
A survey on tree matching and XML retrieval

Mohammed Amin Tahraoui, Karen Pinel-Sauvagnat, Cyril Laitang, Mohand

Boughanem, Hamamache Kheddouci, Lei Ning

To cite this version:

Mohammed Amin Tahraoui, Karen Pinel-Sauvagnat, Cyril Laitang, Mohand Boughanem,
Hamamache Kheddouci, et al.. A survey on tree matching and XML retrieval. Computer
Science Review, Elsevier, 2013, vol. 8, pp. 1-23. <10.1016/j.cosrev.2013.02.001>. <hal-
01131158>

HAL Id: hal-01131158

https://hal.archives-ouvertes.fr/hal-01131158

Submitted on 13 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01131158

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12411

To link to this article : DOI :10.1016/j.cosrev.2013.02.001
URL : http://dx.doi.org/10.1016/j.cosrev.2013.02.001

To cite this version : Tahraoui, Mohammed Amin and Pinel-
Sauvagnat, Karen and Laitang, Cyril and Boughanem, Mohand and
Kheddouci, Hamamache and Ning, Lei A survey on tree matching and
XML retrieval. (2013) Computer Science Review, vol. 8. pp. 1-23.
ISSN 1574-0137

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12411/
http://oatao.univ-toulouse.fr/12411/
http://dx.doi.org/10.1016/j.cosrev.2013.02.001
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A survey on tree matching and XML retrieval✩

Mohammed Amin Tahraouia, Karen Pinel­Sauvagnatb,∗, Cyril Laitangb,
Mohand Boughanemb, Hamamache Kheddoucia, Lei Ningc

a LIRIS, UMR5205, CNRS, Université de Lyon, Université Lyon 1, F­69622, France
b IRIT­SIG, Université Paul Sabatier, Université de Toulouse, France
c Laboratoire GAMA, Université de Lyon 1, Université de Lyon, F­69622, France

A B S T R A C T

With the increasing number of available XML documents, numerous approaches for re­

trieval have been proposed in the literature. They usually use the tree representation of

documents and queries to process them, whether in an implicit or explicit way. Although

retrieving XML documents can be considered as a treematching problem between the query

tree and the document trees, only a few approaches take advantage of the algorithms and

methods proposed by the graph theory. In this paper, we aim at studying the theoretical ap­

proaches proposed in the literature for tree matching and at seeing how these approaches

have been adapted to XML querying and retrieval, from both an exact and an approximate

matching perspective. This study will allow us to highlight theoretical aspects of graph

theory that have not been yet explored in XML retrieval.

Contents

1. Introduction ... 2

1.1. Using structure for retrieval ... 2

1.2. Challenges ... 2

1.3. Aim of the paper and outline ... 3

2. Querying XML data: key points ... 3

2.1. Tree representation of XML documents ... 3

2.2. XML retrieval: structured text retrieval vs querying semi­structured data... 4

2.3. Query languages .. 5

2.3.1. NEXI ... 5

2.3.2. XQuery ... 6

2.3.3. XQuery Full­text ... 6

✩ This work has received support from the French National Agency for Research (ANR) on the reference ANR­08­CORD­009.
∗ Correspondence to: IRIT­SIG, 118 route de Narbonne, F­31062 Toulouse Cedex 5, France. Tel.: +33 5 61 55 63 22.
E­mail addresses: Karen.Sauvagnat@irit.fr, sauvagnat@irit.fr (K. Pinel­Sauvagnat).

3. Algorithms for tree matching ... 6

3.1. Exact tree matching ... 7

3.1.1. Traversal approaches.. 7

3.1.2. Decomposition approaches .. 7

3.2. Approximate tree matching algorithms... 8

3.2.1. Tree edit distance ... 8

3.2.2. Tree inclusion ... 8

3.2.3. Tree alignment distance ... 9

3.2.4. Summary.. 9

4. Tree matching and XML retrieval.. 10

4.1. Exact tree­matching algorithms for XML retrieval ... 10

4.1.1. Structural join approaches ... 11

4.1.2. Holistic twig join approaches.. 11

4.1.3. Sequence matching approaches ... 13

4.1.4. Other important exact XML tree algorithms ... 13

4.1.5. Discussion .. 13

4.2. Approximate tree matching algorithms for XML retrieval.. 14

4.2.1. Pre­processing of trees before the matching process .. 15

4.2.2. Approaches based on tree inclusion ... 16

4.2.3. Approaches based on tree edit distance ... 16

4.2.4. Discussion .. 16

5. Evaluation .. 17

5.1. Efficiency and effectiveness ... 17

5.2. The INEX evaluation campaign.. 17

5.2.1. The ad hoc track ... 17

5.2.2. The data­centric track .. 18

5.2.3. The efficiency track .. 18

6. Discussions and future research directions .. 19

References .. 19

1. Introduction

Among all available formats used to represent information
(from text to video or audio), the XML (eXtensible Markup

Language) [1] format is now extensively used. XML was
designed by theW3C (WorldWideWeb Consortium) to “meet the
challenges of large scale electronic publishing” and “playing
an important role in the exchange of a wide variety of data
on the Web and elsewhere” [2]. XML is simple and self­
descriptive, and is thus used in a broad suite of Internet or
digital libraries applications.

The growing number of XML documents leads to the need
for appropriate retrieval methods, able to exploit the spe­
cific features of this type of documents. Indeed, in XML doc­
uments, textual content (data) is hierarchically structured
with tags. As opposed to other markup languages (like HTML
for example), tags are used to specify semantic informa­
tion about the content, and not for presentation purposes.
Although structure allows to organize content in XML doc­
uments, it is not always used with the same intent. XML
documents can be either data­oriented, where structure is in­
tensively used to organize data, and where XML components
can be seen as database records, or text­oriented, where
structure is irregular and documents are designed to be used
by humans.

1.1. Using structure for retrieval

The hierarchical document structure can be used in the three
main steps of the retrieval process [3]:

◦ in the querying step, to precisely define the user need
(one talks about structure­oriented queries, in contrast to
content­oriented ones that are only composed of keyword
terms),

◦ in the indexing step, to index separate elements and their
relations,

◦ in the retrieval step, to focus on the user need, i.e.,
to return specific required document components (i.e.,
documents parts) instead of entire documents to users.

Many approaches have been proposed in the literature
for XML retrieval. However, most of them propose ab nihilo

solutions, although using some concepts of graph theory
could be of interest. Indeed, the underlying data model of
XML documents allows to consider them as a particular kind
of graphs, i.e., trees [4]. More precisely, they can be considered
as labeled trees where nodes are XML elements or atomic
data (i.e., text). Edges represent relations between elements.
The same representation can be used for structured queries.
Considering this datamodel for retrieval, the retrieval process
can thus be seen as a matching problem between query and
document trees.

1.2. Challenges

Many issues have to be considered by retrieval systems deal­
ing with structured queries and the tree­matching problem.

A first problem is efficiency. Documents may be of very
large size, and when the query is not very selective, the

Fig. 1 – An example of XML document.

answer set may be composed of many results. Efficient
methods for storing, indexing and querying XML data are
therefore required. Ranking answers may also be of interest
to solve the many­answers problem.

Another challenge is how to interpret structural con­

straints [3]. The collection of XML documentsmay not contain
documents that fit exactly the structural hints of the query.
Therefore, one of themain issue to address is how to select el­
ements thatmatch even approximately the query constraints.
For instance, a user asking for component A child of compo­
nent B may be satisfied with A as descendant of B. He may
also be satisfied with elements having similar tag names than
the ones expressed in queries (e.g. a user looking for an ele­
ment labeled section may be satisfied with a sec element).

At last, content condition of queries, if they exist, should

be combined with structural ones. In the same way than
for structural constraints, content constraints can either be
strictly or loosely interpreted. In the latter case, relevance of
content should be evaluated and combined with structural
relevance to select the final answer set (which may or not be
a ranked list).

1.3. Aim of the paper and outline

As aforementioned, retrieving XML documents can be con­
sidered as a tree matching problem. Although the graph the­
ory proposes numerous algorithms for tree matching, to our
knowledge, there are no surveys in the literature that exam­
ine this question with this perspective. Some surveys on XML
retrieval can however be mentioned, [5,6] or some entries in
the Encyclopedia of Database Systems [7]. These surveys ei­
ther consider the problem of XML retrieval in a “pure” Infor­
mation Retrieval point of view [5] (i.e., the focus of the survey
is on ranking strategies based on information retrieval meth­
ods), or do not focus on XML retrieval but on XML similarity
in general [6].

Our aim in this survey is to provide a literature review
related to tree matching algorithms in a general perspec­
tive and to discuss how these algorithms have been adapted
to XML retrieval purpose. We will study the matching from
an exact and approximate point of view. Exact matching
approaches have been mainly exploited for data­oriented
documents, whilst approximate ones are mainly used for
text­oriented documents. This survey will also allow us to
highlight theoretical aspects that have not been yet explored
and that can be of interest for XML retrieval.

The rest of the paper is structured as follows. Section 2
presents some important concepts and background concern­
ing the querying of XML data, including query languages. Sec­
tion 3 lists the most known algorithms for approximate and
exact tree matching. Approaches for XML retrieval using tree
matching are then presented in Section 4. Evaluation meth­
ods of these approaches are exposed in Section 5. Finally, a
discussion about the interest and the impact of the presented
approaches is done in Section 6, and some tracks to be ex­
plored conclude the paper.

2. Querying XML data: key points

Before presenting the algorithms proposed by graph theory
for tree matching, we recall some backgrounds on XML
documents and query languages, and detail issues behind the
retrieval of XML information.

2.1. Tree representation of XML documents

In XML documents, tags are used to hierarchically and se­
mantically organize information. In the XML document pre­
sented in Fig. 1 for example, content is organized within a
header and a body tag. The body tag contains section elements,
which are in turn composed of title and paragraph elements,
etc.

Fig. 2 – XML tree associated with the document of Fig. 1.

An element starts with an opening tag <tag> and ends

with a closing tag </tag>. It may contain atomic data (as for

example the author element in Fig. 1), other elements (for in­

stance section elements in Fig. 1 contain title and paragraph el­

ements) or a mixture of both (one talk about mixed content).

Elements are also called components.

Thanks to this data model, XML documents can be rep­

resented as labeled trees [4]. In an XML tree, the whole

document is represented by the root node, elements are rep­

resented by internal nodes (i.e., non terminal nodes) and the

content itself is in leaf nodes (i.e., terminal nodes). These

nodes are linked with edges showing their hierarchical re­

lations. The tree representation of the document in Fig. 1 is

given in Fig. 2.

According to the type of their content, XML documents can

be categorized into two groups: data­oriented documents or

text­oriented documents.

Documents of the first category have a fine granularity, are

highly structured and do not contain mixed contents. The

order of children in a given element is often without any

importance. Elements can be considered as database records

(i.e. like couples of key­value), and information content is

often small. The document in Fig. 3 is an example of a data­

oriented document.

On the other hand, text­oriented documents are often

loosely structured: they have an irregular structure and may

contain many mixed contents. They are designed to be used

and read by humans. Books or scientific articles are good

examples of this type of documents. Moreover, the order

of elements is very important to understand the document

content. For example, in the text­oriented document of Fig. 1,

section elements should be read in the good order to make the

whole article understandable.

2.2. XML retrieval: structured text retrieval vs querying

semi­structured data

In the literature, XML document access has been studied
according to two different points of view:

◦ the database one, which considers exact matching of
documents and queries and which focuses on efficiency
problems. Approaches are more concerned with searching
than ranking.

◦ the information retrieval one, which considers approximate
matching of documents and queries and which aims
at ranking document components according to their
relevance to the query.

Historically, highly structured documents were considered
by the database community (which talks about querying semi­

structured data), whereas the Information Retrieval (IR) com­
munity proposed approaches for searching in text­oriented
documents (this is what the community calls structured text

retrieval).
Boundaries between the two types of approaches are

however nowadays not so strict. As stated by Lalmas and
Baeza­Yates in [8]:

“From a terminology point of view, structured text retrieval
and querying semi­structured data, in terms of end
goals, are the same, i.e., finding elements answering a
given query. The difference comes from the fact that
in information retrieval, the structure is added, and in
databases, the structure is loosened”.

In the following, we will thus describe some approaches
from the database community (exact matching, Section 4.1)
and from the information retrieval community (approximate
matching, Section 4.2). In this last case, the set­up of
INEX (Initiative for the Evaluation of XML Retrieval) in 2002 [9]

Fig. 3 – Example of data­oriented document.

promoted the development of many proposals. Most of the

approaches presented here were thus experimented in this

framework.

Whatever the considered approach, the problem is to

match a document tree with a query tree. The following para­

graph presents the different query languages proposed in the

literature for XML retrieval.

2.3. Query languages

Queries for XML retrieval can be classified into content­only

and content­and­structure queries.

