarly, Nb for the background. As these

parameters have also a temporal connotation, they will hereafter
be referred to as ‘‘time-bins’’.

If the source named or numbered J is variable, then the total du-
ration covered by the np exposures is divided into KJ sub-intervals
where the source intensity can be considered as stable/constant
regarding the data statistics. The solution xJ is expanded in KJ seg-

ments, it takes the value ‘‘time-bins’’ s
J
k in segment k, and can be

written in compact notation

xj =
KJ
∑

k=1

s
J
kI

J
k with

{

I
J
k = 1 if t ∈ [t Jk−1, t

J
k[

I
J
k = 0 otherwise.

Actually the instants t
J
k correspond to the exposure acquisition

time (exposure number), with t0 = 1 and t
J
k = np + 1. There

is at least one and at most np time segments for each source J

(xJ = [sJ1,
..., s

J
KJ

] becoming a vector of length KJ ). The matrix H0

(Eq. (4)) is to be modified accordingly.
When expanding matrix H0, column J is expanded in KJ new

columns, hence the number of intensities (unknowns) increases.

4 With the Compressed Sensing approach (Bobin et al. (2008),Wiaux et al. (2009)
and references therein), it is possible to find a sparse solution even if the system is
underdetermined and for systems in which the matrix is sparse.
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Box I.

Schematically H0 (M × (ns + 1)) is mapped into a matrix H
(M × N), N being the sum of all sources intervals (N =

∑ns
J=0 KJ ),

that is the number of ‘‘time-bins’’ (the index J = 0 correspond
to the background). Matrix H(1 : M, 1 : K0) is related to the
background while H(1 : M, K0 + 1 : N) is related to the sources
response. Parameters x(1 : K0) and x(K0 + 1 : N) are related to
background and source intensity variations with the time (number
of exposures). Box I illustrates schematically how the matrix H is
derived from the matrix H0.

Finally, the relation between the data and the sky model,
similarly as in Eq. (4), is

H x = y + ǫ. (5)

Physically, H corresponds to the transfer function or matrix,
y to the data and x to the unknown intensities (sources plus
background) to be determined (a vector of length N).

Taking into account the variability of sources and instrumental
background increases the size of the system of equation and
the number of unknowns, but also increases the sparsity of the
matrix related to the system of equations, which means that
the underlying matrices have very few non-zero entries. In our
application, the matrix H0 is sparse, thus matrix H is even sparser.
Objectivemethods to construct thematrixH fromH0 are described
in Bouchet et al. (in press).

To give an idea, for the dataset which corresponds to (∼6 years

of data, the number of free parameters N = N
eff
s + Nb to be

determined are between N ∼ 5000 and N ∼ 90 000 depending
on the energy band considered and hypotheses made on sources
and background variability timescale (Section 2.3).

2.3. Material

The material is related to the analysis of data accumulated be-
tween 2003 and 2009 with the spectrometer SPI. The astrophysi-
cal application is the study of diffuse emission of the Galaxy. The
details can be found in Bouchet et al. (2011). The goal is to disen-
tangle the ‘‘diffuse’’ emission (modeled with 3 spatially extended
components) from the point-sources emission and instrumental
background. We need to sample these large-scale structures ef-
ficiently over the entire sky and consequently use the maximum
amount of data simultaneously, since a single exposure covers only
one-hundredth of the total sky area. The datasets consist of 38699
exposures that yield M = 649 992 data points. In most cases con-
sidered here, the background intensity is considered to be quite
stable on a ∼6 h timescale, which corresponds to Nb ≃ 5870 un-
knowns.

(a) The highest energy bands (E & 100 keV) are less problematic in
terms of number of parameters to determine, as illustrated by
the 200–600 keV band. The skymodel contains only 29 sources
which are essentially not variable in time (given the instrument
sensitivity). The number of unknowns is N ≃ 5900.

(b) The lowest energy bands (E . 100 keV) are more problematic.
We use the 25–50 keV band. The sky model contains 257
sources variable on different timescales.When the background
intensity is assumed to vary on ∼6 h timescale, N ≃ 22 500
‘‘time-bins’’ intensity are to be determined.

In some configurations, essentially used to assess the results,
background intensity and/or strongest variable sources vary on
the exposure timescale, and the number of unknowns could
be as high as N ≃ 55 000 to N ≃ 90 000. Nevertheless,
the matrices associated with these problems remain relatively
structured.

(c) To avoid excessively structured matrices, we generate also
matrices H , with a variable number of columns, the number
of segments KJ for a particular source being a random number
between 1 and np. This results in a different number of
parameters N .

Another astrophysical application is the studyof a particular source
or sky region, here the crowded central region of the Galaxy. In
this case, it is possible to use a smaller number of exposures. We
use 7147 exposures which cover a sky region of radius 30° around
the Galactic center. We measure the intensity variations of a set of
132 sources. The number of parameters to determine N = 3578
is relatively small. Details can be found in Bouchet et al. (in press).
A second matrix, used for verification purposes, has N = 9437. It
corresponds to the case where some sources are forced to vary on
shorter timescales.

