
Analysis of distributed multi-periodic systems to achieve

consistent data matching

Nadège Pontisso, Philippe Quéinnec, Gérard Padiou

To cite this version:

Nadège Pontisso, Philippe Quéinnec, Gérard Padiou. Analysis of distributed multi-periodic
systems to achieve consistent data matching. Concurrency and Computation: Practice and
Experience, Wiley, 2013, vol. 25 (n 2), pp. 234-249. <10.1002/cpe.2803>. <hal-01130800>

HAL Id: hal-01130800

https://hal.archives-ouvertes.fr/hal-01130800

Submitted on 12 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01130800

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12313

To link to this article : DOI :10.1002/cpe.2803
URL : http://dx.doi.org/10.1002/cpe.2803

To cite this version : Pontisso, Nadège and Quéinnec, Philippe and
Padiou, Gérard Analysis of distributed multi-periodic systems to
achieve consistent data matching. (2013) Concurrency and
Computation: Practice and Experience, vol. 25 (n° 2). pp. 234-249.
ISSN 1532-0626

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12313/
http://oatao.univ-toulouse.fr/12313/
http://dx.doi.org/10.1002/cpe.2803
mailto:staff-oatao@listes-diff.inp-toulouse.fr

SPECIAL ISSUE PAPER

Analysis of distributed multiperiodic systems to achieve consistent
data matching

Nadège Pontisso, Philippe Quéinnec*,† and Gérard Padiou

Institut de Recherche en Informatique de Toulouse, Université de Toulouse ENSEEIHT, 2 rue Camichel, BP 7122,

F-31071 Toulouse Cedex 7, France

SUMMARY

The distributed real-time architecture of an embedded system is often described as a set of communicating
components. Such a system is dataflow (for its description) and time triggered (for its execution). The archi-
tecture forms a graph of communicating components, where more than one path can link two components.
Because the characteristics of the network and the behavior of intermediate components may vary or are
only partially known, these paths often have different timing characteristics, and the flows of information
that transit on these paths reach their destination at independent times. However, an application that seeks
consistent values will require these flows to be temporally matched so that a component uses inputs that all
(directly or indirectly) depend on the same computation step of another component. In this paper, we define
this temporal data-matching property, both in a strict sense and in a relaxed way allowing approximately
consistent values. Then, we show how to analyze a system architecture to detect situations that result in
data-matching inconsistencies. In the context of multiperiodic systems, where components do not necessar-
ily share a common period, we also describe an approach to manage data matching that uses queues to delay
too fast paths and timestamps to recognize consistent data sets.

KEY WORDS: distributed system; component-based architecture; real-time; data consistency

1. INTRODUCTION

Distributed systems are often built by assembling components that are independently developed
or off-the-shelf, and the designer is faced with various challenges, especially when real-time is
involved [1]. Techniques have been proposed to solve interconnection difficulties [2], such as wrap-
ping to expose a regular interface. In a real-time context, these components must be appropriately
scheduled using periods, deadlines, priorities, and so on [3]. Nevertheless, some problems remain
when multiple paths connect two components. Indeed, the correct behavior of a component depends
on correct or valid inputs. Independently of the semantic constraints of the inputs (e.g., belonging
to a specific range of values), the time validity is also an important parameter in embedded systems.
This time validity is often described in terms of availability (having inputs at the right time to start a
task) and freshness (having recent enough inputs). Some works have studied the case where a com-
ponent uses several inputs, and these inputs respect a time consistency constraint such as having
been produced at the same time. But, this constraint is not sufficient: In a complex architecture, an
intricate component graph leads to several paths between two components. In such a case, inputs
of a component depend on the outputs of the same component (a source) by several paths. As a

*Correspondence to: Philippe Quéinnec, Institut de Recherche en Informatique de Toulouse, Université de Toulouse
ENSEEIHT, 2 rue Camichel, BP 7122, F-31071 Toulouse Cedex 7, France.

†E-mail: philippe.queinnec@enseeiht.fr

path links several components that consume, transform, and produce data, this dependency is not
on the source value itself but on the step at which it was produced. Our work fits in the following
problem: How can the inputs of a component be consistent with regard to the production step of
another component in the situation where several independent paths link these two components?

The data consistency is achieved by delaying fast paths until an adequate matching of inputs is
possible. We approach this problem by analyzing the component graph to identify structures where
two components are linked by several paths. If two paths have a really asymmetric nature, buffers
are used to introduce a delay on the fastest path. In the general case, queues are used to keep data
until the slowest data have arrived. As all values are not necessarily useful, we introduce filtering
queues that keep only part of their inputs. We present results on the size of the required queues.
These results are obtained in the context of periodic components but make neither assumptions nor
constraints on the scheduling. The system is actually multiperiodic as components do not necessarily
share a common period.

The paper is organized as follows. Section 2 presents related work. Section 3 introduces an
extensive example, describes what is a consistent data matching, and defines the computation and
communication model. Section 4 presents the analysis of the component graph. Section 5 describes
data consistency management, the queue size computations, and the application on the example.
Finally, Section 6 presents concluding remarks and outlines future directions.

2. RELATED WORK

In a real-time system, the freshness of data is a standard property. Freshness means that the system
uses values that are as recent as possible or in a specific domain of time validity. But, this freshness
property is not enough for some applications. Let us consider a toy example (Figure 1). This system
computes 2xC3.xC1/, where x comes from an initial component C1; the output of C2 is its input
plus one; C3 and C4 multiply their input by a constant, and a last component C5 adds the results of
theses multiplications. When C1 emits a flow of values, C5 must not carelessly mix values coming
from C3 and C4 but has to add values corresponding to the same x. If it behaves like this, we say
that C5 does a consistent data matching of its inputs. If the lower branch computation takes longer
than the upper branch (e.g., twice as much time), using freshness only leads to inconsistent results
as the most recent values that reach C5 are not related to the same value of x.