Content­only queries are composed of simple keywords

terms, and have historically been used in traditional infor­

mation retrieval. They are also suitable for XML retrieval, in

retrieval scenarios where the user do not know the structure

of documents he/she is querying. In this paper, we are not in­

terested in such queries, because they do not have structural

hints. The main problem for such queries is to find the good

granularity of information to be returned to users, and not to

match documents and queries trees.

In content and structure queries, users provide content

conditions linked with structure hints. They are two reasons

that lead a user to add structural constraints to a query [10]:

◦ the first one is to reduce the size of the result,

◦ the second one is to restrict the search to document parts

that are supposed to be relevant.

According to Amer­Yahia and Lalmas [11], there are three

main categories of content and structure query languages:

◦ tag­based queries allow users to express very simple con­

ditions concerning the tag of the element in which the

required content should be. They are of the form: “tag:

content condition”. For example the query “section: search

engines” means that the user is looking for a section ele­

ment about “search engines”.

◦ path­based queries are based on the XPath [12] syntax. They

include content conditions in a XPath­based syntax. Ex­

amples of languages allowing path­based queries are the

NEXI language [13] or FuzzyXPath [14].

Fig. 4 – A twig query.

◦ clause­based queries have a structure similar to the one of

SQL. They contain nested clauses that allow to express the

used need. In XML retrieval, XQuery [15] or XQuery full­

text [16] are examples of clause­based queries.

If we purely consider the structure conditions of queries,

XQuery and XPath [15,12] queries can be basically divided into

two main groups: path queries and twig queries. Path queries

are simple queries which contain path expressions, i.e., child

axis “/” and descendant axis “//”. Twig queries are represented

as node­labeled twig patterns, i.e., small trees. They are also

named tree pattern queries.

Fig. 4 illustrates an example of twig query.

Since 2000, a lot of algorithms [17–28] have been proposed

to process twig queries in an exact matching point of view. A

short survey of these algorithms is presented in Section 4.1.

We describe in the following section three representative

languages for the families they belong to: NEXI, XQuery and

XQuery full­text.

2.3.1. NEXI

The NEXI query language was introduced in the context of

the INEX evaluation campaign in 2004 [13]. NEXI is a subset of

XPath, where an about function is added to express content

conditions. Authors argue that this is the simplest query

language that could possibly work.

Two types of queries can be expressed in NEXI: CO (Content

Only) and CAS (Content and Structure) Queries. As CO queries

are composed of simple keywords terms, they will not be

considered here. An example of CAS query can be:

//article[about(.//references, information retrieval)] //

section[about(.,search engines)]

This twig query means that the user is looking for a sec­

tion (which is called target element) about “search engines”
contained in an article (called support element) which should
contain references about “information retrieval”. The about

function contains a content condition, expressed as a CO
query (“information retrieval” or “search engines” in our ex­
ample).

The NEXI query language has been extended for question
answering [29], searching in heterogeneous collections (i.e.,
collections containing documents having a different DTD)
and multimedia retrieval [30].

2.3.2. XQuery

Historically, before theW3C recommendation for XQuery [15],
many query languages have been proposed in the literature
for searching in XML documents. We can cite Un­QL [31],
XML­QL [32], XQL [33] or Quilt [34]. XQuery is inspired from
all of them.

XQuery queries are FLWOR (For LetWhere Order by Return)
expressions. The for clause defines one or more variables
and iterates over elements resulting of an expression. The let

clause also defines one or more variables, but does not iterate
on them. The optional where clause expresses a selection
condition. At last, before constructing the result in the return

clause, the optional order by clause can be used to specify a list
of sorting criteria. An example of XQuery query can be found
in [35]:

<bib>

{

for $b in doc("http://bstore1.example.com/bib.xml")/bib/book

where $b/publisher = "Addison-Wesley" and $b/@year > 1991

return

<book year="{ $b/@year}">

{ $b/title }

</book>

}

</bib>

This query finds books published after 1991 by Addison­
Wesley. Results are <book> elements containing <title> el­
ements of the corresponding resulting books and having the
publication date as attribute.

2.3.3. XQuery Full­text

XQuery Full­text [16] is a proposition of the W3C to extend
the XQuery language to full­text search. Full­Text­oriented
functionalities of XQuery Full­text are for example token and
phrase search, token ordering or token proximity.

One of the most important feature of the language is that
it allows to rank results by relevance, and that the user can
define its own relevance. This is also possible to use tools such
as stemming, thesauri, stop­words or regular expressions [36].

As example, let us consider the following Xquery full­text
query, taken from [37]:

for $book in doc("http://bstore1.example.com/full-text.xml")

/books/book

let $booktext := $book/content [. contains text ("conduct"

ftand "usability" ftand "tests" distance at most

10 words) using stemming]

let score $s := $booktext contains text

(("measuring" ftand "success" distance

at most 4 words) weight 1.8) using stemming

where $booktext

order by $s descending

return ($book/metadata/title, $booktext)

This query finds books which discuss “conducting us­
ability tests”. Those mentioning “measuring success” are
returned first. The following features are used: stemming,
unordered distance (no more than 10 words between “con­
duct” and “usability” and between “usability” and “tests” are
for example required), and weight declaration on optional
words to impact the scoring and sorting.

As seen in this section, there are a lot of possible languages
to search in XML documents collection. As stated in [5], the
complexity and expressiveness of these languages increase
from tag­based to clause­based queries. All languages have
their own properties and potential uses. They all need a learn­
ing phase to be able to use them, but with different de­
gree of ease. For example, the information retrieval­oriented
NEXI language is introduced as “the simplest query language
that could possibly work” [13], whereas the database­oriented
XQuery Full­text query language propose a very complete but
hard to learn syntax for end­user.

To overcome this problem of complexity for end users,
graphical query languages were proposed [38,39], but they are
far from being extensively used.

Whatever the query language used, content and structure
queries, in the same manner than XML documents, can be
represented as labeled trees. The retrieval process can thus
be summarized to a tree matching process. The following
section describes state­of­the­art algorithms for exact and
approximate tree matching.

3. Algorithms for tree matching

In order to state the problem of tree matching, we first define
some concepts related to labeled tree and their components.

A labeled tree is denoted as T = (V,E, r, µ), where V =

{v1,v2, . . . ,vn} is a finite set of nodes, E = {(u,v)|u,v ∈ V} is
a set of edges. r ∈ V is a distinguished node called the root,
and µ is a labeling function which maps each node of T to one
of labels in a finite set L = {l1, l2, . . . , lk}. For simplicity, in the
remaining of this paper, we call a rooted labeled tree simply
as a tree. We define the level l(u) of node u as the number
of edges along the unique path between itself and the root.
The depth of a rooted tree is the maximum level of any vertex
in the tree. Given two adjacent nodes u and v in a rooted tree,
with l(v) > l(u), v is called the child of u, conversely, u is a parent

of v. A node of Twithout children is called a leaf, and the other
nodes are called internal nodes. Nodes having the same parent
are called siblings. Finally, an ordered tree is a rooted tree for
which an ordering is specified for the children of every node,
and it is unordered otherwise.

Throughout this section, we use the following notations:

◦ T1 and T2 are two rooted trees to be matched,

◦ di, li and △i respectively denote the depth, the number of
leaves and the maximum degree of Ti (i.e., the maximum

degree of its vertices, where the degree of a vertex is the
number of edges incident to the vertex), where i = 1,2.

This section reviews the exact and approximate tree
matching algorithms. In the first part, we give a brief overview
of algorithmic results in exact tree matching. Most attention
in the literature has been devoted to approximate tree match­
ing which is described in Section 3.2.

3.1. Exact tree matching

We can define the exact tree matching problem as follows. Let
target T1 = (V1,E1, r1, µ1) and pattern P = T2 = (V2,E2, r2, µ2)

be two ordered labeled trees. T2 matches T1 at node r1 if there
exists a mapping from nodes of T2 into the nodes of T1 such
that:

1. the root of T2 maps to r1,
2. if v2 ∈ V2 maps to v1 ∈ V1, then µ1(v1) = µ2(v2),
3. if v2 ∈ V2 maps to v1 ∈ V1 and v1 is not a leaf, then each

child of v2 maps to some child of v1.

Fig. 5 shows an example of tree pattern matching be­
tween pattern tree P and target tree T, where the one­to­one
mappings are represented by dotted lines. The tree pat­
tern matching problem has been extensively studied and
has many important applications including term rewrit­
ing systems, transformational programming systems, code
generator–generators and a variety of functional languages
with equational function definitions (see [40]). The following
is a brief overview of general exact tree pattern matching al­
gorithms.

Given tree pattern P and target T of size m and n respec­
tively where m ≤ n, a native tree pattern matching algorithm
takes O(mn) in the worst case. The basic idea of this algorithm
consists in visiting all vertices of T in pre­order walk. For each
visited vertex v, the algorithm calls a special recursive proce­
dure to test for possible occurrence of P at the vertex v. The
recursive procedure is terminated when a mismatch is de­
tected.

Several attempts were made to improve the naive O(mn)

step algorithm. These attempts can be classified into two gen­
eral categories: namely traversal approaches and decomposition

approaches.

3.1.1. Traversal approaches

In [40], Hoffmann and O’Donnell proposed two traversing
methods, called bottom­up and top­down matching algorithms
with the same worst case bound, where bottom­up algorithm
traces the tree from the leaves to the root and top­down

algorithm works by traversing the tree from the root to
leaves. Top­down algorithm is efficient in space, but in non­
linear time. The main idea of this algorithm is to encode the
root­to­leaf paths as strings. It then finds all occurrences of
each string in the target tree according to the string pattern
matching algorithm of Aho and Corasick [41]. On the other
hand, the key idea of the bottom­up technique is to find, for
each node in the target tree, all patterns and all parts of
patterns that match this node. Bottom­up algorithm performs
in linear time. However, extra storage space is needed during
matching to store and establish the table encoding of all
nodes in the target tree.

Fig. 5 – An example of tree pattern matching.

Hoffmann and O’Donnell stimulated a number of ad­
ditional studies offering heuristic for space improvements.
Chase method [42] have received considerable attention in
the literature. This method was thought to improve bottom­

up solutions presented by Hoffmann and O’Donnell using
the deeper structure of the pattern set P to reduce the com­
putational cost of bottom­up algorithm. Chase proved that
this transition map better utilizes space than Hoffmann and
O’Donnells. Cai et al. [43] improved the preprocessing time
and space complexities of Chase bottom­up algorithm. The
main modification introduced in Chase method is that the
preprocessing can be done incrementally with respect to ad­
ditions and deletions of pattern tree.

3.1.2. Decomposition approaches

The basic idea of these approaches is to decompose the tree
into small pieces in order to facilitate the matching process.
In [44], Burghardt proposed a tree pattern algorithm, which
consists of two phases. In the first phase a matching automa­
ton is constructed from a given pattern set. For this, it gener­
alizes the string matching algorithm of Aho and Corasick [41]
such that each pattern is decomposed depending on the po­
sition ordering relation. Then, these patterns are merged into
an automaton. In the second phase, one or more target trees
are fed into the automaton, by traversing through the au­
tomaton according to the target trees.

Kosaraju [45] proposed a new algorithm with improved

complexity bound from O(nm) to (nm
3
4). This algorithm is

based on three new techniques: suffix tree of a tree, the
convolution of a tree and a string, and partitioning of trees
into chains and anti­chains. Dubiner et al. [46] improved
Kosaraju’s algorithm by discovering and exploiting periodical
strings appearing in the pattern. They obtained a bound of

(nm
1
2). Cole and Hariharan [47] introduced and proposed an

efficient algorithm for the subset Matching problem. The goal of
this problem is to report all occurrences of a pattern string P

of length m in a string T of length n. Then the tree pattern
matching has been reduced to a number of smaller subset
matching problem. Combining this reduction with the subset
matching algorithm take an o(n log3m) time randomized algo­
rithm for the tree pattern matching problem. Later the same
authors improved the reduction time complexity [48]. They
obtained an O(n log2m + m) time deterministic algorithm and
an O(n log n+m) time Monte Carlo algorithm for the tree pat­
tern matching problem.

a b

c

Fig. 6 – Tree edit distance operations: (a) node insertion (b) node deletion (c) node relabeling.

3.2. Approximate tree matching algorithms

Approximate tree matching is the process of determining the
best possible match of one tree against another one. There are
two types of approximate tree matching: the unordered tree
matching problem and the ordered tree matching problem.
The tree matching in these two types refers to the task of
measuring the dissimilarity between trees. One of the most
known methods for evaluating the dissimilarity is the edit
distance metric. In a nutshell, the tree­edit distance metric
is the natural generalization of the well­known string edit
distance problem. The similarity of edit­distance between
two trees T1 and T2 is defined as the minimum cost
sequence of basic edit operations required to transform T1
into T2. There are three basic edit operations: node insertion,
node deletion and node relabeling. We describe each of these
operations in detail below.

1. Node insertion: insert node d as a child of parent a in T,
making d the parent of some of the children of a, as shown
in Fig. 6(a).

2. Node deletion: inverse of insert. Delete a non­root node c

of T with parent a, making the children of c become the
children of a. The children are inserted in the place of c

into the set of children of a (Fig. 6(b)).