The material consists of rectangular matrices H and symmetric
square matrices A (A = HTH) related to the above physical
problems (2.2.3). The characteristics of some of these matrices are
described in Table 1.

The system we use in the experiments consists of an Intel i7-
3517U processorwith 8 GBmainmemory.We ran the experiments
on a single core, although our algorithms are amenable to
parallelism.

2.4. Methods

The mathematical problem described in Section 2.2.3 and
developed in 2.4.1 requires the solution of several algebraic
equations. First, if the chi-square statistic is used, a linear least-
squares problem has to be solved to estimate the parameters of the
model. Second, elements (entries) of the inverse of a matrix have
to be computed in order to determine the error bars (variances
of these parameters). Third, in some cases, the parameters are
adjusted to the data through a multi-component algorithm based
on likelihood tests (Poisson statistics); this problem leads to a non-
linear system of equations (Appendix A.1).

These three problems can be reduced to solving a linear system
with a square matrix: a linear least-squares problem minx ‖Hx −
y‖ can be transformed into a square system Ax = b by use of



Table 1

Sparsity of matrices H and HTH .

N ρ(H) (%) ρ(A) (%)

3578 2.67 2.96 Central galaxy (27–36 keV)
9 437 1.01 1.05
5900 0.12 0.13 Diffuse emission 200–600 keV

22503 0.18 0.28 Diffuse emission 25–50 keV
55333 0.07 0.09

149526 0.03 0.04 Simulation (25–50 keV)

Notes: ρ(Matrix) is the so-called density of the matrix: the ratio between the
number of non-zero elements in the matrix and the total number of elements in
the matrix (M × N for H and N2 for A = HTH , where M is the number of rows of
H . The matrix H arising from the diffuse emission study have M = 672 495 rows.
The number of non-zero elements is constant nz = 27 054 399 for the matrices
with N ≥ 22 503 corresponding to the 25–50 keV band and nz = 4 677 821 for
the 200–600 keV band. The matrix with N = 3578 has M = 124 921 rows and
nz = 11 948 840 non-zero elements.

the normal equations5 (A = HTH and b = HTy). Similarly,
computing entries of the inverse of a matrix amounts to solving
many linear systems, as described in detail in Section 3.3.1. For
the abovementionednon-linear problem,we chose aNewton-type
method; this involves solving several linear systems as well. Our
problems are large, but sparse (cf. Table 1), which justifies the use
of sparse linear algebra techniques. In Section 3.1, we describe how
we selected a method suitable for our application.

2.4.1. The least-square solution (LSQ)

The system is, in most cases, overdetermined (there are more
equations – or measures here – than unknowns), therefore there
is (generally) no exact solution, but a ‘‘best’’ solution, motivated
by statistical reason, obtained by minimizing the following merit
function, which is the chi-square6:

χ2 =
M

∑

i=1











yi −
N
∑

j=1

hijxj

σi











2

(6)

y = (y1, . . . , yM) is vector of length M representing the
data, [Σ] a diagonal matrix of order M whose diagonal is
(σ1, . . . , σM ), where σi is the measurement error (standard
deviation) corresponding to the data point yi. These quantities are
assumed to be known (formally σi = √

yi). H = hij is a matrix of
sizeM × N . The least-square solution x = (x1, . . . , xN) is obtained
by solving the following normal equation:

(HT
[

Σ−2
]

H)x = HT [Σ−2]y or as Ax = b. (7)

Once the solution has been computed, the uncertainties on
the estimated solution x are needed as well. The corresponding
variance can be obtained by computing the diagonal of A−1:

Var(xi) ∝ a−1
i,i where a−1

i,j refers to (A−1)i,j. (8)

3. Theory

3.1. Processing large datasets: efficient solution of large sparse
systems of equations

Sparse matrices appear in numerous industrial applications
(mechanics, fluid dynamics,. . . ), and the solution of sparse linear
systems has been an active field of research since the 1960s. Many
challenges still arise nowadays, because industrial applications

5 For clarity, we omit to weight the matrix H and the data by the inverse of the
data standard deviation, see Section 2.4.1
6 The number of counts per detector is high enough to use the Gaussian statistics.

involve larger and larger number of unknowns (up to a few billions
nowadays), and because hardware architectures are increasingly
complex (multi-core, multi-GPU, etc.).

Exploiting sparsity can significantly reduce the number of
operations and the amount of memory needed to solve a linear
system. Let us take the example of a partial differential equation to
be solved on a 2D physical domain; the domain can be discretized
on a k × k 2D grid and using, say, finite differences, the equation
can be transformed into a sparse linear system with N = k ×
k unknowns. Without exploiting sparsity, this system would be
solved in O(N3) operations (using an exact method), with a
memory usage in O(N2). It has been shown that, for this particular
case, the number of arithmetic operations can be reduced to
O(N3/2), and space complexity to O(N logN) by exploiting the
sparsity of the matrix (Hoffman et al., 1973).