Such a system fits well in the synchronous dataflow (SDF) paradigm [4, 5]. SDF is a special case
of dataflow, where a program is represented by a directed graph in which each node (called block)
represents a computation and each edge specifies a First In, First Out buffer. In the SDF paradigm,
the execution of a block is enacted when it has enough inputs. The objective of the static analysis of
an SDF program is to find the necessary buffers between blocks and a scheduling such that a block
is executed when its inputs are available.

Data matching is not the goal of SDF graphs. In this toy example, as the system is a pure dataflow,
consistent data matching can be obtained using SDF analysis. However, SDF theories cannot be used
if the system is not a pure dataflow system, which is to say if the components are fired on the basis
of conditions other than token availability. Especially, SDF cannot be used if the components are
time triggered.

Figure 1. Computation of 2xC 3.xC 1/.

Moreover, forcing a scheduling to solve this data-matching problem may be incompatible with
other constraints, such as resources consumption or CPU availability, that are traditionally solved by
scheduling analysis: Our goal is to analyze a system without considering a scheduling or a specific
scheduler, neither do we want to compute a scheduling.

In the field of dataflow or database, studies mainly focus on the freshness of data (for instance
[6], [7], or [8] for an extensive list of references). In [9], the authors determined an algorithm that
computes which data need to be up-to-date taking data relationships into consideration. In [10], the
variable semantics and their timed validity domain are used to optimize the transaction scheduling
in databases. In [11], Object Constraint Language constraints are used to define the validity domain
of variables, and a variation of Timed Computation Tree Logic is used to check the system behavior
and to prevent a value from being used out of its validity domain. However, these works did not
consider consistency of sets of values.

In [8], the authors introduced a ‘mutual consistency’ between objects in a database. They recog-
nized that guaranteeing individual freshness of objects is insufficient as objects may be related to one
another and that the system should present a logically consistent view of the objects. Let us imagine
a system that independently reads sensors; at any time, this system may have fresh values for every
sensor, although these values were acquired at different dates, and the set of values itself does not
correctly reflect the actual reality, be it now or in the past. The paper deals with nonpreemptible
periodic transactions, and the authors seek either the right periods and relative deadlines that would
guarantee mutual consistency or if a given set of transactions with their known parameters guar-
antee mutual consistency. In a sense, they are looking for a correct scheduling of actions so that
mutual consistency is preserved. Our work differs from theirs in that we make similar assumptions
concerning the scheduling but have no influence on it.

In [12], the authors did a similar work distinguishing image objects and derived objects. Image
objects are periodically sampled from outside sensors, and derived objects are computed from the
values of a set of objects. The age of an image object is directly linked to its last reading, and the
age of a derived object does not come from the date at which the computation occurs but is equal
to the age of the oldest object that is used to compute it. To capture a mutual consistency constraint
on the set of values used to compute a derived object, the authors introduced the notion of disper-
sion, which is the maximal difference between the ages of any two objects in a set. Then, a set
of objects is absolutely temporally consistent if the age of all the objects is below a given absolute
threshold; this set is relatively temporally consistent if its dispersion is below a given relative thresh-
old. Given a set of periodic preemptible transactions that read image or derived objects and update
derived objects, the authors’ goal is to find which concurrency control strategy (among pessimistic,
aka two-phase locking, and optimistic) and which scheduling (among rate-monotonic and earliest-
deadline-first) perform the best. Again, the goal is to find a correct and efficient scheduling of
the transactions.

This mutual consistency is also studied in the web domain [13]. The goal is to guarantee the weak
consistency of replicas (cached values on a proxy web) with respect to the original data (pages of a
web server). The authors observed that all the components that form a page (html text, images, and
style sheets) must be consistent so that the user sees the current version or a past version but not
a mix of different versions. They proposed an algorithm to find an adequate rate of polling of the
server to individually invalidate cached replicas so that they do not diverge too much. Their algo-
rithm is then adapted to maintain the weak consistency of a set of elements of pages. The quality of
the consistency is measured by a notion similar to the dispersion, as seen earlier. The simplicity of
the architecture (one proxy) and of the problem (only one version of each object, without history)
leads to a simple and efficient algorithm.

Consistency in distributed systems is also an old problem. However, it is mainly performed from
a logical point of view, yielding causal or total order of operations to ensure consistency of val-
ues. Some works exist that introduce real-time constraints in broadcasting. For instance �-causal
protocols ensure the causal consistency of messages arriving by �. Research on this topic [14]
has concentrated on adaptation issues (adjusting �) and optimizing the transmission (reducing the
bandwidth overhead by minimizing piggybacking information). The goal of �-causality is to favor
latency even if ignoring a too late message leads to breaking causality chains. In our case, we seek

a consistent matching of messages traveling by different paths. Latency is imposed by the slowest
path, and messages on faster paths are delayed to enable this matching.

Our work differs from the results presented earlier mainly because our goal is not to com-
pute a system scheduling to solve our problem of data matching. Neither do we consider that
we know the final scheduling of components nor their implantation (for example, the number of
CPU). This approach allows to manage systems composed by black boxes that we cannot con-
strain to have a ‘good’ behavior. For example, we cannot impose when the components read their
inputs. Moreover, even with a configurable system, acting on scheduling can be insufficient to solve
data-matching problems.