3. Node relabeling: replace a label of a node by another label,
as shown in Fig. 6(c).

Based on the concept of tree edit operations, Bille [49] de­
rived three main groups of algorithms for tree matching: tree
edit distance approaches, tree inclusion and the tree alignment

distance. The ordered tree inclusion problem has been rec­
ognized as an important query primitive in XML databases
[50–52], since an XML document can be viewed as a rooted,
ordered and labeled tree. In the rest of this section, we ex­
tend the survey of Bille [49] by adding the current trends in
approximate ordered tree matching algorithms.

3.2.1. Tree edit distance

The tree edit distance between two trees T1 and T2 is defined
as the minimum cost sequence of edit operations that turns
T1 into T2. In the literature, Tai [53] was the first to propose a
recursive algorithm for evaluating the edit distance between

two given ordered labeled trees T1 and T2. The resulting algo­
rithm has a complexity of O(|T1| · d21 · |T2| · d22) time and space.
This algorithm was improved by Zhang and Shasha [54]. It
runs in O(|T1|·|T2|·min{l1,d1}·min{l2,d2}) time and O(|T1|·|T2|)

space. In [55], Klein developed a faster algorithm which has
better time complexity in the worst case. In this algorithm,
the tree edit distance problem can be solved in O(|T1|2 · |T2| ·

log |T2|) time and O(|T1|·|T2|) space. Chen [56] presented a new
bottom­up recurrent approach which runs in O(|T1| · |T2| + l21 ·

|T2| + l
5
2
1 · l2) time and O((|T1| + l21) · min(l2,d2) + |T2|) space.

Dulucq and Touzet [57] studied the behavior of dynamic
programming methods given in [55,54]. They showed that
those two algorithms can be described as decomposition
strategies. They then introduced the definition of cover strate­
gies, that are natural and easy to handle extensions of Klein
and Zhang–Shasha algorithms. In this framework, a novel al­
gorithm has been provided to minimize the number of dis­
tinct recursive calls. By construction, this algorithm involves
less relevant forests than Zhang–Shasha and Klein strategies.
So, it is at most in O(|T1| · |T2| · log |T1| · log |T2|) time complex­
ity in the worst case, and in O(|T1| · |T2|) in average. Demaine
et al. [58] proposed a new algorithm for computing the tree
edit distance that falls into the same decomposition strategy
framework of [57,55,54]. In the worst­case, this algorithm re­
quires O(|T1| · |T2| · (1 + log |T1|

|T2|
)) time and O(|T1| · |T2|) space.

Many other solutions have been developed, see [49] for
survey. Among all these algorithms, Klein algorithm and the
decomposition strategy are the fastest in terms of worst case
time and space complexity.

3.2.2. Tree inclusion

Given two labeled rooted trees P and T, the tree inclusion
problem is to locate the subtrees of T that are instances of
P. We can see that the tree inclusion is a particular case of
the tree edit distance problem. In fact, the tree pattern P is
included in T if we can obtain P from T by a sequence of delete
operations. Fig. 7 shows an example of tree inclusion such
that the tree P is included in the tree T by deleting the nodes
labeled d, e, f and g.

The tree inclusion problem was originally posed by
Knuth [59]. There are two types of inclusion problems: the

Fig. 7 – An example of tree inclusion matching.

unordered tree inclusion problem, where the order among
siblings of the pattern nodes is not important, and the or­
dered tree inclusion problem, where the left­to­right order
among siblings is important. Kilpelainen and Mannila [60]
studied the two versions of this problem. They showed that
this kind of problem is NP­complete for unordered tree.

An injective function f from the nodes of P to the nodes
of T is an embedding of P into T, if it preserves labels and
ancestorship. For every pair of nodes u, v in P, we require that:

1. f(u) = f(v) if and only if u = v.
2. the two vertices u and f(u) have the same label.
3. u is an ancestor of v in P if and only if f(u) is an ancestor of

f(v) in T.

We say that pattern P is an included tree of T, and T is an
including tree of P, if there is an embedding of P into T.

The ordered tree inclusion problem results from the
unordered tree inclusion by fixing the left­to­right order of
nodes. Indeed, an embedding of a tree P into a tree T is
an ordered embedding of P into T if and only if the sibling
conditions are hold i.e., the vertex v is the left of u in P iff f(v)

is the left of f(u) in T.
With dynamic programming method, Kilpelainen and

Mannila [60] proposed the first polynomial tree inclusion al­
gorithm using O(|P| · |T|) time and space. Most of the later
improvements are essentially based on a dynamic program­
ming technique from the original algorithm of [60]. The ba­
sic idea behind this algorithm is the following: for all pairs
(v,u) ∈ V(P) × V(T), let v1,v2, . . . ,vp be the children of v and
u1,u2, . . . ,uq be the children of u. To decide if the subtree
rooted at a node v can be included in the subtree rooted at
a node u, we try to find a sequence of numbers 1 ≤ x1 ≤ x2 ≤

· · · ≤ xq ≤ q such that the subtree rooted at a node vk can be
included in the subtree rooted at a node uxk for all k, 1 ≤ k ≤ p.

Richter [61] proposed a new algorithm using O(|
∑

P | · |T| +

m(P,T) · dT) time, where
∑

P is the set of the labels of the
tree pattern and m(P,T) is the number of pairs (v,u) ∈ V(P) ×

V(T) with Label(v) = Label(u). The space complexity of this
algorithm is O(|

∑

P | · |T| + m(P,T)). Hence, if the number of
matches is small, the time complexity of this algorithm is
better than O(|T| · |P|).

In [62], a more complex algorithm was presented using
O(|T| · lP) time and O(lP · min{dT, lT}) space. In [63], a bottom­

up algorithm is proposed. The main idea of this algorithm is
to construct a data structure on T supporting a small number
of procedures. Then three algorithms are proposed for each
data structure, the combining of these three algorithms give

a time complexity bounded by the minimum of the following
three values:

1. |P|·|T|

log(|T|)
.

2. lP · |T| · log log(|T|).
3. lP · |T| · log log(|T|).

Moreover, the space of this algorithm is improved by a
linear factor O(|T| + |P|). This will make the algorithm more
efficient and faster to query a large XML document. Chen and
Chen [64] proposed a new tree inclusion algorithm, which
requires O(|T|·min{dP, lP}) time and O(|T|+|P|) space. However,
there are flaws in the time complexity analysis of this
algorithm. These flaws are shown by two counterexamples
presented in [65]. Hence the time complexity of Chen and
Chen algorithm is not polynomial. More recently, Chen and
Chen [66] revisited their work and present a new top­down

algorithm to remove any redundancy of [65]. The time
complexity of the new one is bounded by O(|T| · min{dP, lP}).
The space requirement remains with O(|T| + |P|).

3.2.3. Tree alignment distance

The tree alignment problem was introduced as natural gener­
alizations of string edit distance [67]. It is a special case of the
tree editing problem, where all insertion operations must be
done before any deletions. An alignment AL between two la­
beled trees T1 and T2 is obtained by first performing insert op­
erations of nodes labeled with the null symbol λ (called space)
on the two trees so they become isomorphic, and then over­
laying the first augmented tree on the second. A cost is de­
fined for each pair of opposing labels in AL. The cost of AL is
the sum of costs of all opposing labels in AL. The matching
problem here is to find an alignment with the minimum cost.
Fig. 8 shows an example (from [68]) of an ordered alignment.

Jiang et al. [68] were the first to propose an ordered tree
alignment algorithm, that studies algorithms for both ordered
and unordered version of this problem. Kuboyama et al. [69]
showed that the alignment problem for two unordered trees
has no polynomial time absolute approximation algorithm,
unless P = NP.We survey here themain algorithms of ordered
tree alignment problem. The algorithm of Jiang et al. [68] uses
O(|T1| · |T2| · (△T1

+ △T2
)2) time and space. Hence, for small

degree trees, this algorithm is in general less expressive than
the best known algorithm for the edit distance. Jansson and
Lingas [70] presented a fast algorithm for ordered alignment
between two similar trees. This algorithm can construct an
optimal alignment of T1 and T2 using at most k spaces
in O((|T1| + |T2|) · log (|T1| + |T2|) · (△T1

+ △T2
)4 · k2) time.

Wang and Zhao [71] proposed a new ordered tree alignment
algorithm which is based on the constrained edit distance.
This algorithm trees runs in O(|T1| · |T2|(△T1

+ △T2
)2) time and

requires O(log(|T1|) · |T2| · (△T1
+ △T2

) · △T1
) space.

3.2.4. Summary

Table 1 recalls the time and space complexities of the algo­
rithms covered in this section.

To summarize, the problem of tree matching has been
well studied in the literature. We provided in this section an
overview of important algorithms. Due to the structure of
XML documents, it seems obvious and natural to use those
tree matching algorithms for XML retrieval. However, most

a b c

Fig. 8 – Tree Alignment Distance: (a) tree T1, (b) tree T2, (c) an alignment of T1 and T2.

Table 1 – The most important approximate ordered tree matching algorithms and their complexities.

Algorithm Time Space

Tree edit distance

Tai [53] O(|T1| · |T2| · d21 · d22) O(|T1| · |T2| · d21 · d22)

Zhang and Shasha [54] O(|T1| · |T2| · min{d1, l1} · min{d2, l2}) O(|T1| · |T2|)

Klein [55] O(|T1|2 · |T2| · log |T2|) O(|T1| · |T2|)

Dulucq and Touzet [57] O(|T1| · |T2| · log |T1| · log |T2|) O(|T1| · |T2|)

Demaine et al. [58] O
(

|T1| · |T2| ·
(

1 + log
|T1|

|T2|

))

O(|T1| · |T2|)

Chen [56] O(|T1| · |T2| + l21 · |T2| + l
5
2
1 · l2) O((|T1| + l21) · min(l2,d2) + |T2|)

Tree inclusion problem

For unordered trees [60] NP­Complete

Kilpelainen and Mannila [60] O(|P| · |T|) O(|P| · |T|)

Richter [61] O(
∑

P ·|T| + m(P,T) · dT) O(
∑

P ·|T| + m(P,T))

Chen [62] O(|T| · lP) O(lP · min{dT, lT})

Bille and Gortz [63] min
{

|P|·|T|

log|T|
, lP · |T| · log log(|T|), lP · |T| · log log(|T|)

}

O(|T| + |P|)

Chen and Chen [64] flaws in the time complexity computation O(|T| + |P|)

Chen and Chen [66] O(|T| · min{dP, lP}) O(|T| + |P|)

Tree alignment distance

Jiang et al. [68] O(|T1| · |T2| · (△T1
+ △T2

)2) O(|T1| · |T2| · (△T1
+ △T2

)2)

Jansson and Lingas [70] O((|T1| + |T2|) · log(|T1| + |T2|) · (△T1
+ △T2

)4 · k2) O((|T1|+ |T2|) · log(|T1|+ |T2|) · (△T1
+ △T2

)4 ·k2)

Wang and Zhao [71] O(|T1| · |T2|(△T1
+ △T2

)2) O(log(|T1|) · |T2| · (△T1
+ △T2

) · △T1
)

of the state­of­art algorithms are given for general trees.
They cannot be directly used on specific trees as for instance
XML documents. In order to obtain an effective and efficient
algorithm for XML query processing, we need to take into
account the properties and the specificity of the XML trees.
In fact, there are different requirements that lead to various
XML tree matching algorithms different than the traditional
tree matching problem presented in this section:

• most of the existing tree matching algorithms rely on the
assumption that the target tree can be held entirely in
main memory, which is not valid for XML tree algorithms.
The latter mainly operate on minimizing access to the
input data tree when performing matching operations.

• most exact matching algorithms attempt to find one
matching between the pattern tree and target tree, while
exact XML tree matching require the output of all pos­
sible matching which is a core operation in XML query
processing.

• the XML tree pattern matching becomes more complex
than the traditional tree matching due to the existence of
ancestor–descendant edges in the pattern tree.

4. Tree matching and XML retrieval

We provide in this section a survey of current development
of tree matching algorithms related to XML retrieval. Its
content is divided into two main parts. The first covers the
exact algorithms for finding all twig patterns in an XML
database. The second part describes and illustrates in detail
the approximate algorithms. Note that a significant number
of exact tree matching improvements have been proposed
since the proposition of Zhang et al. [17]. This explains that
Section 4.1 is much larger than Section 4.2.

Table 2 summarizes the XML tree matching approaches
presented in this section regarding the type of collection on
which they are applied and the tree matching algorithm they
use.

4.1. Exact tree­matching algorithms for XML retrieval

As we mentioned in Section 2, XML uses a tree­structured
model for representing data and twig patterns for expressing
queries. Finding all occurrences of such a twig pattern

Table 2 – Summary of XML approaches presented in Section 4.

Type of
matching

Input: Query Input:
collection

Name of the tree matching
algorithm used

Adaptation­similar approaches

Exact Pure structure query Data­oriented Decomposition approaches [44–47] Binary decomposition (structural join
approaches): [17,18]. Root­to­leaf paths
decomposition (holistic twig join
approaches): [19,20,72–75]. String
decomposition (sequence matching
approaches): [26,76,77].