Many methods exist for solving sparse linear systems (Duff
et al., 1989; Saad, 1996). Two main classes can be distinguished:
direct methods, that rely on a matrix factorization (e.g., A =
L U), and iterative methods, that build a sequence of iterates that
hopefully converges to the solution. Direct methods are known
to be numerically robust but often have large memory and
computational requirements, while iterative methods can be less
memory-demanding and often faster but are less robust in general.
Iterativemethods often need to be preconditioned, i.e., to be applied
to a modified system M−1Ax = M−1b for which the method will
converge more easily; a trade-off has to be found between the
cost of computing and using the preconditioner M and how the
preconditioner improves the convergence. The choice of a method
is often complicated and strongly depends on the application. In
our case, we choose to use a direct method for the following
reasons:

• Memory usage is often a bottleneck that prevents the use
of direct methods, but with the matrices arising from our
application, direct and iterativemethods have roughly the same
memory footprint. This is explained in the next section.

• The matrices from our application are numerically challenging;
we found that unpreconditioned iterative methods (we tried
GMRES) have difficulties converging and that a direct method
that does not implement robust numerical features is also likely
to fail (we illustrate this in Section 5).

• We need to compute error bars, which amounts to solving a
large number (O(N)) of linear systemswith different right-hand
sides but the samematrix. This is particularly suitable for direct
methods; indeed, once the matrix of the system is factored
(e.g., A = L U), the factors can be reused to solve for different
right-hand sides at a relatively inexpensive cost. We describe
this in Section 3.3.1.

In thiswork,weuse theMUMPS (MultifrontalMassively Parallel
Solver) package. MUMPS (Amestoy et al., 2001, 2006) aims at
solving large problems on parallel architectures. It is known to be
very robust numerically, by offering a large variety of numerical
processing operations, and provides a large panel of features. In the
following section, we briefly describe how sparse direct methods
work. We introduce the basic material needed to understand the
algorithm used for the computation of error bars (described in
Section 3.3.1).

3.2. Sparse direct methods

Direct methods are commonly based on Gaussian elimination,
with the aim to factorize the sparse matrix, say A, of the linear
system Ax = b into a product of ‘‘simpler’’ matrices called factors.
Typically, A can be factored into A = L U where L and U are lower
and upper triangular matrices respectively, or A = L D LT , where



Table 2

Number of non-zeros in the original matrix A and in the L factor of the A = L D LT

factorization for different problems of our experimental set.

Matrix size 3578 9437 22503 55333 149526

nz(A) 378475 932143 1436937 2705492 9379127
nz(L) 519542 1380444 2885821 9189447 14432264

D is a diagonal matrix if A is symmetric (which is the case in our
application).

Sparse direct methods depend on the non-zero pattern of the
matrix and are optimized in that sense; specialized mathematical
libraries for tridiagonal, banded, cyclicmatrices are common. If the
pattern ismore complex, then themethod usually consists of three
phases: analysis, factorization and solution.

3.2.1. Analysis

The analysis phase applies numerical and structural preprocess-
ing to the matrix, in order to optimize the subsequent phases. One
of themain preprocessing operations, called reordering, aims at re-
ducing the fill-in, i.e., the number of non-zero elements which ap-
pear in the factors but do not exist in the initial matrix; this step
consists in permuting the rows and columns of the initial matrix
in such a way that less fill-in will occur in the permuted matrix.
Table 2 shows the amount of fill-in for different problems com-
ing from our astrophysical application when the matrices are per-
muted using the nested-dissection method. For each matrix, the
number of non-zero elements in the original matrix A and in the
L factor of the L D LT factorization of A are reported. Note that in
our application, the fill-in is not very large: the number of non-
zero elements in the factors is of the same order of magnitude as
in the original matrix. As a result, the use of sparse, direct methods
is likely to provide a good scalability with respect to the size of the
matrix produced by the application.Moreover, this implies that, for
our application, direct and iterative methods will have roughly the
same memory requirements; indeed, in an unpreconditioned iter-
ative method, the memory footprint is mainly due to the storage
of the matrix A, while the major part of memory requirements of
direct methods comes from the factors. Note that, while our appli-
cation exhibit low amount of fill-in, this not the case in other appli-
cations; in many problems, especially those involving PDEs on 3D
physical domains, the number of non-zero coefficients in the fac-
tors can be as big as one hundred times more than in the original
matrix. In this case, using an iterative method can be interesting
memory-wise.

An important step of the analysis phase is the symbolic factoriza-
tion: this operation computes the non-zero pattern of the factors,
on which the numerical factorization and the solution will rely.
The symbolic factorization computes the structure of the factors
by manipulating graphs, and also a structure called the elimination
tree, a tree-shaped graphwithN vertices. This tree represents tasks
dependencies for the factorization and the solution phases.We de-
scribe inmore details the elimination tree since it is a key structure
to explain and understand (see Section 3.3.1) how to accelerate the
solution phase since computing entries in the inverse of the ma-
trix corresponds to incomplete traversals of the elimination tree.
Fig. 2(b) shows an elimination tree and we use it to illustrate some
definitions: one of the nodes is designated to be the root; in the
figure, this is node 6. For our purpose, the root is the node corre-
sponding to the variable of the linear system that is eliminated last.
An ancestor of a vertex v is a vertex on the path from v to the root.
The parent (or father) of v is its first ancestor; all the nodes but the
root have a parent. For example, on the figure, nodes 6 and 5 are
ancestors of 4; 5 is the parent of 4. A child of a vertex v is a vertex
of which v is the parent. For example, 4 and 3 are the children of

5. A vertex without children is called a leaf ; 1 and 2 are leaves. De-
scendants of a vertex v are all the nodes in the subtree rooted at v;
for example, 1, 2, 3 and 4 are descendants of 5.