Prior work was carried out considering same frequency components [15], and it used solutions
similar to SDF. In this paper, we consider multiple frequency systems, and it brings forth radically
different solutions. An outline of the general analysis was presented in [16, 17].

3. CONSISTENT DATA MATCHING

3.1. Application example

Our application example comes from the FUEGO project. The component graph was developed in
collaboration with Thales Alenia Space. FUEGO objective is to detect fires and eruptions and to
observe their evolutions. The system has been conceived as a constellation of satellites in low earth
orbit. Each satellite is equipped with an observation instrument (a narrow area sensor) and with
a detection instrument (a wide area sensor) that is pointed in front of the satellite. The detection
instrument detects fires or eruptions. In such a case, an alarm is sent to a ground mission center,
and the satellite is requested to do an observation of the zone as soon as possible. A ground control
center gathers all observation requests and allocates them between the satellites of the constellation.

We only study the system part in relation with the wide area detection instrument (Figure 2). The
Global Positioning System allows to compute the satellite position. The wide area sensor takes pic-
tures that are linked to compose an image of a wide area. The data sent by the gyroscope and the
star tracker are used to compute the satellite attitude (the angle the satellite makes with the earth).

The hot point coordinate computation is made using the image, the satellite position, and its
attitude. Having detected a hot point, the system computes its amplitude and its nature (fire or erup-
tion). The amplitude and the coordinates of the hot point and the position that the satellite had when
this point was detected are sent to the ground by the alert management component. The hot point
management component analyzes the coordinates of the hot point, its nature, and its amplitude. It
records the point if it is new or if it has evolved.

Using the hot point parameters and the actual parameters of the satellite, a component computes
the date when the observation instrument flies over the hot point. On this date, the point nature and
its coordinates are stored by the request management component. It schedules the hot point obser-
vations the satellite has to achieve. Table I displays the parameters of our system. In the numeric
applications in this paper, we use null communication times between components to simplify the
presentation. The actual analysis uses nonnull values, but the results are not significantly different.

Figure 2. Application: a fire detection satellite. GPS, Global Positioning System.

Table I. Application example parameters.

Period Minimal execution Maximal execution
Component (in ms) time (ms) time (ms)

GPS 1000 100 200
Position computation 60 20 40
Alert management 1000 50 200
Wide area instrument 100 60 70
Image composition 1000 200 400
Coordinate computation 1000 100 500
Amplitude computation 1000 20 30
Nature computation 1000 30 40
Hot point management 1000 50 200
Flying over date computation 1000 30 30
Request management 1000 50 150
Gyroscope 60 20 30
Star tracker 120 40 60
Attitude computation 60 20 30

GPS, Global Positioning System.

3.2. Examples of data-matching inconsistencies

In Figure 2, the alert management has to send to the ground a message composed of three values:
the coordinates of the detected hot point, its amplitude, and the position that the satellite had when
this point was detected. The coordinate computation needs the satellite position to produce the coor-
dinates. The amplitude computation needs the coordinates; hence, it also indirectly depends on the
satellite position. Thus, the alert management uses three values that depend on the position produced
by the position computation component. This set of three values is considered as consistent if the
values depend on a same computation step of the position computation.

Similarly, the hot point management uses the coordinates, the amplitude, and the nature (fire or
eruption) to find if it is a new hot point or an already detected one. In the later case, the component
also determines the hot point evolution. It is important that all three inputs correspond to the same
instant of capture of the same hot point. For instance, if two nearby hot points occur, the hot point
management must not receive the coordinates of one of them and the amplitude of the other one.
The parameters in Table I show that there is enough spreading in execution times to induce such a
case, especially when we do not want to assume anything about the actual scheduling.

3.3. Consistency formalization

We consider a distributed computation that is modeled by sending events (noted s), delivery events
(noted d), and internal events (noted i). We note sC , dC , or iC as an event occurring on a com-
ponent C . We note d C 0 as a delivery event corresponding to the reception of a message coming
from the component C 0 and d C 0

C as a delivery event occurring on C and corresponding to a message
coming from C 0. The internal events correspond to computation steps, and we consider that their
durations are (logically) null. We note � as the relation of temporal precedence between events on a
given component.

3.3.1. Direct influence relation. The direct influence relation! is defined by the following:

� For a message m, the sending event influences its delivery event:

s.m/! d.m/.

� An internal event influences the sending events that directly follow until the next internal event:

8sC , iC W iC � sC^ 69i
0
C W iC � i 0C � sC) iC ! sC .

� The last delivery event coming from a given component influences the following internal events
until the next delivery event coming from the same component:

8d C 0

C , iC W d
C 0

C � iC^ 69D
C 0

C W d C 0

C �DC 0

C � iC) d C 0

C ! iC .

3.3.2. Influence relation. The influence relation, noted !�, is constructed by transitive closure
of!.

This influence relation is stronger than the usual causality relation (also called happened-before
relation): If a influences b, then a causally precedes b; the converse is not necessarily true.
The influence relation is closer to a memory model description of a distributed system than to
a message-passing one. Note that i !� i 0 if and only if there exists a sequence of the form
i ! s1 ! d2 ! i2 ! s2 ! d3 ! i3 � � � ! i 0.

3.3.3. Influence past. We define the influence past of an event i as the set of internal events that
influence i added to itself:

past.i/ , fi 0 j i 0!� ig [fig.