Traversal approaches: [40,42,43] One­phase holistic twig matching
approaches: [22,78,79,23].

Approximate Content and
structure query

Text­oriented Tree edit distance [53,57,58] Edit distance [80], Strict use of the
algorithm [81], Tree summaries [82],
Relaxation [83], Optimal cover
strategy [84].

Tree inclusion [59–61,66] [52,50]
Data­oriented Tree edit distance [53,57,58] Relaxation [85]

in an XML collection is clearly a core operation in XML
query processing. There has been a great deal of interest in
recent years to overcome efficiently this problem. Existing
XML twig pattern algorithms can be classified into two­
phase algorithms (decomposition approaches) and one­phase
algorithms (traversal approaches). However, most of the
proposed approaches in the literature are interested in
structural properties of queries and can be classified into four
groups as follows:

◦ structural join approaches,
◦ holistic twig join approaches,
◦ sequence matching approaches,
◦ other important exact XML tree algorithms.

In the following, we present an overview of the main algo­
rithms and results of each group.

4.1.1. Structural join approaches

In this section, we review the join based approach, a very
important native idea, which usually includes three parts:
(1) decomposition, (2) matching and (3) merging. Firstly, a
twig pattern is decomposed into a set of basic parent–child
and ancestor–descendant relationships between pairs of
nodes. In the second phase, each binary relationship is
separately executed using structural join techniques and its
intermediate results are stored for further processing. The
final result is formed by merging these intermediate results.

Indexing and node encoding is critical for the structural
join approaches. The most common is the containment
labeling scheme [17]. This labeling scheme (called region
encoding) uses a region code (start, end, level) to represent
the position of an XML element in the data tree where start

and end are generated by performing a pre­order traversal
procedure of the data tree; level is the nesting depth of the
element in the data tree. The positional information which
follows nodes must allow decision of ancestor–descendant
and parent–child relationships. Based on this labeling
scheme, Zhang et al. [17] proposed the multi­predicate merge
join (MPMGJN) algorithm, which is the first structural join
to find all occurrences of the basic structural relationships.
This mechanism is an extension of the classical merge­
join algorithm developed in relational query optimizers for

equi­joins. The results in Zhang showed that for many XML
queries, MPMGJN is more than an order­of­magnitude faster
than the standard Relational Database Management System
(RDBMS) join implementations. Al­Khalifa et al. [18] took
advantage of the same labeling scheme of XML elements
to devise I/O and CPU optimal join algorithms for matching
binary structural relations against an XML document.

The main problem of the approaches mentioned above
is that they may generate large and possibly unnecessary
intermediate results, since the join results of individual
binary relationships may not appear in the final results.

4.1.2. Holistic twig join approaches

Until now, the holistic twig join approach was regarded as
the most efficient family in the literature. Bruno et al. [19]
proposed the first holistic XML twig pattern matching
algorithm to avoid producing large intermediate results.
This approach constituted the major attempt for several
subsequent works in order tomake the twig patternmatching
very efficient. In the following, we present an overview of
the basic ideas and results of the main holistic twig join
algorithms available in the literature.

TwigStack algorithm

The main disadvantage of decomposing twig queries into
multiple binary relationships is that this approach generates
a large amount of intermediate query results even when the
input and output size are more manageable. Frequently, such
intermediate results cannot be held in main memory and
must be stored on disk. This will result in high disk I/O cost. In
order to overcome this weakness, Bruno et al. [19] proposed a
novel holistic twig join algorithm TwigStack, wherein, no large
intermediate results are created.

The central idea behind this approach is to use a chain of
linked stacks to compactly represent intermediate results of
individual query root­to­leaf paths, which are then composed
to produce the final solutions. TwigStack avoids storing
intermediate results unless they contribute to the final
results when the query twig has only ancestor–descendant
edges. The analytical results of this approach demonstrate
that TwigStack is I/O and CPU optimal among all sequential
algorithms that read the entire input. These analysis are

confirmed by experimental results on a range of real synthetic
data and query twig patterns.

Improvements on TwigStack

The idea of holistic twig join has been adopted in several
works in order to make the structural join algorithm very
efficient. This section is devoted to a structured review of
these advances.

Improvement 1: efficient processing of parent–child edge query.
As mentioned before, when all edges in query patterns are
ancestor–descendant ones, TwigStack ensures that each root­
to­leaf intermediate solution contribute to the final results.
However, this algorithm still cannot control a large number
of intermediate results for parent–child edge query. A first
improvement that can be found in the literature concerns
the efficient handling of twig queries with parent–child
relationships. Among the proposed approaches, Lu et al. [20]
extended TwigStack by proposing TwigStackList algorithm. This
algorithm has the same performance than TwigStack for
query patterns with only ancestor–descendant edges, but
also produces much less useless intermediate solutions than
TwigStack for queries with parent–child relationships. The
main technique of TwigStackList algorithm is to read more
elements in the input streams and cache some of them (only
those that might contribute to final answers) into lists in
the main memory, so that we can make a more accurate
decision to determine whether an element can contribute
to the final solution or not. Chen et al. [72] suggested
another algorithm, called iTwigJoin, which can be used on
various data streaming strategies (e.g. Tag+Level streaming
and Prefix Path Streaming). Tag+Level streaming can be optimal
for both ancestor–descendant and parent–child only twig
patterns whereas Prefix Path streaming could be optimal for
ancestor–descendant only, parent–child only and one branch
node only twig patterns assuming there was no repetitive tag
in the twig patterns.

Improvement 2: eliminating redundant computations. TwigStack

works by recursively calling a method called getNext to
efficiently filter useless elements in order to return the
next node for processing. The existing holistic twig join
algorithmsmay performmany redundant checks in the call of
getNext. Thus, an improvement strategy consists in avoiding
these unnecessary computations. TSGeneric+ [73] makes
improvements on TwigStack by using XR­Tree to effectively
skip some useless elements that do not contribute to the final
results. The motivation to use XR­tree is that, the ancestors
(or descendants) of any XML element indexed by an XR­tree

can be derived with optimal worst case I/O cost. However,
TSGeneric+ may still output many useless intermediate
path solutions like TwigStack for queries with parent–child
relationship. Guoliang et al. [74] proposed the TJEssential

algorithm based on three optimization rules to avoid some
unnecessary computations. They presented two algorithms
incorporated with these optimization rules to effectively
answer twig patterns in leaf­to­root combining with root­
to­leaf way. A novel holistic twig join algorithm, called
TwigStack+ is proposed in [86]. It is based on holistic twig
join guided by extended solution extension to avoid many
redundant computations in the call of getNext. It significantly
improves the query processing cost, simply because it can

checkwhether other elements can be processed together with
current one.

Improvement 3: eliminating the merging phase. Another improve­
ment consists in reducing the cost of queries execution. In­
deed there exists very interesting approaches that eliminate
the second phase of merging of individual solutions [22,23,
78,79]. These algorithms yield no intermediate results. Chen
et al. [22] proposed the first tree pattern solution, called
Twig2Stack that avoids any post path join. Twig2Stack is based
on a hierarchical stack encoding scheme to compactly rep­
resent the twig results. The main idea is to organize the
elements matching the same query node in a hierarchical
structure in order to capture their A–D relationships. How­
ever, maintaining the hierarchical structure among stacks
in Twig2Stack algorithm has a critical impact on the per­
formance processing of a twig query. Aiming to avoid this
complex hierarchical­stacks, Qin et al. [23] proposed TwigList

algorithm. This is a simplification of Twig2Stack using simple
lists and intervals given by pointers, which improves perfor­
mance in practice. In the same context a novel algorithm,
called HolisticTwigStack was developed in [78]. The authors
proposed a complex stack structure like Twig2Stack to pre­
serve the holisticity of the twig matches, without generat­
ing intermediate solutions. However, a considerable amount
of time is taken to maintain the stack structure. Dao and
Gao [87] reviewed and analyzed both of the HolisticTwigStack

and TwigList algorithm on processing for XML twig pattern
matching. The statistics from this analysis clearly indicate
that the TwigList algorithm seems to be significantly more ef­
ficient in the most tested cases. Recently, Li and Wang [79]
proposed two novel one­phase holistic twig matching algo­
rithms, TwigMix and TwigFast, which combine the efficient se­
lection of useful elements introduced in TwigStack with the
simple data lists of TwigList for storing final solutions. Finally,
it is clear that these approaches reduce considerably the pro­
cessing time. However, Twig2Stack reduced the intermediate
results at the expense of a huge memory requirement, and it
was restricted by the fan­out of the XML document.

Improvement 4: taking advantage of the properties of some labeling

schemes. Most of the existing holistic twig join algorithms are
based on region encoding scheme to capture the structural
relationship between XML elements. However, there exist
other approaches which exploit others labeling scheme.
Among them, Dewey labeling scheme has been widely used in
XML query processing. A Dewey label of a node v represents
the path from the document root to the node v. Based on
the Dewey labeling, Lu et al. [21] proposed TJFast algorithm
which uses a different encoding scheme, called the extended
Dewey code to combine effectively the types and identifiers
of elements in a label. TJFast typically access much less
elements than algorithms based on region encoding and can
efficiently process queries with wildcards in internal nodes.
More recently, based on the preliminary idea of extended
Dewey labeling scheme and the TJFast algorithm, Lu et al. [88]
proposed three novel holistic twig join algorithms TJFastTL,
GTJFast and GTJFastTL. The first algorithm GTJFast allows to
compactly represent the intermediate matching solutions
and avoid the output of non­return nodes to reduce the I/O
cost. Both TJFastTL and GTJFastTL algorithms are proposed by

extending TJFast and GTJFast algorithm based on tag +level

streaming scheme. The authors are proved that TJFastTL (and
GTJFastTL) guarantees the I/O optimality for queries with only
parent–child relationships. The experimental results reported
in [88] show that these algorithms are superior to existing
approaches in terms of the number of scanned elements, the
size of intermediate solutions and query performance.

4.1.3. Sequence matching approaches

As opposed to the holistic twig join algorithms, the sequence
matching approaches use an indexing method to transform
both XML documents and queries into sequences and
evaluate queries based on sequence matching. Querying
XML data is equivalent to find subsequence matches. Zezula
et al. [26,76] use the pre­order and post­order ranks to
linearize the tree structures and apply the sequence inclusion
algorithms for strings. They proposed a novel strategy that
includes three parts. Firstly, a query decomposition process is
applied to transform the query twig into a set of root­to­leaf
paths so that the ordered tree inclusion can be safely applied.
It has to be evaluated against the data signature in the second
phase. Finally, the set of answers is determined by joining
compatible intermediate solutions. The experiments in [76]
demonstrate the efficiency of the decomposition approach,
which is especially beneficial for the large query trees, and
for trees with highly selective predicates.

Two other sequence matching algorithms, ViST [77] and
PRIX,RM04 were proposed to avoid expensive join operations.
The ViST method represents a major departure from previ­
ous XML indexing approaches. In fact, unlike classical index
methods that decompose the query into multiple sub­
queries, and then join the solutions of these sub­queries to
provide the final answers, ViST uses tree structures as the ba­
sic unit of query to avoid expensive join operations. However,
the query processing in ViST may result in false alarms and
false dismissals. These problems are explained in [90]. In this
work, the authors proposed a similar subsequence matching
algorithm to that of ViST that transforms XML documents and
queries into equivalent sequences without false alarms and
false dismissals. In [89], Rao and Moon proposed a new in­
dexing XML documents and processing twig patterns in an
XML database. This indexing approach transforms XML doc­
uments and twig query into sequences by prüfer method that
constructs an one­to­one correspondence between trees and
sequences. Based on this transformation, a query execution
system, called PRIX (Prüfer sequences for indexing XML) is
developed for indexing XML documents and processing twig
queries. The matching phase is achieved by applying subse­
quence matching on the set of sequences in the database and
performing a series of refinement phases.

4.1.4. Other important exact XML tree algorithms

In this section, we take a quick look over some other well­
known query tree pattern processing algorithms which have
been developed in recent years. Among them, some ap­
proaches have benefited from fundamental progress in node
labeling schemes of XML documents (for a survey, see [91]).

In [27] for example, a twig pattern matching algorithm,
called TwigVersion is proposed. The key idea of this approach

is to compress both structural index and numbering schemes
technique. TwigVersion is based on new version­labeling
scheme that encodes all repetitive structures in XML doc­
uments. The identification of these repetitive structures
matching allows to avoid a large amount of unnecessary com­
putations. The experimental results reported in [27] show
that TwigVersion significantly outperforms TwigStack, TJFast

and Twig2Stack algorithms.

Recently, Izadi et al. [92] proposed a novel method, called
S3, which can selectively process the document nodes. In
S3, unlike all previous methods, path expressions are not
directly executed on the XML document, but first they are
evaluated against a guidance structure, calledQueryGuide. The
information extracted from the QueryGuide is an abstraction
of the XML document. It describes the structure of XML
document by its paths, such as the nodes of XML data are
labeled by Dewey labeling scheme. The experimental results
of [92] confirm that S3 substantially outperforms TwigStack,

TJFast, and TwigList in terms of response time, I/O overhead,
and memory consumption­critical parameters.