In the following subsections (factorization and solution phase),
we describe briefly how a sparse direct solver uses elimination
trees; we will also rely on this notion in Section 3.3.1 for the
computation of error bars. Further details about the construction
and the role of elimination trees in sparse solvers are given in
Liu (1990).

3.2.2. Factorization

After the preprocessing performed during the analysis phase,
the numerical factorization takes place and the matrix A is
transformed into a product of factors (e.g., L U). The factorization
consists in traversing the elimination tree following a postorder,
that is a topological ordering (i.e. each parent is visited after
its children) where the nodes in each subtree are visited
consecutively. In Fig. 2(b), 1–4–2–3–5–6 is, for example, a
postorder. At each node, a partial factorization of a dense matrix is
performed. Note that nodes that belong to different branches can
be processed independently, which is especially useful in a parallel
setting.

The factorization phase tries to follow as much as possible the
preparation from the analysis phase, but sometimes, because of
numerical issues (typically, division by a ‘‘bad pivot’’, i.e. a very
small diagonal entry that could imply round-off errors), it has to
adapt dynamically: the structure of the factors and the scheduling
of the tasks can be modified on the fly.

3.2.3. Solution phase

Once the matrix has been factored, the linear system is solved.
For example, in the case of the L U factorization, the system Ax = b
becomes LUx = b and is solved in two steps (two solutions of
triangular systems):
{

z = L−1b ‘‘Forward substitution’’

x = U−1z ‘‘Backward substitution’’.

The forward substitution follows a bottom-up traversal of
the elimination tree as in the factorization, while the backward
substitution follows a top-down traversal of the tree. At each node,
one component of the solution is computed, and some updates
are performed on the dependent variables (ancestor nodes for the
forward phase, descendant nodes for the backward phase).

3.3. Computing error bars: partial computation of the inverse of a
sparse matrix

In our astrophysical application, once the solution, either for
the linear or non-linear problem, has been found, it is necessary
to compute the variances of the parameters of the fitted function.
In the case of multiple regressions such as least squares problems,
the standard deviation of the solution can be obtained by inverting
the Hessian or covariance matrix. However, since the inverse of a
sparse matrix is structurally full, it is impractical to compute or
store it (Duff et al., 1988). In our case, the whole inverse of the
covariancematrix is not required: sinceweonlywant the variances
of the parameters (not their covariances), we only need to compute
the diagonal elements of the inverse.

Some work has been done since the 1970s in order to compute
a subset of elements of the inverse of a sparse matrix. One
of the first works is Takahashi et al. (1973) which has been
extended in Campbell and Davis (1995); this approach relies on
a direct method (i.e. on a factorization). An iterative method
has been proposed in Tang and Saad (2009) for matrices with
a decay property. Some methods have also been developed for



(a) Factors L + LT . (b) Elimination tree of A.

Fig. 2. The factors and the elimination tree of a symmetric matrix A. (a) Pattern of the L + LT factors of Awith filled-in entries shown with squares, (b) the elimination tree
of Awhere the children of a node are drawn below the node itself.

matrices arising from specific applications; a more detailed survey
is given in Amestoy et al. (2012). Many of these methods provide
sophisticated ideas and interesting performance on specific
problems, but no software package is publicly available, with the
exception of the approach implemented within MUMPS solver,
that we describe in the next section.

3.3.1. MUMPS A−1 feature

The A−1 feature inMUMPS has been described in Slavova (2009)
and was motivated by the INTEGRAL/SPI application, among other
applications that require the computation of inverse entries, or,
more generally, applications that involve sparse right-hand sides
(as explained in this section). This feature is able to compute any
set of entries of A−1, relying on a traditional solution phase, i.e. by
computing every required entry a−1

ij as:

a−1
ij =

(

A−1e
Ď

j

)

i
.

Using the LU factors of A, this amounts to solving two triangular
systems:
{

Lz = e
Ď

j

a−1
ij =

(

U−1z
)

i
.

The first triangular system in the equation above is particular

because its right-hand side e
Ď

j is very sparse (only one non-zero
entry). Furthermore, we do not need the whole solution of the sec-
ond triangular system, but only one component. This information
can be exploited to reduce the traversal of the elimination tree;
while a regular solution phase would consist in visiting the whole
elimination tree twice (a bottom-up traversal followed by a top-
down traversal), computing a−1

ij consists in two partial traversals
of the tree: the first triangular system is solved by following the
path from node j to the root node, and the second triangular sys-
tem is solved by following the path from the root node to node i;
this is referred to as pruning the elimination tree. Since each node
of the tree corresponds to operations to be performed (arithmetic
operations, or expensive accesses to the factors in the out-of-core
case), this leads to significant improvements in computation time.
Moreover, since we do not have to manipulate dense solution vec-
tors, this also leads to significant savings in memory usage.