3.3.4. Strictly consistent execution. We note S j C as the subset of events from the set S that occur
on component C . An internal event set is consistent if it contains at most one internal event by com-
ponent. An execution is strictly consistent if the influence past of each internal event is a consistent
event set:

Strictly consistent execution , 8i W 8C W cardinality .past.i/ j C / 6 1. (1)

3.3.5. Relaxed consistency. We consider that each component has a real-time clock. We note
date.i/ as the time at which the internal event i occurs. We call span.S/ the maximum time span
between events in S :

span.S/ , max
i1,i22S

.date.i1/ date.i2//.

Then, we define a � -relaxed consistent execution by the following:

� -relaxed consistent execution , 8i W 8C W span.past.i/ j C / 6 � . (2)

A 0-relaxed consistent execution is actually a strictly consistent execution. Note that in this defi-
nition, we compare dates of events that are all on the same component: A global synchronous clock
is never required.

3.3.6. Consistent data matching. If we consider data instead of events, we say that a value d pro-
duced by an execution step S influences a value d 0 produced by a step S 0 if the internal event
corresponding to S influences the one corresponding to S 0. A data set is consistent if the union of
the influence pasts of the internal events that produce the data is consistent. A component does a
consistent data matching if its inputs form a consistent data set for each execution step.

3.4. Model

We solve our data-matching problem in a general setting that does not depend on an effective
scheduling or a particular scheduler. We define a general abstract model that grabs just enough
requirements to solve our problem without restricting too much the systems where the solution
is applied.

3.4.1. Computation model. Components are time triggered, and we impose that they have a fixed
period. Different components may have different periods. During one step of its period, the compo-
nent reads exactly once every input port; then it performs its computation, and then it writes exactly
once every output port. The only requirement is that a component finishes its step before the end of
its period. These weak assumptions allow to fully abstract any scheduling considerations. A com-
ponent step can be instantaneous or can take as long as the full period. Preemption may split it into
pieces. In consecutive periods, component steps may have different durations or different relative
start times (variable phases). Different readings of one step can be performed instantaneously or
separately and similarly for writings.

3.4.2. Communication model. In the same spirit, we make few assumptions about communica-
tion. We assume that communication is First In, First Out and reliable. We use a minimum and a
maximum communication time. These boundaries are defined for each couple of components and
can vary in the system. By allowing null values, we model a nontransactional memory. On the
other hand, nonnull values model a communication network. The strict upper bound is natural in a
real-time context, for instance, when communication is performed via a synchronous bus.

3.4.3. Model parameters. To analyze the queue sizes of a system, some parameters are useful. The
mandatory parameters are the following:

� TC : the period of component C .
� �CC 0 : the maximum communication delay between components C and C 0. An upper bound

is sufficient.

Optional parameters are the following (may be set as 0 if unknown):

� eC : a lower bound of the execution time of a step of component C .
� ıCC 0 : the minimum communication delay between components C and C 0. A lower bound

is sufficient.

4. SYSTEM ANALYSIS

4.1. Graph analysis

To analyze the system, we analyze the component graph as an oriented graph. We are able to easily
found problematic configurations searching for subgraphs that we called spindles, which detect that
several paths exist between two components.

4.1.1. Graph properties

Simple path. A path is a sequence of nodes where there exists an edge between two
consecutive nodes. A simple path is a path in which all nodes are distinct.

Separated paths. Two simple paths with the same extremities are separated if and only if their
sequences do not have any nodes in common, except for the initial and final
nodes.

4.1.2. Spindle. A spindle between two nodes is the set of all simple paths connecting these nodes
such that at least two separated paths exist in this set. The initial node of these paths is called the
source, and their final node is called the sink. In Figure 2, the set of the three simple paths between
the position computation component and the alert management is a spindle.

Theorem 1

An inconsistent data matching can occur between a component couple .C ,C 0/ if and only if there
is a spindle between them.

Proof

If a spindle exists between the two components C (the source) and C 0 (the sink), two (or more) sep-
arated paths exist. The data that were influenced by C reach C 0 by using different noncoordinated
paths, where the propagation times may be different, and so an inconsistent data matching can occur
on C 0.

Conversely, if an inconsistent matching can occur between C and C 0, it means that at least two
paths link C to C 0. If these paths were not separated, it would mean the following:

� Either there exists a component C 00 where the paths merge before C 0. Then, the inconsistent
matching would occur on C 00 and not on C 0;

� Or there exists a unique path up to C 00, after which the path splits in two paths to C 0. Then, the
inconsistent matching would occur relatively to C 00 and not to C .

�

4.2. Spindle analysis

When spindles are found, we analyze how their paths influence the data used by the sink
components.

4.2.1. Maximum path time. Let us consider a path P D .C1,C2, : : : ,Cn/. We note tmax.P / as the
maximum time between the beginning of the execution of C1, which sends a value v and the use by
Cn of a value influenced by v through the path P .

To find the maximum path time, the worst case is when each component uses data at the beginning
of its period and sends data at the end and when the phase difference maximizes the lag between the
sending and the use of a value.

The maximum time t 0max between the beginning of the execution of C1, which sends a value a

to C2, and the use by C2 of this value through the path P depend on the time during which C2 can
use a. As shown in Figure 3,

t 0max D 2TC1
C�C1C2

.

First, C1 executes a step S1 that lasts one period and produces the value a. This value can be used
by C2 until it receives a new value. A new value b is produced by C1 at the end of the step S2.
This new value is available for C2 after a delay �C1C2

. We place C2 such that it starts a step at this
moment. Thus, at the same time, C2 starts a step, and a new value is available. As we do not know
what happens exactly, we choose the worst case for t 0max, which is that C2 starts its computation
without reading the value b.