4.1.5. Discussion

Much research efforts have been devoted on efficient XML
query processing. As a core operation in XML data, finding all
occurrences of a query pattern in XML documents attracted
more and more attentions. In this section, we proposed a
structured overview of the numerous recent advances in the
exact tree matching for querying XML data. As mentioned
before, a very large volume of algorithms were proposed in
the literature, and it seems nearly impossible to consider
all related works. Table 3 depicts the various approaches
presented in this section. These approaches are categorized
into four classes by considering three basic features: the
decomposition approach, the labeling technique, and a
boolean parameter which indicates if the merging phase is
used in the query processing.

The structural join is the oldest method, which provides
an efficient native implementation of the classical merge­
join algorithm used in the relational approach. As discussed
in Section 4.1.1, the main problem with the structural join
based approach is that it may generate a large amount
of intermediate query results because many results of
individual binary relationships may not appear in the final
results. Based on the containment labeling scheme, the
holistic twig join algorithm partially solved the problem of
larger amount intermediate solutions with decomposition­
matching­mergingmethods. TwigStack is the first holistic XML
twig pattern matching algorithm proposed in the literature.
Specifically, the performance of TwigStack is better than that
of MPMGJN and StackTree. The main drawback of TwigStack

is its expensive merging phase. However, it constituted the
starting point of a long series of holistic twig join approaches
in order to make the twig pattern matching very efficient.
From the performance study of holistic twig join family, the
one­phase holistic twig matching and TJFast variant (and
its improvements) seem to be the most competitive holistic
techniques. It is however difficult to decide what is the
best algorithm that performs the query processing efficiently.
For example, the one­phase holistic twig join algorithm

Table 3 – Summary of XML retrieval approaches using XML exact tree matching.

Approach Structural joins algorithms

Decomposition Merging phase Labeling technique

MPMGJN [17] binary relationship Yes Region encoding
Tree­Merge [18] binary relationship Yes Region encoding
Stack­Tree [18] binary relationship Yes Region encoding

Holistic twig join approach

Decomposition Merging phase Labeling technique

TwigStack [19] root­to­leaf paths Yes Region encoding
TwigStackList [20] root­to­leaf paths Yes Region encoding
iTwigJoin [72] root­to­leaf paths Yes Region encoding
TwigBuffer [75] root­to­leaf paths Yes Region encoding
TSGeneric+ [73] root­to­leaf paths Yes Region encoding
TJEssential [74] root­to­leaf paths Yes Region encoding
TwigStack+ [86] root­to­leaf paths Yes Region encoding
Twig2Stack [22] without decomposition No Region encoding
TwigList [23] without decomposition No Region encoding
Holistictwigstack [78] without decomposition No Region encoding
TwigMix [79] without decomposition No Region encoding
TwigFast [79] without decomposition No Region encoding
TJFast [21] root­to­leaf paths Yes Extended Dewey labeling
TJFastTL [88] root­to­leaf paths Yes Extended Dewey labeling
GTJFast [88] root­to­leaf paths Yes Extended Dewey labeling
GTJFastTL [88] root­to­leaf paths Yes Extended Dewey labeling

Sequence matching approach

Decomposition Merging phase Indexing technique

PRIX [89] Without decomposition No prüfer sequences
Tree signature [26,76] root­to­leaf paths Yes Pre­order, Post­order
ViST [77] without decomposition Yes structure­encoded sequences
Work of [90] without decomposition No path labeling

Other exact XML tree algorithms

Decomposition Merging phase Labeling technique

TwigVersion [27] root­to­leaf paths Yes Dewey ID labeling
S3 [92] set of match patterns Yes Dewey ID labeling

eliminates completely the second phase of merging at the
expense of huge memory requirement and it was restricted
by fan­out of XML elements. Exploiting sequencing matching
to speed up query evaluation is an another native idea in
XML query processing. It provides significant performance
enhancement over some traditional methods. However, this
technique is not widely used, probably due to the limitation
of XML indexing methods required to transform the tree of an
XML document into a sequence.

4.2. Approximate tree matching algorithms for XML

retrieval

There are numerous approaches for approximate tree match­
ing in the literature of XML retrieval. Contrary to approaches
presented in the previous section, the aim for these ap­
proaches is not to make a strict interpretation of structural
constraints, but to select and rank elements according to their
likelihood to match the queries. In case of data­centric doc­
uments, relevance is defined in terms of structural relevance
while in case of text­oriented documents, it is also defined
in terms of content relevance to the query. In this last case,
one of the key problem of approaches doing approximate tree

matching is to effectively combine results on content and on
structure.

Some retrieval approaches make an implicit use of graph
properties (one can cite diverse approaches such as [93–98])
and others explicitly exploit graphmatching algorithms [52,99,
100,85,101–103,83,81,80,84].

Approaches of the first group are more concerned with
text­oriented documents, and most of them adapted tra­
ditional information retrieval approaches to structured re­
trieval. In this group of approaches, one can once again
distinguish between three different kinds of approaches [10]:

◦ structural constraints can be processed by pre­generating
a set of tag equivalences [93,94],

◦ the score of elements that match the target element1 can
be boosted [95],

◦ content scores can be propagated up to the document
tree [96–98].

All these approaches use the tree representation of docu­
ments and queries, but do not use state­of­the art algorithms

1 We recall that the target element in structured queries is the
element to be returned.

for tree matching. For example, in the XFIRM approach [98],
content and structure queries are decomposed into sub­
queries, composed of both a content and a structure condi­
tion, one of them indicating which type of elements should be
returned (target elements). For each constraint, a score prop­
agation is carried out, starting from leaf nodes answering the
content condition and going until an element that matches
the structure constraint is found. The score of result elements
of each constraint is then propagated again to elements be­
longing to the set of targeted structures. One can find a lot of
other approaches that implicitly use the tree representation
of documents in the INEX proceedings [104–109].

In the following, we will focus on approaches that make an
explicit use of graph matching algorithms. We classify them
into two types of approaches:

◦ approaches based on tree inclusion,
◦ approaches based on the tree edit distance.

Most of these approaches do not directly use the corre­
sponding matching algorithm: they often make some pre­
processing that we detail in the following paragraph.

4.2.1. Pre­processing of trees before the matching process

Pre­processing of query and document trees can be done for
two main reasons:

• enlarging the search space by relaxing constraints in order
to return more results,

• reducing the time and space complexity of existing algo­
rithms.

Relaxation. Enlarging the space of search is mainly done
by relaxation, that can be defined as relaxing constraints.
Relaxation is mainly done on queries, but can also be used
on documents. When relaxing on queries, one attempts to
increase the number of results by decreasing the constraints
degrees [110]. Relaxation can concern both the content and
structure constraints [85]. When considering structure, the
graph structure can be modified by acting on edges, labels or
nodes. There exist three types of structure relaxation:

1. order relaxation, which consists in reducing or deleting
constraints between brother nodes, i.e., to transform
ordered trees into non­ordered trees.

2. nodes relaxation, which is equivalent to rename or delete
nodes in trees (in this latter case, content of deleted nodes
will be attached to the father node) [110].

3. edges relaxation, which extends or adds edges between
nodes. For example, a parent–child relation can be trans­
formed into an ancestor–descendant relation.

Order relaxation is implicitly used in approximate XML re­
trieval, since the reading order of document is not considered
as a relevance factor. Node relaxation, when deleting nodes
in the tree, is often used to reduce the complexity of an ap­
proach, and we will present some approaches in the next
paragraph. We detail below some approaches using edges re­
laxation.

Authors in [102] propose to find structural fluctuation
in XML documents, i.e., different potential structures in
semantically identical documents. Instead of writing verbose
path expression queries that should take into account all

Fig. 9 – Structural fluctuation for three nodes a, b and c.

Fig. 10 – Original and final paths. Original paths are

weighted with 1.

the structural possibilities, they developed a query processing
primitive called amoeba join. The aim is to match hierarchy
of identical nodes but being differently nested. Fig. 9 shows
examples of such hierarchies.

For 3 nodes a, b, c, the number of fluctuation is 32 = 9, i.e.,
nn−1 if the number of nodes is n. This approach uses a query
relaxation­like method for all nn−1 fluctuations. It can be very
useful to evaluate the tree edit distance in case of structural
heterogeneities.

In [99,100], authors propose to use edges relaxation to
index XML documents. In their XIVIR (XML Information retrieval

based on VIRtual links) model, they propose to represent
the structure of XML documents as a bag of weighted
links composed of direct and virtual links. Direct links, i.e.,
parent–child relations, are weighted with the maximal score
of 1. New links (i.e., new edges or new paths) are weighted
according to the distance d between them with the following
formula:

w = e(1−d(N1,N2)), where d(N1,N2) is the distance between
node N1 and node N2.

Fig. 10 shows how a path N1 → N2 → N3 → N4 is extended
with new virtual links.

Another way to obtain a represent all links in a tree is
to make a transitive closure. In [103,83] for example, a fuzzy
labeled graph associated with each document is constructed
and weights are assigned to edges and nodes according to two
approaches:

1. The first one is tag­related and attaches importance to the
containment relationships that specify spatial structure of
the documents,

2. The second one is structure­related and expresses the
importance of XML elements and attributes.

The fuzzy labeled graph is then extended by a fuzzy transitive
closure. Weights of new edges are evaluated using weights of
initial edges and a t_norm operator.

Reducing the time and space complexity of existing algorithms.
Reducing the time and space complexity of existing algo­
rithms is mainly done by reducing the tree sizes of docu­
ments, using tree summaries. The main intuition behind tree

summaries is that the structure of a document can be rep­
resented in a relevant way with a smaller tree size [111,112].
Redundancy is deleted with tree summaries, but hierarchical
relations can be altered. Dalamagas [111] for example pro­
poses two rules for summarizing trees. These rules are re­
move nesting which is equivalent to move the subtree of a
node having the same label than one of its ancestor; and
remove duplicates from father–child relationship which re­
moves the siblings having the same labels.

Tree summaries has been successfully used before apply­
ing tree edit distance in [82].

Some of the aforementioned approaches for trees pre­
processing use then their own algorithm for tree matching
[103,99], while others directly use state­of­the­art algorithms
(tree inclusion of tree edit distance). We will present in the
two next sections how those state­of­the­art algorithms have
been adapted to XML retrieval. We will discuss for each of
these approaches how content conditions of queries are taken
into account.

4.2.2. Approaches based on tree inclusion

In [52] Schlieder and Naumann introduced the design and
implementation of the patternmatching language ApproXQL,
a query language that returns approximate answers to formal
user queries. Answering queries against XML document
collections is seen as an unordered tree inclusion problem.
A cost model is applied to the embeddings, which helps
ranking approximate matches according to their similarity to
the query. Authors however did not pay attention to content
conditions of queries.

The unordered tree inclusion problem is also used as
referential by another approach proposed by Schlieder and
Meuss [50]. Authors extend the concept of term with struc­
tural terms. Term frequency and inverse document frequency
are then adapted to logical documents and structural terms.
Authors argue that their “model generalizes the two main
concepts on which it was based: tree matching for structured
queries and the vector space model for ranking documents”.

4.2.3. Approaches based on tree edit distance

Tree edit distance is to our knowledge the most adapted
algorithm for approximate XML retrieval.

Tree edit distance is an extension of the string edit dis­
tance. The approach proposed in [80] in the SIRIUS system re­
duces the matching problem to a string edit distance scoring
process. A modified weighted editing distance based on Lev­
enshtein editing distance [113] on XML paths is used to ap­
proximately match the documents structure with the query
structure. At the same time, for content matching, strict and
fuzzy searching based on the IDF of the researched terms are
used. Content and structure matching scores are then com­
bined using a weighted linear aggregation. Experiments on
the INEX 2005 test set showed the effectiveness of the pro­
posed weighted editing distance on XML paths.

The Tai algorithm [53] for tree edit distance is used with­
out any adaptation in [81]. Authors propose to combine a
structural score and a content score to evaluate the similarity
between queries and documents. The structural score is eval­
uated using tree edit distance. The cost of deletion of a node

is considered as equal to one, where the cost of substitution is
linked the semantic proximity of nodes tag names. The con­
tent score is obtained thanks to the propagation of the scores
of leaf nodes elements to their ancestors. Both structural and
content scores are then combined in a linear way.

As in [81], Laitang et al. [84] used a linear combination
of a structural and a content score to evaluate subtrees rel­
evance. The approach combines a classical content similarity
measure with the tree edit distance. The chosen algorithm
uses an optimal cover strategy to reduce the number of sub­
graph in memory. More precisely, the structure part is pro­
cessed through a tree edit distance optimal cover strategy
inspired by [114,55] works. Results on the INEX 2005 SSCAS
task showed the interest of the approach.

The same authors also experimented tree summaries be­
fore applying tree edit distance in [82]. Results are comparable
with those obtained with no summary, and efficiency is im­
proved.