We illustrate this technique in Fig. 3: entry a−1
23 is required, thus

the only nodes of tree that have to be visited lie on the path from
node 3 to the root node (6) and on the path from the root node
to node 2. Therefore, one does not have to perform operations at
nodes 4 and 1.

When many entries of the inverse are requested, they cannot
generally be computed all at once (mainly because of memory

Fig. 3. Computation of a−1
23 . The traversal of the tree is reduced to the path from 3

to 6 and the path from 6 to 2; no computation is performed at nodes 1 and 4.

usage), but they can be computed by blocks, which allows to
take advantage of efficient dense linear algebra kernels. Work has
been performed in order to find optimal ways to form the blocks
in different contexts (Amestoy et al., 2012) and to improve the
parallel efficiency.

4. Calculation

A substantial time is spent in computing A = HTH with a
basic algorithm. The use of an appropriate algorithm to perform
the operation A = HTH helps to reduce the computation time
(see Section 4.1). The MUMPS solver is used to solve the system
of equations as described in Section 4.2. Finally, the error bars
on the solution are computed, which means the calculation of
the diagonal elements of inverse matrix. The new A−1 feature
of MUMPS is compared with several algorithms, in terms of
computation time in Section 4.3.

4.1. Improvements of the computation of A = HTH

The computation of the normal equation A = HTH is of
paramount importance inmany problems, yet is a very challenging
operation due to the considerable amount of symbolic operations
needed to compute the sparsity structure of A. For this reason
efficient algorithms have been developed in the past. To perform
this operation we decided to use part of a larger code developed
by Puglisi (1993) for computing the QR factorization of sparse
matrices. The used part was originally developed to compute only
the structure of the Amatrix and, thus, we had to extend it in order
to compute the coefficients values. This was possible thanks to the
help of the original code developer.

One important feature of this code offers the possibility to
update the elements of A that are changed after modification of



Table 3

Time for the computation of A = HTH .

Matrix A = HTH Improved algorithma Simple algorithmb

N = 22 503
Full matrix 28.2 5 779
5000 H columns modified 0.43 258

N = 149 526
Full matrix 41.2 18585
5000 H columns modified 0.13 31.7

Note: Times are in seconds. H is an N by M matrix; here M = 672 495 and H has
27 054 399 non-zero elements.

a Based on an original package from Puglisi (1993) and improved as suggested by
the author.

b N matrix vector product are used following the Compressed Column Storage
scheme, but for each operation a dense vector of length M (with many zero
element), that represents a column of H is built in place.

Table 4

Times (in seconds) for the computation of the solution.

Matrix size 3578 9437 22503 55333 149526

Sparse 0.2 0.7 1.6 8.0 6.7
Dense 1.2 20.1 169.9 / /

some numerical values of the columns of H without recomputing
the whole matrix (the technique used to compute simultaneously
the solution and the background pattern in the algorithm is
described in 2.2.3 and Appendix A.4).

Table 3 shows the time reduction achieved for both the
computation of A = HTH and its update after the modifications
of some columns of H . The results in the first column are obtained
with the code extracted from the software package by Puglisi
(1993) and improved as suggested by the author. The results on
the second column, instead, are obtained by computing N matrix
vector products where, for each product, a dense vector of length
M (with many zero elements) corresponding to a column of H is
built in place.

The gain over a simple basic algorithm is significant (a factor
∼300) and demonstrates the interest of using specialized libraries
dedicated to sparse matrix computations.

4.2. Solving a sparse linear system

Here we briefly illustrate the interest of exploiting sparsity of
the matrix when solving a linear system. In Table 4, we compare
the time for solving linear systems arising from our application
using a dense solver (LAPACK (Anderson et al., 1990)) and a
sparse solver (MUMPS). Times are in seconds and include the
L D LT factorization of a symmetric matrix A of order N and the
computation of the solution x of the system Ax = b (x and b are
vectors of length N). In the results related to MUMPS, the time
for the analysis phase is included. In the second row of the table,
instead, thematrix is treated as dense, hence its full storage is used
and no analysis phase is performed. For the largest two problems,
the dense algorithm cannot be used as the memory requirements
are roughly 23GB and167GB respectively.We can extrapolate that
on this system, the run time would be around 22 h for the largest
problem (instead of 6.7 s using a sparse algorithm).

The results in Table 4 confirm that sparse, direct solvers
achieved a good scalability on the problems of our target
application whereas dense linear algebra kernels quickly exceed
the limit of modern computing platforms.

4.3. Time to compute error bars

In this section we present experimental results related to the
computation of error bars or, equivalently, of the diagonal entries

Table 5

Time to compute the diagonal elements of the inverse of a symmetric matrix.