Figure 3. Evaluation of t 0max.

The maximum time between the beginning of the execution of C1, which sends a value v, and the
use by Cn of a value influenced by v through the path P is as follows:

tmax.P /D

n 1
X

iD1

.2TCi
C�Ci CiC1

/. (3)

4.2.2. Minimum path time. Let P D .C1,C2, : : : ,Cn/ be a path. We note tmin.P / as the minimum
time between the beginning of the execution of C1, which sends a value v, and the use by Cn of a
value influenced by v through the path P . tmin.P / is the sum of the minimum execution times and
the minimum communication delays along the path:

tmin.P /D

n 1
X

iD1

.eCi
C ıCi CiC1

/. (4)

4.2.3. Maximum gap between two input data. Let us consider a spindle between C˛ and Cˇ com-
posed of two paths: PA D .C˛ ,C2, : : : Cn 1,Cˇ / and PB D .C˛ ,C 0

2, : : : C 0
m 1,Cˇ /. PA has a size

of n, and PB has a size of m. Cn 1 sends a value A to Cˇ , and C 0
m 1 sends a value B .

Cˇ uses the values A and B . They are influenced by values produced by C˛ . We analyze the time
gap between the starting time of the step of C˛ that produced the value that influences A and the
starting time of the step of C˛ that produced the value that influences B .

The maximum gap, noted gapAB , is obtained when A is produced using the maximum path time
and B is produced using the minimum path time. Moreover, A is read by Cˇ at the beginning of its
period, and B is read as late as possible:

gapAB D tmax.PA/C Tˇ eˇ tmin.PB/. (5)

If gapAB is negative, this means that data on path PA are always propagated faster than on
path PB . Note that gapAB ¤ gapBA, and both may be positive. To analyze a spindle, we have to
know both values gapAB and gapBA.

5. DATA-MATCHING MANAGEMENT

By analyzing every spindle in the component graph, we are able to know the worst gap that we
can have between two data. For the analyzed application, the designer has to decide if this gap is
acceptable. If not, the objective is to reduce it.

5.1. Imposed delay

Reducing gapAB can be achieved by introducing a delay into the path PB to increase tmin.B/. To
reach this effect, queues are set on the sink component input. For every execution step, the sink uses
the queue head. Data entering the queue take time to propagate to the head depending on the size of
the queue. This approach is not so far from an SDF solution.

This lag increases tmin.B/ (therefore decreasing gapAB), but it also increases tmax.B/, and so it
increases gapBA. We have to take care of these two effects before using an imposed delay. Moreover,
we are never able to guarantee that the set used by the sink component is strictly consistent.

5.2. Timestamping

To compose a consistent set with a given consistency tolerance, the sink component must be able
to select which data it needs among the received ones. Queues are used on the inputs of the sink,
and for each step, the sink has the choice among the data kept in the queues. Thus, the sink needs to
know the influence past of a value, which is the same as the influence past of the internal event that
has produced this value.

5.2.1. Marks. A mark is a couple hComponent_Id , valuei, where values are taken from any
infinite set. In practice, each component has a logical clock H.C / that marks the data produced by
the component. This clock ‘counts’ the number of computation steps executed by the component.
Thereby, one mark, noted Mi , corresponds to a unique internal event i and conversely.

5.2.2. Timestamps. A timestamp is a set of marks that hold the influence past of an event. The
timestamp carried by the event a is noted as Ea. The following timestamping rules are used:

� The set Input.iC / is composed by all the delivery events that were used to compute the internal
event iC :

Input.iC / , fd C 0

C W .d C 0

C � iC^ 69D
C 0

C W d C 0

C �DC 0

C � iC /g.

� The timestamp of a delivery event is equal to the corresponding sending event timestamp:

Ed.m/ DEe.m/.

� The timestamp of a sending event is equal to the timestamp of the most recent internal event
that precedes it:

Ee DEi such that i � e^ 69i 0 W i � i 0 � e.

� The timestamp of an internal event i of a component C is equal to the union of timestamps of
the delivery events used during this computation step, added to its own mark

Ei D
[

d2 Input.i/

Ed [fhC ,H.C /ig

and H.C / is incremented.

Lemma 1 (Marks and timestamps)

Ei D fMig [fMj j j !
� ig.

Proof

We note

i
1
7! i 0 , 9s, d W i ! s ! d ! i 0

i
n
7! i 0 , 9i 00 W i

1
7! i 00 ^ i 00

n 1
7! i 0 .for n > 1/,

where i and i 0 are internal events. By the stamping rules, we deduce

Ei D fMig [
S

j j j
1
7!i

Ej

D fMig [
S

j j j
1
7!i
fMj g [

S

j j j
2
7!i

Ej

...
D fMig [

S

n>k>1

S

j jj
k
7!i
fMj g [

S

j j j
nC1
7! i

Ej

All 7! chains are bounded (initial event)
D fMig [

S

k>1

S

j jj
k
7!i
fMj g

D fMig [fMj j j !
� ig.

�

Theorem 2

The timestamps encode the following influence relation:

i !� i 0,Ei Ei 0 .

Proof

The direct implication is deduced from the stamping rules and the transitivity of!�:

If i ! s ! d ! i 0, then from the stamping rules,
)Ei 0 D fMi 0g [Ei [X .

Mi 0 is unique and only comes from i 0.
Asi 0 6!� i ^ i ¤ i 0,Mi 0 …Ei

)Ei Ei 0 .