Tree edit distance has also been applied conjointly with re­
laxation. In [101,85] for example, authors propose approaches
for querying a set of heterogeneous data­oriented semi­
structured documents. The main problem concerns incom­
plete or missing data and to non­exact matching of types and
structure.

To match document and query trees, they use Minimum
Spanning Trees. The minimum Spanning tree [113] of a graph
is the tree of minimum length connecting all its nodes, where
length is the sum of the weights of the connecting edges in
the tree. In the XML retrieval context, the minimal spanning
tree is defined as the tree which contains query elements
and a minimum number of nodes/arcs. The adaptation
of the concept of Minimum Spanning Trees to structured
information retrieval is composed of two steps: nodes scoring
and tree matching. Nodes scoring is done in two different
ways, depending on the node type. In case of inner nodes,
that only have their labels as textual information, authors
use the Levenshtein distance [113] between document and
queries node names. In case of leaf nodes, authors use the
fuzzy set theory to evaluate themembership degrees of nodes
to the content conditions of queries. A structural validation of
results is then done by keeping nodes that build a Minimum
Spanning Tree.

The Minimum Spanning Tree approach comes from the
rapprochement of relaxation and tree­edit distance (through
inclusion). Even if results in terms of effectiveness are
creditable, the proposed algorithm is memory consuming,
especially in the second step.

4.2.4. Discussion

Table 4 summarizes the approaches presented in this section,
regarding how they adapt formal algorithms for treematching
and how they process content conditions of queries.

Regarding the pros and cons of each approach, one can
say that most of them have shown their interest in term of
effectiveness ([99,80,84,82] have been evaluated in the INEX
framework, see Section 5 for more details). They however
do not perform well regarding efficiency (time and space
complexity). A pre­processing of trees before the matching
process (using tree summaries for example) can however help
to reduce the matching complexity.

Table 4 – Summary of approaches using approximate tree matching.

Approach Based on Adaptation Integration of content constraints

XIVIR [99] Own matching algorithm Query relaxation Linear combination of content and structure scores
[83] Own matching algorithm Fuzzy graphs /
[101] Tree edit distance Relaxation /
ApproXQL [52] Unordered tree inclusion / /
[50] Unordered tree inclusion / Together with structure. Notion of structural term
SIRIUS [80] Tree edit distance (path matching) Relaxation Weighted linear aggregation for content and

structure matching scores
[81] Tree edit distance Text­oriented Linear combination of content and structure scores
[84] Tree edit distance Optimal cover strategy Linear combination of content and structure scores
[82] Tree edit distance Trees summaries Linear combination of content and structure scores

5. Evaluation

Evaluation is crucial and essential to validate methods and
algorithms proposed for retrieval, whether we speak of exact
or approximate matching, and whether we work on text or
data oriented collections. Indeed, as seen in Section 4, most of
the proposed approaches for XML retrieval are adaptation of
tree matching algorithms that should be carefully evaluated
to see if they can be used in practice.

5.1. Efficiency and effectiveness

Evaluation of algorithms and approaches for tree matching
can be done on two ways: one can evaluate efficiency and/or
effectiveness.

Approaches for exact tree matching are directly concerned
with efficiency, while those for approximate tree matching
are more concerned with effectiveness.

Efficiency for exact tree matching is evaluated in terms
of algorithms complexity, as well as in terms of execution
time [115]. Some indications about algorithms complexity
are given in Section 4. To compare systems and algorithms,
some benchmarks were also created, among which we can
cite [116,117] or [118]. Those benchmarks aim at evaluating
XML databases on some representative tasks. In [118] more
precisely, the aim is to evaluate the basic query evaluation
operations, such as selections, joins and aggregations.

In this section, we will focus on the evaluation of approx­
imate tree matching and effectiveness (i.e., the ability of sys­
tems to correctly rank relevant elements). Research on the
domain has been considerably developed during the past
years thanks to the INitiative for the Evaluation of XML re­
trieval (INEX) evaluation campaign.

5.2. The INEX evaluation campaign

The first INitiative for the Evaluation of XML retrieval (INEX)
workshop took place in 2002. It was in 2012 the eleventh year
of this now established evaluation forum for XML Information
Retrieval. During these 11 editions, about 100 different world­
wide organizations participated to the proposed tracks [119].

The INEX campaign provides to participants an infrastruc­
ture to evaluate XML IR approaches:

◦ search tasks,
◦ large structured test collections (documents and queries),
◦ and scoring methods.

Participants, besides running queries on their systems,
also provide test queries and relevance judgments to the
evaluation infrastructure: this is why INEX is often seen as
a collaborative effort.

Among the proposed search tracks over the 11 campaigns,
one can cite the Ad Hoc, Multimedia, Book, XML­Mining,
Relevance Feedback, Efficiency or Tweet Contextualization
tracks.

Among those tracks, the ad hoc, data­centric and effi­
ciency ones can be used to evaluate approximate tree match­
ing algorithms. They are detailed in the following paragraphs.

5.2.1. The ad hoc track

Search tasks and queries

The ad hoc track aims at evaluating how a digital library
is typically used: information is in a fixed collection of XML
documents and is retrieved using a set of topics.

Two main collections composed of text­oriented docu­
ments were used for the ad hoc track:

◦ the IEEE collection, composed of about 180,000 scientific
articles with extensive XML­markup from 21 IEEE
Computer Society journals published in 1995–2002,

◦ the Wikipedia collection, composed of Wikipedia arti­
cles. The original collection contained about 660,000 arti­
cles [120], and was dumped again in 2009 with annotation
from YAGO [121]. It now contains about 2660,000 articles.

In previous years, a distinctionwasmade between Content
Only (CO) and Content And Structure (CAS) topics. This led to
two main search sub­tasks: the CO one and the CAS one.

Since approximate tree matching considers queries as
trees, only the CAS one can be used to evaluate such ap­
proaches. Over the years, many search tasks were associated
to CAS queries. In 2005 for example, 4 sub­tasks were run:

◦ VVCAS: The target element and support element con­
straints are considered as vague.

◦ SVCAS: The target element constraint is considered as
strict, but the support element constraints are considered
as vague.

◦ VSCAS: The target element constraint is considered as
vague, but the support element constraints should be
followed strictly.

◦ SSCAS: Both the target element constraint and the support
element constraint are considered as strict.

From 2006, CAS queries disappeared and were merged
with CO ones in what is called in the INEX terminology CO+S
queries. The aimwas to have only one topic type for all search
tasks.

Structure­oriented approaches can still be evaluated with
the ad hoc track, but since 2006, structure interest is no
more a research priority for the ad hoc track organizers. To
overcome this limitation, the data­centric track appears in
2010.

Evaluation metrics

Metrics used over the years to evaluate the ad hoc track
evolved with the definition of the task. Our aim here is not
to list all the metrics used during the 9 years of the task (the
ad hoc track last ran in 2010), but to give some pointers on
metrics used to evaluate XML retrieval approaches.

Metrics evaluating XML retrieval should mainly deal with
the following two problems:

◦ the retrieval unit is not a whole document, but a document
part (i.e., an element of the XML tree);

◦ systems can return multiple nested elements that contain
the same information (this is also know as the overlap

problem [122]).

As returned elements can be of different granularities, rel­
evance in XML retrieval is defined according to two dimen­
sions:

◦ Exhaustivity (e): an element is very exhaustive if it con­
tains all the information required by the query,

◦ Specificity (s): an element is very specific if all its content
concerns the query.

These two dimensions of relevance must then be quan­
tized (via quantization functions) into a single relevance value
that represents the level of relevance of an element. We give
below two examples of quantization functions:

◦ the strict quantization evaluates if a given retrieval ap­
proach is able of retrieving highly exhaustive and highly
specific document components,

fstrict(e, s) =

{

1 if e = 2 and s = 1
0 otherwise

(1)

◦ the generalized quantization evaluates document compo­
nents according to their degree of relevance.

fgeneralised(e, s) = e ∗ s. (2)

In 2005 for example, e = 2 and s = 1 were respectively the
highest degrees of specificity and exhaustivity (e ∈ {0,1,2} and
s ∈ [0,1]). Since 2006, all relevant elements were considered
as highly exhaustive, and specificity was computed as the
ratio of the number of relevant characters contained within
the XML element to the total number of characters contained
by the element.

The main metrics used in INEX are based on the extended
cumulated gain (XCG) [123]. The aim of these metrics is to
take into account the dependency of XML elements, that
is to take into account overlap (nested elements) and near
misses (returned elements that are near relevant ones).
Two metrics are included in the XCG metrics: the user­
oriented measures of normalized extended accumulated gain
(nXCG) which accumulates the relevance score of retrieved

elements along the ranked list, and the system­oriented
effort­precision/gain­recall measures (ep/gr).

Other metrics used in the context of INEX can be found
in [124] (iP metrics), [125] (T2I metric), [126] (EPRUm metric)
or HiXEval [127] (HiXEval). A study on these metrics is also
available in [128].

5.2.2. The data­centric track

The data centric track was introduced at INEX in 2010 (and
last ran in 2011). This task aims at studying if whole docu­
ment retrieval is effective in case of highly structured docu­
ment collections.2

The used collection is a snapshot of the IMDB taken early
in 2010.3 Each XML file contains information about one movie
or person. In total, more than 4400,000 XML files were gener­
ated, representing among others movies and actors [129].

In its first year, the track focused on ad hoc retrieval from
XML data. The task, as defined in [129] “was to return a ranked
list of results estimated relevant to the user’s information
need. The content of the collections of nodes was not per­
mitted to overlap. This is similar to the focused task in the
ad hoc track, but using a data­centric XML collection and al­
lowing the construction of a result (i.e., a collection of nodes)
from different parts of a single document or even multiple
documents”.

28 highly structured queries were proposed by partici­
pants. Evaluation were done using the MAiP [124] and MAgP
T2I [125] metrics (thus without measuring aggregation since
this is still not clear how to measure it).

Concerning 2010 results, one can say the following about
the proposed approaches:

◦ structure was directly considered by one participant [130]
(i.e., they directly used structured queries), but results
were disappointing.

◦ some other approaches experimented to directly generate
structured queries from keyword­based queries without
trying to use the proposed CAS queries and in order to
query an XML DBMS [131,132].

In 2011, the task evolved and proposed two sub­tasks [133].
The ad hoc subtask was more concerned with the retrieval
of documents (instead of elements), even if structure was
strongly taken into account. A new subtask, called faceted
search, proposed to participants to help the user navigating
through results by giving him/her a list of facet values
representing the result documents.

5.2.3. The efficiency track

The aim of the efficiency track (launched in 2008 and 2009)
was to evaluate the effectiveness and efficiency of XML rank­
ed retrieval approaches on real data and real queries [134].

Participants had to run their system with among others
queries with a deeply nested structure on the Wikipedia

2 It was indeed shown during the past editions of INEX that
document retrieval helps element retrieval. This conclusion is
maybe due to the collection used for test (scientific articles or
Wikipedia pages).

3 www.imdb.com.

collection [121]. Efficiency was evaluated with runtime, CPU
time and I/O statistics to secondary memory, taking into
account general system statistics (#CPUs, memory, disk
configuration, caching options, distribution). Effectiveness
was evaluated with more traditional metrics (iP, MAiP,
etc. . . .).

The best systems achieved interactive retrieval times for
ad hoc search, with a result quality comparable to the best
runs in the ad hoc track [134].

6. Discussions and future research directions

We proposed in this paper a comprehensive survey about tree
matching for XML information retrieval. The matching prob­
lem was addressed from both an exact and an approximate
point of view.

In the exact matching part of the paper, we reviewed struc­
tural join methods, string matching methods and other di­
verse methods. The structural join approach is mainly used
for processing XML twig queries. Structural Join as the oldest
method decomposes a query twig pattern into its binary re­
lationships (Parent–Child relationship, Ancestor–Descendant
relationship) and executes them separately. A major draw­
back of this approach is that many intermediate results may
not be part of any final answer. Of course, holistic twig join
algorithms are good candidates for physical operators sup­
porting query evaluation in XDBMSs. However, they only pro­
vide for a small fraction of the functionality required by com­
plete XPath and XQuery processors (e.g., no processing of
axes other than child and descendant; no processing of order­
based queries). Therefore, the development of new structural
join algorithms is still valuable, because they can act as com­
plementary operators in case the restricted functionality of
twig joins is too small, or as alternatives if they promise faster
query evaluation. It would also be interesting to study the par­
allelism of holistic algorithms on amulti­core system in order
to maximize the computing performance of query processing
in a large XML database.

Concerning the approximate matching part of the paper,
approaches for XML retrieval presented here aremainly based
on the tree edit distance. They obtain relatively good results
in terms of effectiveness, but issues concerning memory and
efficiency need still to be solve. The relatively small number
of approaches presented can be explained by two reasons. In
an information retrieval point of view:

◦ it is more simple to adapt effective and efficient IR algo­
rithms to structure than the alternative, i.e., it is easier to
start with content conditions and filter results on struc­
tural ones than starting from structural constraints,

◦ Many discussions were conducted between IR researchers
to state the usefulness of structural queries on text­
oriented documents (whether structured queries are real
user needs and whether structural constraints help re­
trieval). No strong conclusion can be drawn on this useful­
ness [135–137]. This may explain the actual lack of interest
of the IR community on the subject: a very small number
of papers on XML retrieval have been published during the
last two years in the main Information Retrieval confer­
ences (SIGR, CIKM and ECIR).