Matrix size 3578 9437 22503 55333 149526

Left-looking 28.2 376.1 2567.9 489.1 /
MUMPS (1 RHS) 3.77 38.4 204.1 1324.9 8230.5
MUMPS (128 RHS) 1.32 7.34 45.5 245.6 2833.5

MUMPS A−1 0.28 0.9 4.9 36.0 9.5

Note: Execution times (in seconds) for the computation of all the diagonal entries
of the A−1 matrix with the left-looking, brute force and MUMPS A−1 methods. For
the brute force approach results are provided for blocks of size 1 and 128.

of the inverse matrix A−1. Our approach that relies on the pruned
tree, presented in Section 3.3.1, is compared to the basic, left-
looking approach described in Stewart (1998). In the case of a
symmetric matrix, this approach computes the diagonal entries of
the inverse matrix as

a−1
ii =

N
∑

k=1

1

dkk

(

l−1
ki

)2

where we denoted with a−1
ij and l−1

ij the coefficients of A−1 and

L−1, respectively. This amounts to computing, one at a time, the
columns of L−T and then summing the corresponding contribution
onto the a−1

ii coefficients. In this algorithm, the sparsity of the
right-hand side and of the factor matrix L is exploited but
not completely, and the experimental results discussed below
show that this results in a higher execution time. Furthermore,
because of memory issues, this simple algorithm does not allow
to simultaneously compute many diagonal entries of A−1; clearly
this is also a limiting factor for performance. Our implementation
of this method is based on the LDL package (Davis, 2005). As a
second term of comparison we also provide experimental results
for a brute force approach with no exploitation of sparsity of the
right-side and solution vectors. For this purpose, we use directly
the MUMPS package and solve several systems of equations in
order to compute the inverse matrix. In addition, we analyze the
influence of grouping the computation of the diagonal entries (1
right-hand-side (RHS) at a time or 128 at a time).

The experimental results for the threemethods described above
are reported in Table 5. For the sake of this comparison, all these
methods are executed in sequential mode although the code of the
brute force approach and of the MUMPS A−1 feature are parallel.
The experimentswere carried out on the above-mentioned system.

These results show that the brute force algorithm becomes
competitive with respect to the simple algorithm when the
entries are processed by blocks. TheMUMPS A−1 feature described
in Section 3.3.1 is significantly faster than all other approaches
and the gain increases with the size of the problem. Pruning leads
to clear gains over a strict traditional solution phase. The gain is
even larger for the largest problem due to the good scalability of
the A−1 algorithm with respect to the problem size. The simple,
left-looking approach shows reasonable performance for small
problems, but could not be tested on our largest matrix because
numerical pivoting, not available in LDL package, is needed during
factorization to obtain an accurate solution.

5. Results and discussion

The MUMPS solver and its A−1 functionality are the core tools
to solve systems of equations related to the measurements of the
sources intensity. Fig. 4 shows the application to the determination
of the different components of the Galaxy spectrum. The related
analysis is performed in 24 consecutive energy bands in order
to extract counts spectra. The counts spectra are then converted
into photon spectra. The details are given in Bouchet et al. (2011).
Another application is the study of the intensity variations of a
peculiar source or sky region. Fig. 5 shows the intensity in function



Fig. 4. Different contributions to the total emission at hard X-ray and soft gamma-
ray energies in the central radian of the galaxy. The data points shown in black (plus
filled circle) correspond to the contribution due to 270 point sources. The average
spectrumof these sources canbe viewed at http://sigma-2.cesr.fr/integral/. The data
points shown in blue correspond to the diffuse emission. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. Intensity evolutions (Red) of IGR J17464-3213, GRS 1758-258, GX 1+4,
GS 1826-24 and GX 354-0 in the 27–36 keV band. These intensity variations
are compared to the time-series (‘‘Quick-look’’ analysis) obtained with the IBIS
instrument (Ubertini et al., 2003) aboard the INTEGRAL observatory. The time-series
(30–40 keV) is shown in gray.

of the time (exposure) of some of the sources located in the central
crowded region of theGalaxy. For this application, the end and start
of the ‘‘time-bins’’ are determined by a segmentation algorithm,
which is based on the efficient L D LT factorization of symmetric
matrix provided by MUMPS, details can be found in Bouchet et al.
(in press).

We have demonstrated that even for the basic operation such
as sparse matrix product, it is better to use dedicated algorithms
or libraries (4.1).

The MUMPS solver is very effective on the sparse matrix
structure arising from astrophysical problems encountered with
SPI. This solver is robust and the matrix factorization is stable
against rounding errors. It providesmany numerical preprocessing

options and implements robust pivoting strategies, which make it
one of the most numerically stable solvers available. The matrices
arising from the INTEGRAL/SPI application are symmetric and
indefinite; they are not extremely challenging numerically, but
they do require two-by-two numerical pivoting for stability (in
Table 5 the LDL package could not provide an accurate solution
on our largest matrix). The proposed approach not only leads to
substantial time reduction but also enables the resolution of large
sparse system of equations which could not be solved using basic
algorithms.

Other sparse linear systems solvers exists and have been used to
validate the performance reported in the experimental section; for
an exhaustive list see for example Bai et al. (2000), but they all lack
a function to compute also the error bars on the solution quickly,
which is mandatory in our astrophysical application.

The A−1 feature in MUMPS (computation of selected inverse
entries) did not exist before the beginning of this study, the IN-
TEGRAL/SPI application was actually one of the motivating appli-
cations for developing techniques for the computation of inverse
entries, and for releasing a publicly available code. This function-
ality allows to compute easily and rapidly the error bars on the
solution. The gain in time over already optimized algorithms is
important.