Using the transitivity of!�,
i !� i 0, i ! : : :! i 0)Ei Ei 0 .

The reverse implication comes from the stamping rules and Lemma 1:

Ei Ei 0)Mi Ei 0 (Lemma 1)
,Mi fMi 0g [fMj j j !� i 0g (Lemma 1).
A mark is unique, and i ¤ i 0)Mi ¤Mi 0

,Mi fMj j j !
� i 0g

) 9j WMi DMj ^ j !� i 0.
A mark is unique:
, i !� i 0.

�

Theorem 3

We note .E j C / as the subset of marks in E that were generated by the component C . An execution
is consistent if and only if there do not exist several marks coming from a same component in the
timestamp of each internal event:

Strictly consistent executionD8i W 8C W cardinality.Ei j C / 6 1.

Proof

Ei D fMi 0 j i
0!� ig [fMig

D fMi 0 j i
0!� i _ i 0 D ig

D fMi 0 j i
0 2 past.i/g.

As two distinct events cannot generate the same mark, the number of marks and the number of
events are equal:

cardinality.fMi 0 j i
0 2 past.i/g j C /D cardinality.past.i/ j C /

(with or without the restriction on C), and so
cardinality.Ei j C /D cardinality.past.i/ j C /.

The condition is the consistency condition defined in Equation (1). �

5.2.3. Relation to other encodings. This part of our work is in the same spirit as classical works
by Lamport [18] and Mattern [19], which encode the causality relation in distributed computing.
However, our influence relation is different from the usual causality relation, and we use a different
encoding. The local clock does not act like a Lamport clock (the local clock is not updated using
the message timestamp), and the piggybacked timestamps are not Fidge–Mattern vector clocks (we
can have more than one mark from the same component).

5.2.4. Relaxed consistency encoding. The logical value in the mark identifies the step at which this
mark appears. When considering relaxed consistency, we replace this logical value with the date at
which the event occurs. The stamping rules are left unchanged, except that the real-time clock auto-
matically (and possibly continuously) increases. Assuming that the precision of the clock is higher
than the minimal step length, these timestamps still encode the influence pasts.

The maximal span between any two marks of a timestamp is

span.E/D max
Mi ,Mi02E

.d1 d2 jMi D h_, d1i,Mi 0 D h_, d2i/,

and an execution is � -relaxed consistent if all marks coming from the same component are inside an
interval of length � :

� -relaxed consistent executionD8i W 8C W span.Ei j C / 6 � .

Note that all mark comparisons, and so all date comparisons, refer to dates generated by the same

component: The clocks of the different components do not have to be synchronized.

5.2.5. Mark generators and controllers. An inconsistent data matching can occur between a com-
ponent couple .C ,C 0/ if and only if there is a spindle between them. Consequently, to reduce the
number of used marks, only spindle sources are mark generators. Moreover, only sinks are con-
trollers, which is to say components that check the consistency between the marks coming from
their spindle source.

5.3. Queue handling

Data can be used as component inputs only when they make a consistent data set. It implies that
data coming using the faster paths have to wait for the appropriate marked data coming through
the slower paths. This requires to use queues on component inputs to store data coming faster. We
analyze the necessary queue sizes in the field of relaxed data matching. As strict consistency is a
relaxed consistency of tolerance 0, the results apply to strict data matching.

In the context of relaxed data matching, we use filtering queues. A filtering queue stores data it
receives following a given rhythm, for example, the queue stores one value out of three. The flex-
ibility of relaxed data matching is exploited to reduce the queue sizes by using filtering queues. A
regular queue is a filtering queue with a rhythm of 1.

To manage the queues, we choose to keep a value until a more recent value is used. When a value
is used, older data are erased, but the used one remains buffered. If the frequency of the receiver
component is higher than the sender one, the receiver uses the same value for several steps.

In the general case, for a given spindle, the sink has an arbitrary number of inputs involved in this
spindle. To find the necessary queue sizes on each input, we analyze the paths two by two. For each
couple, the queue sizes of the two inputs are obtained. Then, for each input, we keep the highest
queue size that was obtained from the analysis.

In the following, let us consider a spindle between C˛ and Cˇ composed of two paths: P1 D

.C 0
1,C

0
2, : : : ,C 0

n/ and P2 D .C1,C2, : : : ,Cm/ where C 0
1 D C1 D C˛ and C 0

n D Cm D Cˇ . We
tolerate a gap of � between the step-starting times of C˛ that produce values that influence the
Cˇ inputs.

5.3.1. Queue requirements. First, we have to find where we need a queue.

� If tmax.P1/ > tmin.P2/C � , then it means that the path P2 can be shorter than the path P1 and
that the tolerance is not sufficient to reduce this gap. So, we need a queue between Cm 1 and
Cˇ .

� If tmax.P2/ > tmin.P1/C � , then we need a queue between C 0
n 1 and Cˇ .

� If both conditions are true, then we need both previous queues. In this case, P1, as well as P2,
can outperform the other path.

For the communication between components where the receiver is not a spindle sink, we use a
buffer of size 1. Each new coming value replaces the previous one.

5.3.2. Queue size evaluation. Let us suppose that tmax.P1/ > tmin.P2/C � . The required and suffi-
cient filtering queue size between Cm 1 and Cˇ must be determined. The objective is to determine
the maximum number of data that must be buffered waiting for a consistent data set to be con-
structed. We seek this maximum size such that, when the queue is full and a new value comes, it is
guaranteed that the consistent value corresponding to the oldest value v will never arrive. Thus, v is
useless and can be removed.