XML tree matching algorithms described in this paper
were presented in an XML retrieval perspective. Applications
that also use XML tree­matching are however numerous:

◦ version control, change management and date warehous­
ing,

◦ semi­structured data integration,
◦ classification/clustering of XML documents gathered from

the web against a set of XML grammars declared in an XML
database.

One will find in [6] a complete survey on those applications.
At last, to conclude this paper we highlight two important
research directions in the graph theory community that may
lead to new XML tree matching algorithms:

◦ Graph embedding/packing are a well known field in graph
theory. Many conjectures and results have been obtained
to solve the graph embedding/packing problem for unla­
beled graphs [138]. The graph matching problem can be
naturally stated as packing of labeled graph. If we consider
the example of XML documents that are modeled as or­
dered labeled tree, we can see that the querying of an XML
document is equivalent to the search of an embedding of
the query in the data tree. Therefore, it would be interest­
ing to exploit existing tree embedding techniques in order
to define a coherent similarity measure between two la­
beled trees.

◦ Another line of research that might be investigated is
quantum techniques for tree matching. In the literature,
quantum algorithms have attracted considerable attention
in the theoretical computer science community because of
the considerable speed up over classical algorithms they
achieve [139]. For a practical perspective of tree match­
ing problem, several aspects remain to be investigated. In­
deed, quantum versions of matching approaches based on
decomposition, combinatorial of words can be developed.
Nevertheless, the formalization of such solutions may be
very hard choice, but very promising.

R E F E R E N C E S

[1] W3C, EXtensible Markup Language (XML) 1.0, Tech. Rep.,
World Wide Web Consortium (W3C), Recommendation,
February 1998.

[2] W3C XML Web page. http://www.w3.org/XML/.
[3] M. Lalmas, R. Baeza­Yates, In: R. Baeza­Yates, B. Ribeiro­

Neto, Modern Information Retrieval, Addison­Wesley Pro­
fessional, 2 edition (February 10, 2011), Ch. Structured Text
Retrieval.

[4] W3C, DOM level 1 (Document Object Model), Tech. Rep.,
World Wide Web Consortium (W3C), Recommendation,
October 1998.

[5] M. Lalmas, XML Retrieval, Synthesis Lectures on Informa­
tion Concepts, Retrieval, and Services, Morgan & Claypool
Publishers, 2009.

[6] J. Tekli, R. Chbeir, K. Yétongnon, An overview on XML
similarity: background, current trends and future directions,
Comput. Sci. Rev. 3 (3) (2009) 151–173.

[7] L. Liu, M.T. Özsu (Eds.), Encyclopedia of Database Systems,
Springer, US, 2009.

[8] M. Lalmas, R. Baeza­Yates, Structured document retrieval,
in: Encyclopedia of Database Systems, Springer, 2009,
pp. 2867–2868.

[9] G. Kazai, N. Govert, M. Lalmas, N. Fuhr, The INEX evaluation
initiative, in: Intelligent Search on XML data, Applications,
Languages, Models, Implementations and Benchmarks,
Springer, 2003, pp. 279–293.

[10] A. Trotman, Processing structural constraints, in: Encyclo­
pedia of Database Systems, Springer, 2009, pp. 2191–2195.

[11] S. Amer­Yahia, M. Lalmas, XML search: languages, INEX and
scoring, ACM SIGMOD Rec. 35 (4) (2006) 16–23.

[12] W3C, XML Path Language (XPath) 2.0, Tech. Rep., World
Wide Web Consortium (W3C), Recommendation, January
2007.

[13] A. Trotman, B. Sigurbjornsson, Narrowed EXtended XPath I
(NEXI), in: Proceedings of the 3rd Workshop of the Initiative
for the Evaluation of XML retrieval (INEX), 2004, pp. 16–40.

[14] A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, P.
Spoletini, A fuzzy extension of the XPath query language,
Journal of Intelligent Information Systems 33 (3) (2009)
285–305.

[15] W3C, XQuery 1.0 : An XML query language, Tech. Rep., World
Wide Web Consortium (W3C), Recommendation, January
2007.

[16] W3C, XQuery 1.0 and XPath 2.0 Full­Text 1.0, Tech. Rep.,
World Wide Web Consortium (W3C), Note, January 2011.

[17] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, G. Lohman,
On supporting containment queries in relational database
management systems, in: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, California, USA, 2001, pp. 425–426.

[18] S. Al­Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava,
Y. Wu, Structural joins: a primitive for efficient XML query
pattern matching, in: Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, 2002,
pp. 141–152.

[19] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins:
optimal XML pattern matching, in: Proceedings of the 2002
ACM SIGMOD International Conference on Management of
Data, 2002, pp. 310–321.

[20] J. Lu, T. Chen, T.W. Ling, Efficient processing of XML
twig patterns with parent child edges: a look­ahead
approach, in: Proceedings of the 13th ACM International
Conference on Information and Knowledge Management,
CIKM, Washington D.C., USA, 2004, pp. 533–542.

[21] J. Lu, T.W. Ling, C.Y. Chan, T. Chen, From region encoding
to extended Dewey: on efficient processing of XML twig
pattern matching, in: Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB, Trondheim,
Norway, 2005, pp. 193–204.

[22] S. Chen, H.G. Li, J. Tatemura, W.P. Hsiung, D. Agrawal, K.S.
Candan, Twig2Stack: bottom­up processing of generalized­
tree­pattern queries over XML documents, in: Proceedings
of the 32nd International Conference on Very Large Data
Bases, in: VLDB’06, 2006, pp. 283–294.

[23] L. Qin, J.X. Yu, B. Ding, Twiglist: make twig pattern match­
ing fast, in: Proceedings of the 12th International Con­
ference on Database Systems for Advanced Applications,
DASFAA, DASFAA’07, Springer­Verlag, Berlin, Heidelberg,
2007, pp. 850–862.

[24] S.C. Haw, C.S. Lee, TwigX­Guide: an efficient twig pattern
matching system extending dataguide indexing and region
encoding labeling, J. Inf. Sci. Eng. 25 (2) (2009) 603–617.

[25] D. Shasha, J.T.­L. Wang, H. Shan, K. Zhang, Atreegrep:
approximate searching in unordered trees, in: Proceedings
of the 14th International Conference on Scientific and
Statistical Database Management, SSDBM, Edinburgh,
Scotland, UK, 2002, pp. 89–98.

[26] P. Zezula, F. Mandreoli, R. Martoglia, Tree signatures and
unordered XML pattern matching, in: SOFSEM: Theory and
Practice of Computer Science, 30th Conference on Current

Trends in Theory and Practice of Computer Science, Merin,
Czech Republic, 2004, pp. 122–139.

[27] X. Wu, G. Liu, XML twig patternmatching using version tree,
Data Knowledge Eng. 64 (2008) 580–599.

[28] J. Yao, M.Z. II, A fast tree pattern matching algorithm
for XML query, in: 2004 IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2004, Beijing, China,
2004, pp. 235–241.

[29] P. Ogilvie, Retrieval using structure for question answering,
in: Proceedings of the First Twente Data Management
Workshop; XML databases and Information retrieval, 2004,
pp. 15–23.

[30] A. Trotman, B. Sigurbjornsson, NEXI, now and next,
in: Proceedings of the 3rd Workshop of the Initiative for the
Evaluation of XML retrieval, INEX, 2004, pp. 41–53.

[31] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query
language and optimization techniques for unstructured
data, in: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD’96, ACM, New
York, NY, USA, 1996, pp. 505–516.

[32] A. Levy, M. Fernandez, D. Suciu, D. Florescu, A. Deutsch,
XMLQL: a query language for XML, Tech. Rep., World Wide
Web Consortium technical report, Number NOTE­ xml­ql­
19980819, 1998.

[33] J. Robie, J. Lapp, D. Schach, XML query language (XQL),
in: Proceedings of W3C QL98 (Query Languages 98),
Massachussets, USA, 1998.

[34] D. Chamberlin, J. Robie, D. Florescu, Quilt: an XML query
language for heterogeneous data sources, in: The World
Wide Web and Databases, in: Lecture Notes in Computer
Science, vol. 1997, 2001, pp. 1–25.

[35] D. Chamberlin, P. Fankhauser, et al. XML Query Use Cases,
Tech. Rep., World Wide Web Consortium (W3C) Group Note,
March 2007.

[36] C. Botev, J. Shanmugasundaram, XQuery full­text, in: Ency­
clopedia of Database Systems, Springer, 2009, pp. 3665–3671.

[37] W3C, XQuery 1.0 and XPath 2.0 Full­Text 1.0 Use Cases,
Tech. Rep., World Wide Web Consortium (W3C) Group Note,
January 2011.

[38] R. van Zwol, J. Baas, H. van Oostendorp, F. Wiering, Bricks:
the building blocks to tackle query formulation in structured
document retrieval, in: 28th European Conference on IR
Research, ECIR 2006, London, UK, 2006, pp. 314–325.

[39] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,
L. Tanca, XML­GL: a graphical language for querying and
restructuring XML documents, in: Proceedings of the Eighth
International Conference on World Wide Web, WWW’99,
Elsevier North­Holland, Inc., New York, NY, USA, 1999,
pp. 1171–1187.

[40] C.M. Hoffmann, M.J. O’Donnell, Pattern matching in trees,
J. ACM (1982) 68–95.

[41] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to
bibliographic search, Commun. ACM (1975) 333–340.

[42] D.R. Chase, An improvement to bottom­up tree pattern
matching, in: POPL’87, 1987, pp. 168–177.

[43] J. Cai, R. Paige, R.E. Tarjan, More efficient bottom­up tree
pattern matching, in: CAAP’90, 1990, pp. 72–86.

[44] J. Burghardt, A tree pattern matching algorithm with
reasonable space requirements, in: CAAP’88, 1988, pp. 1–15.

[45] S.R. Kosaraju, Efficient tree pattern matching, in: Proceed­
ings of the 30th Annual Symposium on Foundations of Com­
puter Science, IEEE Computer Society,Washington, DC, USA,
1989, pp. 178–183.

[46] M. Dubiner, Z. Galil, E. Magen, Faster tree pattern matching,
J. ACM 41 (1994) 205–213.

[47] R. Cole, R. Hariharan, Tree pattern matching and subset
matching in randomized o(n log3 m) time, in: Proceedings
of the Twenty­Ninth Annual ACM Symposium on Theory of
Computing, ACM, New York, NY, USA, 1997, pp. 66–75.

[48] R. Cole, R. Hariharan, Tree pattern matching to subset
matching in linear time, SIAM J. on Computing 32 (2003)
1056–1066.

[49] P. Bille, A survey on tree edit distance and related problems,
Theoret. Comput. Sci. (2005) 217–239.

[50] T. Schlieder, H. Meuss, Querying and ranking XML
documents, JASIST 53 (6) (2002) 489–503.

[51] L.H. Yang, M.L. Lee, W. Hsu, Finding hot query patterns over
an XQuery stream, VLDB J (2004) 318–332.

[52] T. Schlieder, Approximate tree embedding for querying XML
data, Proceedings of ACM SIGIR workshop on XML and
information retrieval, Athens, Greece, 2000.

[53] K.C. Tai, The tree­to­tree correction problem, J. ACM 26
(1979) 422–433.

[54] K. Zhang, D. Shasha, Simple fast algorithms for the editing
distance between trees and related problems, SIAM J.
Comput (1989) 1245–1262.

[55] P.N. Klein, Computing the edit­distance between unrooted
ordered trees, in: Proceedings of the 6th Annual European
Symposium on Algorithms, in: ESA’98, Springer­Verlag,
London, UK, 1998, pp. 91–102.

[56] W. Chen, New algorithm for ordered tree­to­tree correction
problem, J. Algorithms 40 (2001) 135–158.

[57] S. Dulucq, H. Touzet, Decomposition algorithms for the tree
edit distance problem, J. Discrete Algorithms (2005) 448–471.

[58] E.D. Demaine, S. Mozes, B. Rossman, O. Weimann, An
optimal decomposition algorithm for tree edit distance,
in: ICALP’07, 2007, pp. 146–157.

[59] D.E. Knuth, The Art of Computer Programming, Volume i:
Fundamental Algorithms, Third ed., Addison­Wesley, 1997.

[60] P. Kilpelainen, H. Mannila, Ordered and unordered tree
inclusion, SIAM J. Comput. (1995) 340–356.

[61] T. Richter, A new algorithm for the ordered tree inclusion
problem, in: Proceedings of the 8th Annual Symposium on
Combinatorial Pattern Matching, CPM’97, 1997, pp. 150–166.