Among other methods to solve the problem completely,
solution and error bars, one should mention alternative methods
such as Monte Carlo Markov Chains (Metropolis et al., 1953;
Hastings, 1970; Neal, 1993) or Simulated Annealing (Kirkpatrick
et al., 1983). Such advanced statistical tools can provide the best
fit and the variances of the solution of both linear and non-linear
systems of equations. In particular MCMCmethods could be useful
when computing error bars, in case of complex constraints on the
function. However, thesemethodsmay be very prohibitive in time,
especially if high precision on the parameters is required; they
have in general aweak or non-guaranteed convergence and are not
the best suited for our needs, given the complexity of our problem.

6. Conclusions

We have developed algorithms to process years of data and
to enhance the production of INTEGRAL hard X/soft γ -ray survey
catalogs. These methods have been successfully applied to a set
of ∼6 years of data (Bouchet et al., 2011). We have shown that,
for processing efficiently and accurately years of data, it is critical
to use algorithms that take advantage of the sparse structure of
the transfer function (matrix), such as those implemented in the
MUMPS software.7 It was also demonstrated that error bars can
be obtained at a relatively inexpensive cost (the same order of
magnitude as a simple problem solution) thanks to a recently
developed algorithmic feature that efficiently computes selected
entries of the inverse of a matrix. In addition, thanks to many
efforts in optimization, gains are achieved both in memory usage
and in computation time. Hence, it is possible to process large
datasets in a reasonable time and to compute the diagonal of the
covariance matrix, and thus error bars, in a rather short time.
More generally, the ideas described here can be applied to a large
variety of problems. Finally, we are today able to solve sparse
linear systems with millions, sometimes billions, of unknowns.
Although we have not used explicitly parallel computing but
insteadperformedmany sequential computations at the same time
(for each energy band, etc.), the proposed approach can also be
used directly in a parallel setting on massively parallel machines.

In the near future, instruments will commonly create datasets
of a few tens to a few hundreds of Terabytes for a single

7 Available at http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr/MUMPS/.



observation project. Many of the current tools and techniques
for managing large datasets will not scale easily to meet this
challenge. Surveys of the sky already require parallel computing
in order to be performed. New surveys will demand orders of
magnitude increases in the available data and therefore in data
processing capabilities. It is also a challenge for scientists who
need to extract a maximum of science from the data. Exciting
scientific breakthroughs remain to be achieved as astronomers
manipulate and explore massive datasets, but they will require
advanced computing capabilities, infrastructure and algorithms.

Acknowledgments

The INTEGRAL/SPI project has been completed under the
responsibility and leadership of CNES. We are thankful to ASI, CEA,
CNES, DLR, ESA, INTA, NASA and OSTC for support. We are very
grateful to Chiara Puglisi, research engineer at INPT-IRIT, for her
contribution to improve the performance of the HTH product in
Section 4.1.

Appendix. Schematic solution of the system of equations

A.1. Maximum likelihood estimator (MLE) of the solution

In the case of a low number of counts, it is recommended to use
the MLE of the solution instead of the χ2 solution. Following Cash
(1979), we maximize the likelihood function,

L = −2 ×

(

M
∑

i=1

ei − yi ln ei

)

(A.1)

where ei is the model of the data obtain through the relation e =
Hx.

A.2. Optimization of the non-linear problem

To optimize this non-linear problem, potentially with bound
constraints (such as positivity of the solution), there are at least
four approaches:

(a) Newton type methods (or modified Newton methods): they
use the Hessian matrix to define a search direction and hence
need the solution of a large linear system of equations at least
at each few iterations. They are the most powerful methods
available and can find the solution in a few iterations.

(b) Quasi-Newton methods: they build an approximation of the
Hessian at each iteration. They optimize a quadratic function
in at most n iterations (n being the number of unknowns).

(c) Conjugate-gradient methods: unlike the Newton-type and
quasi-Newton methods, conjugate gradients methods do not
require the storage of an n by n Hessian matrix and thus are
suited to solve large problems. The gradient of the function
(a vector of length n) is used to define the search direction.
They are not usually as reliable or efficient as Newton-type
methods and often a relatively large number of iterations has
to be performed before obtaining an acceptable solution.

(d) Simplex (Nelder and Mead, 1965), simulated annealing (Kirk-
patrick et al., 1983) orMonte CarloMarkovChain (MCMC) (Neal,
1993) can also be considered, but they are often prohibitive in
time.

Methods (a) and (b) are known as order-2 optimization meth-
ods (gradient and Hessian used), (c) as an order-1 optimization
method (gradient used), while method (d) can use only the func-
tion value.

To use a Newton type method (order-2), we need to compute
the gradient G and the Hessian Hess of the function

Gj =
∂L

∂xj
= 2 ×

M
∑

i=1

Hij

(

1 −
di

ei

)

for j = 1, . . . ,N

and Hess =
1

2

∂2L

∂2x
= HT

[

d

e2

]

H.