The required queue size between Cm 1 and Cˇ corresponds to the maximum number of data that
can be stored in the queue between two data removals by Cˇ .The worst case happens when the
maximum path time is made by P1 and where P2 takes as little time as possible.

Let us assume that Cˇ uses a regular queue for the path P1 and a filtering queue for the path P2.
This filtering queue has a size of N 0 (N 0 > 2), and it stores one value out of R.

We use a simple example to present the characteristics of filtering queues. Figure 4 displays a
spindle between the components C1 and C4 and the parameters of the components. We use sim-
plified parameters to make easier the illustration. The input of C4 coming from C3 uses a filtering
queue. We analyze the black path, and we consider that the communication times between two
components are equal to 1 and that the filtering queue stores one value out of three.

Figure 5 illustrates the biggest gap that we can have between two step-starting times of the source
that produces values that influence two consecutive values in the filtering queue. The tail of an arrow
corresponds to the time when a value is produced, and its head corresponds to the time when it is
read by another component or concerning the value produced by C3, the time when the value is
recorded into the queue. The biggest gap is found when the first queued value comes from a source
step as old as possible and the second value comes from a step as recent as possible.

If we consider the path P2 D .C1, : : : ,Cm 1,Cˇ / with a filtering queue that stores one value out
of R between Cm 1 and Cˇ , the biggest gap between two consecutive data is as follows:

gapf ilter.P2/ D

m 2
X

iD1

Œ2TCi
C�Ci CiC1

�C .RC 1/TCm 1
 eCm 1

m 2
X

iD1

ŒeCi
C ıCi CiC1

�

D tmax.P2/ tmin.P2/C .R 1/TCm 1
 .�Cm 1Cˇ

 ıCm 1Cˇ
/.

If � is the expected tolerance, we can find the necessary recording rhythm R of the queue. The
relation between � and R is provided by the gapf ilter computation. To manage a tolerance of � ,
we need that

gapf ilter.P2/ 6 2� .

We deduce that rhythm R of the filtering queue must respect

R 6 max

�

1,
2� tmax.P2/C tmin.P2/C�Cm 1Cˇ

 ıCm 1Cˇ

TCm 1

C 1

�

. (6)

If the rhythm of the filtering queue does not respect this condition, it is impossible to manage a
relaxed consistency of tolerance � .

Figure 4. Example of spindle.

Figure 5. Behavior of a filtering queue.

Knowing the value of R, we compute the necessary queue size. When the sink reads a value in
the filtering queue at time t , the oldest value it can use is influenced by a value produced by a source
step that necessarily started before t toldmin.P2/:

toldmin.P2/D

m 2
X

iD1

ŒeCi
C ıCi CiC1

�C .R 1/TCm 1
C eCm 1

C .N 0 2/RTCm 1
C eCm 1

C ıCm 1Cˇ

D tmin.P2/C eCm 1
C .N 0R R 1/TCm 1

.

At time t , in the worst case, on the path P1, the sink has a value influenced by a value produced
by a source step that started at t tmax.P1/.

To manage data matching, we have to provide a corresponding value coming from the path P2.
Considering relaxed data matching, this corresponding value must be influenced by a source value
that was produced by a source step that started between .t tmax.P1/ �/ and .t tmax.P1/C �/.

The minimum queue size is obtained when

toldmin D tmax.P1/ � .

The necessary queue size of the filtering queue is

N 0 D

�

tmax.P1/ � tmin.P2/ eCm 1
C .RC 1/TCm 1

RTCm 1

�

.

This queue size allows to store enough data between Cm 1 and Cˇ to guarantee a data matching
with values coming from the path P1. But, we have also to take into account the worst data utiliza-
tion case of the sink. The worst case happens when the data are used at the beginning of a Cˇ period
and when the use of a new data is performed as late as possible, which is to say when the component
has only its execution time left. So, in the worst case, a data is erased 2TCˇ

 eCˇ
after its last use.

If 2TCˇ
 eCˇ

> RTCm 1
, we have to add space to store the data that can come into the queue

between two sink readings. The final necessary queue size N is

N D

�

tmax.P1/ � tmin.P2/ eCm 1
C .RC 1/TCm 1

RTCm 1

C
2TCˇ

 eCˇ

RTCm 1

�

. (7)

With strict consistency and a regular queue, RD 1, and � D 0. The necessary queue size becomes

N D

�

tmax.PA/ tmin.PB/C 2TCˇ
 eCˇ

 eCm 1

TCm 1

�

C2.

5.4. Application example analysis

We apply the previous results on the application example of Figure 2. For the spindles where the
path temporal parameters are not very different, the necessary queues to manage strict consistency

have an average size of 6. But, the necessary queue size can be very large depending on the system
parameters. If we want a strict consistency in the spindle between the position computation and the
alert management, we found that we need a size of 102 on the alert management input that is directly
linked with the position computation. This happens because we have a large difference between the
period of the position computation (60ms) and the one of alert management (1 s). Actually, we do
not need to send the exact satellite position with the alert sent to the ground. We place a filtering
queue between the position computation and the alert management. If we tolerate a gap � of 300
ms, a recording rhythm of 9 is sufficient. The necessary queue size is then 12, far below 102, which
is the size that was required for the same spindle with strict data matching.

In some cases, freshness has priority, as in the spindle between the environment and the attitude
computation. To compute the attitude as precisely as possible, the component has to use the most
recent data coming from the gyroscope and the star tracker. Selecting data considering the matching
on the environment has no sense here.

If the queue sizes are unacceptable with regard to the resource constraints, the architecture has to
be modified. Very large queue sizes are a hint that points to an architectural problem. For example,
if we want a strict consistency between the position computation and the alert management, this
leads to a very large queue. Instead of having a direct link between this two components, the data
sent by the hot point coordinate computation can be composed of the coordinates and the position
value. Thus, we can erase the link between the position computation and the alert management and
eliminate the spindle.

6. CONCLUSION

In this article, we identify an important aspect of component-based distributed systems that is not
treated in other works: matching of interdependent data. Our analysis is carried out as soon as the
components, their characteristics, and their relations are known, but we consider few constraints on
the system scheduling, so this allows us to analyze systems early in their development process.

We first detect the configurations that cause data-matching problems, and then we propose a
method to manage data matching by using a timestamping mechanism to identify dependencies
between data. We propose a notion of relaxed data matching and compute the necessary sizes of the
queues we have to use on component inputs to manage these constraints. As strict data matching is
a special case of relaxed data matching, the results are applicable to strict data matching.

In some systems, the computed queue sizes are too large with regards to the resource constraints.
If this situation happens, it means that the paths are too much unbalanced. It identifies that an archi-
tecture redesign is needed. On the other hand, if the queue sizes are acceptable, it means that data
matching is guaranteed independently from the final system scheduling. An open question is how
more precise information about the scheduler can be used to reduce the queue sizes, for instance,
by asserting that certain inconvenient executions are actually prevented from happening. Another
question is whether a less regular recording rhythm such as .m, k/-firm [20] may be more efficient
and more suitable to model real-time network communication.

REFERENCES

1. Möller A, Åkerholm M, Fredriksson J, Nolin M. Evaluation of component technologies with respect to industrial
requirements. 30th EUROMICRO Conference, IEEE Computer Society, 2004; 56–63.

2. Szyperski C. Component Software – Beyond Object-oriented Programming, 2nd ed. Addison-Wesley: New York,
NY, USA, 2002.

3. Liu JWS. Real-time Systems. Prentice Hall: Upper Saddle River, NJ, USA, 2000.
4. Bhattacharyya SS, Murthy PK, Lee EA. Synthesis of embedded software from synchronous dataflow specifications.

Journal of VLSI Signal Processing Systems 1999; 21:151–166.
5. Fong C. Discrete-time dataflow models for visual simulation in Ptolemy II. Master’s Thesis, Electronics Research

Laboratory, University of California, Berkeley, 2001.
6. Ramamritham K, Son SH, DiPippo LC. Real-time databases and data services. Real-Time Systems 2004; 28(2-

3):179–215.
7. Xiong M, Han S, Lam K. A deferrable scheduling algorithm for real-time transactions maintaining data freshness.

26th IEEE Real-time Systems Symposium (RTSS 2005), 2005; 27–37.

8. Jha AK, Xiong M, Ramamritham K. Mutual consistency in real-time databases. 27th IEEE Real-time Systems

Symposium (RTSS 2006), 2006; 335–343.
9. Gustafsson T, Hansson J. Data freshness and overload handling in embedded systems. 12th IEEE Conference on

Embedded and Real-time Computing Systems and Applications (RTCSA 2006), 2006; 173–182.
10. Xiong M, Sivasankaran R, Stankovic J, Ramamritham K, Towsley D. Scheduling transactions with temporal

constraints: exploiting data semantics. 17th IEEE Real-time Systems Symposium (RTSS’96), 1996; 240–253.
11. Anderson S, Filipe JK. Guaranteeing temporal validity with a real-time logic of knowledge. 23rd Conference on

Distributed Computing Systems (ICDCS 2003), IEEE Computer Society, 2003; 178–183.
12. Song XC, Liu JWS. Maintaining temporal consistency: pessimistic vs. optimistic concurrency control. IEEE

Transactions on Knowledge and Data Engineering 1995; 7(5):786–796.
13. Urgaonkar B, Ninan AG, Raunak MS, Shenoy PJ, Ramamritham K. Maintaining mutual consistency for cached web

objects. 21st International Conference on Distributed Computing Systems (ICDCS-21), IEEE Computer Society,
2001; 371–380.

14. Baldoni R, Prakash R, Raynal M, Singhal M. Efficient �-causal broadcasting. International Journal of Computer

Systems Science and Engineering 1998; 13(5):263–269.
15. Pontisso N, Padiou G, Quéinnec P. Real time data consistency in component based embedded systems. 8th

International Conference on New Technologies in Distributed Systems (NOTERE ’08), ACM, 2008; 1–6.
16. Pontisso N, Quéinnec P, Padiou G. Temporal data matching in component based real time systems. IEEE Symposium

on Industrial Embedded Systems SIES2009, 2009; 62–65.
17. Pontisso N, Quéinnec P, Padiou G. Analysis of distributed multi-periodic systems to achieve consistent data match-

ing. 10th Annual International Conference on New Technologies of Distributed Systems NOTERE 2010, 2010;
81–88.

18. Lamport L. Time, clocks and the ordering of events in a distributed system. Communications of the ACM 1978;
21(7):558–565.

19. Mattern F. Virtual time and global state in distributed systems. International Workshop on Parallel and Distributed

Algorithms, Elsevier, 1989; 215–226.
20. Jia N, Song YQ, Lin RZ. Analysis of networked control system with packet drops governed by (m,k)-firm constraint.

6th IFAC International Conference on Fieldbus Systems and Their Applications (FeT’2005), Elsevier, 2005; 63–70.