(A.2)

[

d

e2

]

is a diagonal matrix of order M whose diagonal is
(

d1

e21
, . . . ,

dM

e2
M

)

. As for the LSQ case, the variance of the solution is

obtained thanks to the inversion of the Hessian matrix (note that

in the limit lime7→d
di

e2
i

= 1
di

= 1

σ 2
i

, the likelihood (Hess) and chi-

square (A) Hessian matrices are the same). A guess solution to this
non-linear optimization problem is the LSQ solution.

A.3. Codes for non-linear optimization

The fitting algorithm, based on the likelihood test statistic,
is a non-linear optimization problem. To optimize a non-linear
problem, potentially with bound constraints, a Newton type
method, known for its efficiency and reliability can be used, as
we already have a solver for large sparse systems at hand. A
software package for large-scale non-linear optimization such
as IPOPT8 (Interior Point OPTimizer) can be used. IPOPT uses a
linear solver such as MUMPS or MA57 (Duff and Reid, 2004)
as a core algorithm. For more details on this large-scale non-
linear algorithm, see Wächter and Biegler (2006). A few similar
software packages for large-scale non-linear optimization exist,
among them LANCELOT (Conn et al., 1996), MINOS (Murtagh and
Saunders, 1982) and SNOPT (Gill et al., 1997).

A.4. ‘‘Empty-field’’ auto-computation

Sometimes the ‘‘empty-field’’ or ‘‘uniformity map’’ U has to be
computed with the solution. In order to preserve the linearity of
the problem, we have adopted the algorithm described below. We
consider that if the solution x is known,

yi =
K0
∑

j=1

hij xj +
N

∑

j=K0+1

hij xj = yBi + ySi . (A.3)

Coming back to the detector and pointing number

Draw
dp = DS

dp + UdIbgp tdp. (A.4)

In the above formula ySi ≡ DS
dp is the counts due to the

sources, assumed to be known. yBi ≡ UdI
bg
p tdp is the background

contribution, Ibg is assumed to be known and U is to be estimated.
At this stage, using themodel of the sky described by (A.4), a rough

estimate of the pattern is Ud ≃
∑np

p=1(D
raw
dp

−DS
dp

)
∑np

p=1 tdp
.

A.4.1. Expression for the detector pattern

For the LSQ statistic, we wish to minimize the following
quantities for each of the working detectors,

χ2(d) =
np
∑

p=1

(

Draw
dp − DS

dp − UdI
bg
p tdp

σdp

)2

for d = 1, . . . , np. (A.5)

8 IPOPT is available at https://projects.coin-or.org/Ipopt.



The LSQ solution ULSQ (d) is

ULSQ (d) =

np
∑

p=1

(Draw
dp − DS

dp) × I
bg
p tdp/σ

2
dp

np
∑

p=1

(I
bg
p tdp)2/σ

2
dp

. (A.6)

For theMLE statistic, we do not have to preserve the linearity of
the problem and hence the computation of the improved ‘‘empty-
field’’ pattern can be done during the non-linear optimization
process. On another side, the algorithm is simplified if we proceed
similarly as in the LSQ case. Then, we wish to maximize the
following quantities for each of the working detectors,

L(d) = −2

(

np
∑

p=1

DS
dp + UdIbgp tdp − Draw

dp ln [DS
dp + UdIbgp tdp]

)

for d = 1, . . . , np. (A.7)

The MLE solution UMLE(d) is

UMLE(d) =

np
∑

p=1

(Draw
dp − DS

dp)

np
∑

p=1

I
bg
p tdp

. (A.8)

One should mention that it is possible to compute, similarly, an
‘‘empty-field’’ pattern on some restricted time interval instead of
the whole dataset; the best ‘‘empty field’’ for pointing intervals pk
to pk+1 is then,























































UMLE(d, k) =

pk+1
∑

p=pk

(Draw
dp − DS

dp)

p(k+1)
∑

p(k)

I
bg
p tdp

ULSQ (d, k) =

pk+1
∑

p=pk

(Draw
dp − DS

dp) × I
bg
p tdp/σ

2
dp

p(k+1)
∑

p(k)

(I
bg
p t2dp)

2/σ 2
dp

.

(A.9)

A.5. ‘‘Empty-field’’ schematic construction

A sub-optimal algorithm to obtain both the sources and the
background fluxes, as well as the improved ‘‘empty-field’’ pattern
is described in Algorithm 1. We start with an approximation U0

and apply some iterative refinement. In practice, the algorithm
converges in a few iterations.

Algorithm1 Computation of the ‘‘Empty field’’, the solution and its
variance
1: U = U0, compute the structure of the Hessian (A or Hess)
2: for i = 1 to itermax do {Iterative computation of U and x}
3: Compute LSQ or MLE solution
4: Compute a new approximation ofU byminimizing again LSQ

or maximizing MLE statistics
5: Update H (The first K0 columns of H and update the new

Hessian matrix (Section 4.1))
6: If χ2 stops decreasing or the likelihood function stops

increasing then go to step 8
7: end for

8: Compute H at the solution (if not already done) and the
diagonal of H−1 to obtain the uncertainties on the solution
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