[62] W. Chen, More efficient algorithm for ordered tree inclusion,
J. Algorithms 26 (1998) 370–385.

[63] P. Bille, I.L. Gortz, The tree inclusion problem: in optimal
space and faster, in: 32nd International Colloquium on
Automata, Languages and Programming, ICALP, 2005,
pp. 66–77.

[64] Y. Chen, Y. Chen, A new tree inclusion algorithm, Inf.
Process. Lett. 98 (2006) 253–262.

[65] H.L. Cheng, B.F. Wang, On Chen and Chen’s new tree
inclusion algorithm, Inf. Process. Lett. (2007) 14–18.

[66] Y. Chen, Y. Chen, A new top­down algorithm for
tree inclusion, in: Proceedings of the 2010 International
Conference on Cyber­Enabled Distributed Computing and
Knowledge Discovery, 2010, pp. 293–300.

[67] R.A. Wagner, M.J. Fischer, The string­to­string correction
problem, J. ACM 21 (1974) 168–173.

[68] T. Jiang, L. Wang, K. Zhang, Alignment of trees—an
alternative to tree edit, Theoret. Comput. Sci. (1995) 137–148.

[69] T. Kuboyama, K. Shin, T. Miyahara, H. Yasuda, A theoretical
analysis of alignment and edit problems for trees,
in: ICTCS’05, 2005, pp. 323–337.

[70] J. Jansson, A. Lingas, A fast algorithm for optimal alignment
between similar ordered trees, in: Proceedings of the 12th
Annual Symposium on Combinatorial Pattern Matching,
CPM’01, 2001, pp. 232–240.

[71] L. Wang, J. Zhao, Parametric alignment of ordered trees,
Bioinformatics (2003) 2237–2245.

[72] T. Chen, J. Lu, T.W. Ling, On boosting holism in XML twig
pattern matching using structural indexing techniques,
in: SIGMOD 05, 2005, pp. 455–466.

[73] H. Jiang, W. Wang, H. Lu, J.X. Yu, Holistic twig joins on
indexed XML documents, in: Proceedings of VLDB, 2003,
pp. 273–284.

[74] G. Li, J.F.Y. Zhang, L. Zhou, Efficient holistic twig joins in leaf­
to­root combining with root­to­leaf way, DASFAA, Bangkok,
Thailand, 2007, pp. 834–849.

[75] J. Li, J. Wang, TwigBuffer: avoiding useless intermediate
solutions completely in twig joins, in: Proceedings of the
13th International Conference on Database Systems for
Advanced Applications, in: DASFAA’08, 2008, pp. 554–561.

[76] P. Zezula, G. Amato, F. Debole, F. Rabitti, Tree signatures
for XML querying and navigation, in: Xsym’03, 2003,
pp. 149–163.

[77] H. Wang, S. Park, W. Fan, P.S. Yu, Vist: a dynamic
index method for querying XML data by tree structures,
in: SIGMOD Conference’03, 2003, pp. 110–121.

[78] Z. Jiang, C. Luo, W.C. Hou, Q. Zhu, D. Che, Efficient
processing of XML twig pattern: a novel one­phase holistic
solution, in: DEXA 07, 2007, pp. 87–97.

[79] J. Li, J. Wang, Fast matching of twig patterns, in: Proceedings
of the 19th International Conference on Database and
Expert Systems Applications, in: DEXA’08, 2008, pp. 523–536.

[80] E. Popovici, G. Ménier, P.­F. Marteau, SIRIUS: a lightweight
XML indexing and approximate search system at INEX 2005,
in: INEX, 2005, pp. 321–335.

[81] M.D. Le, K. Pinel­Sauvagnat, Utilisation de la distance
d’édition pour l’appariement sémantique de documents
XML, in: Atelier GAOC, Conférence EGC 2010, Tunisia, 2010.

[82] C. Laitang, M. Boughanem, K. Pinel­Sauvagnat, XML
information retrieval through tree edit distance and
structural summaries, in: Asia Information Retrieval Society
Conference, AIRS, Springer, Dubai, United Atab Emirates,
2011, pp. 73–83.

[83] E. Damiani, B. Oliboni, L. Tanca, Fuzzy techniques for XML
data smushing, in: B. Reusch (Ed.), Fuzzy Days, in: Lecture
Notes in Computer Science, vol. 2206, Springer, 2001,
pp. 637–652.

[84] C. Laitang, K. Pinel­Sauvagnat, M. Boughanem, Utilisation
de la théorie des graphes et de la distance d’édition
pour la recherche d’information sur documents XML, in:
Proceedings of the 8th Annual Conférence en Recherche
d’Information et Applications, CORIA, Avignon, France,
2011.

[85] A. Alilaouar, Interrogation flexible de documents semi­
structurés, Ph.D. thesis, Université Paul Sabatier, Toulouse,
France, October 2007.

[86] J. Zhou, M. Xie, X. Meng, Twigstack+: holistic twig join
pruning using extended solution extension, Wuhan Univ. J.
Natural Sci. 12 (5) (2007) 855–860.

[87] D.B. Dao, J. Cao, A glance on current XML twig pattern
matching algorithms, in: ICCSA (2)’08, 2008, pp. 307–321.

[88] J. Lu, X. Meng, T.W. Ling, Indexing and querying XML using
extended dewey labeling scheme, Data Knowl. Eng. 70 (2011)
35–59.

[89] P. Rao, B. Moon, Prix: indexing and querying XML using
prufer sequences, in: ICDE’04, 2004, pp. 288–300.

[90] H. Wang, X. Meng, On the sequencing of tree structures for
XML indexing, in: Proceeding of ICDE, 2005, pp. 372–383.

[91] S.C. Haw, C.S. Lee, Node labeling schemes in XML query
optimization: a survey and trends, IETE Tech. Rev. 26 (2)
(2009) 88–100.

[92] S.K. Izadi, T. Harder, M.S. Haghjoo, S3: evaluation of tree­
pattern XML queries supported by structural summaries,
in: Proceedings of Data and Knowledge Engineering, 2009,
pp. 126–145.

[93] Y. Mass, M. Mandelbrod, Using the INEX environment as a
test bed for various user models for XML retrieval, in: INEX,
2005, pp. 187–195.

[94] V. Mihajlovic, G. Ramirez, T. Westerveld, D. Hiemstra, H.
Blok, A.P. de Vries, TIJAH scratches INEX 2005: vague
element selection, image search, overlap, and relevance
feedback, in: INEX, 2005, pp. 72–87.

[95] R. van Zwol, B3­sdr and effective use of structural hints,
in: INEX, 2005, pp. 146–160.

[96] M. Theobald, R. Schenkel, G. Weikum, Topx and XXL at INEX
2005, in: INEX, 2005, pp. 282–295.

[97] G. Hubert, XML retrieval based on direct contribution of
query components, in: INEX, 2005, pp. 172–186.

[98] K. Pinel­Sauvagnat, M. Boughanem, C. Chrisment, An­
swering content­and­structure­based queries on XML doc­
uments using relevance propagation, in: Information
Systems, Elsevier, 2006, pp. 172–186. Special Issue SPIRE
2004 31.

[99] M.B. Aouicha, M. Tmar, M. Boughanem, M. Abid, XML
information retrieval based on tree matching, in: IEEE
International Conference on Engineering of Computer
Based Systems, ECBS, Belfast, Ireland, 2008, pp. 499–500.

[100] M.B. Aouicha, Une approche algébrique pour la recherche
d’information structurée, Ph.D. thesis, Université Paul
Sabatier, Toulouse, France, 2009.

[101] A. Alilaouar, F. Sédes, Fuzzy querying of XML documents,
in: IEEE/WIC/ACM International Conference on Web Intel­
ligence and Intelligent Agent Technology, IEEE/WIC/ACM,
Compiègne, France, 2005, pp. 11–14.

[102] T.L. Saito, S. Morishita, Amoeba join: overcoming structural
fluctuations in XML data, in: Ninth International Workshop
on the Web and Databases, WebDB 2006, Chicago, Illinois,
USA, 2006, pp. 38–43.

[103] E. Damiani, L. Tanca, F.A. Fontana, Fuzzy XML queries via
context­based choice of aggregations, Kybernetika 36 (6)
(2000) 635–655.

[104] N. Fuhr, M. Lalmas, S. Malik, G. Kazai (Eds.), Advances in
XML Information Retrieval and Evaluation, 4th International
Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2005, Dagstuhl Castle, Germany, in: Lecture
Notes in Computer Science, vol. 3977, Springer, 2006.

[105] N. Fuhr, M. Lalmas, A. Trotman (Eds.), Comparative
evaluation of XML information retrieval systems, in: 5th
International Workshop of the Initiative for the Evaluation
of XML Retrieval, INEX 2006, Dagstuhl Castle, Germany,
in: Lecture Notes in Computer Science, vol. 4518, Springer,
2007.

[106] N. Fuhr, J. Kamps, M. Lalmas, A. Trotman (Eds.), Focused
access to XML documents, in: 6th InternationalWorkshop of
the Initiative for the Evaluation of XML Retrieval, INEX 2007,
Dagstuhl Castle, Germany, in: Lecture Notes in Computer
Science, vol. 4862, Springer, 2008.

[107] S. Geva, J. Kamps, A. Trotman (Eds.), Advances in focused
retrieval, in: 7th International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2008, Dagstuhl Castle,
Germany, in: Lecture Notes in Computer Science, vol. 5631,
Springer, 2009.

[108] S. Geva, J. Kamps, A. Trotman (Eds.), Focused retrieval and
evaluation, in: 8th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2009, Brisbane,
Australia, in: Lecture Notes in Computer Science, vol. 6203,
Springer, 2010.

[109] S. Geva, J. Kamps, R. Schenkel, A. Trotman (Eds.),
Comparative evaluation of focused retrieval, in: 9th
International Workshop of the Inititative for the Evaluation
of XML Retrieval, INEX 2010, Vugh, The Netherlands,
December 13–15, 2010, Revised Selected Papers, in: Lecture
Notes in Computer Science, vol. 6932, Springer, 2011.

[110] S. Amer­Yahia, S. Cho, D. Srivastava, Tree pattern relaxation,
in: EDBT02, Prague, Czech Republic, 2002, pp. 496–513.

[111] T. Dalamagas, T. Cheng, K.J. Winkel, T.K. Sellis, Clustering
XML documents using structural summaries, in: EDBT
Workshops, 2004, pp. 547–556.

[112] T. Dalamagas, T. Cheng, K.J. Winkel, T.K. Sellis, A
methodology for clustering XML documents by structure,
Inf. Syst. 31 (3) (2006) 187–228.

[113] V.I. Levenshtein, Binary codes capable of correcting
deletions, insertions, and reversals, Soviet Phys. Dokl. 10 (8)
(1966) 707–710.

[114] S. Dulucq, H. Touzet, Analysis of tree edit distance
algorithms, in: Proceedings of Combinatorial Pattern
Matching, 14th Annual Symposium, CPM 2003, Morelia,
Michocán, Mexico, 2003, pp. 83–95.

[115] S. Al­Khalifa, XML query evaluation, Ph.D. thesis, University
of Michigan, Ann Arbor, USA, 2005.

[116] A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I. Manolescu, R.
Busse, XMark: a benchmark for XML data management, in:
Proceedings of 28th International Conference on Very Large
Data Bases, VLDB, Hong Kong, China, Morgan Kaufmann,
2002, pp. 974–985.

[117] B.B. Yao, M.T. Özsu, N. Khandelwal, XBench benchmark
and performance testing of XML DBMSs, in: Proceedings
of the 20th International Conference on Data Engineering,
ICDE 2004, IEEE Computer Society, Boston, MA, USA, 2004,
pp. 621–633.

[118] K. Runapongsa, J.M. Patel, H.V. Jagadish, Y. Chen, S. Al­
Khalifa, The Michigan benchmark: towards XML query
performance diagnostics, Inf. Syst. 31 (2) (2006) 73–97.

[119] R.S. Shlomo Geva, Jaap Kamps, Inex’12 workshop pre­
proceedings, 2012.

[120] L. Denoyer, P. Gallinari, The wikipedia XML corpus, SIGIR
Forum 40 (1) (2006) 64–69.

[121] R. Schenkel, F. Suchanek, G. Kasneci, YAWN: a semantically
annotated Wikipedia XML corpus, in: 12. GI­Fachtagung für
Datenbanksysteme in Business, Technologie und Web, BTW
2007, Vol. 103, 2007, pp. 277–291.

[122] G. Kazai, M. Lalmas, A.P. de Vries, The overlap problem in
content­oriented XML retrieval evaluation, in: Proceedings
of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
2004, Sheffield, UK, 2004, pp. 72–79.

[123] G. Kazai, M. Lalmas, eXtended cumulated gain measures
for the evaluation of content­oriented XML retrieval, ACM
Trans. Inf. Syst. 24 (4) (2006) 503–542.

[124] J. Kamps, J. Pehcevski, G. Kazai, M. Lalmas, S. Robertson,
INEX 2007 evaluation measures, in: INEX, 2007, pp. 24–33.

[125] A.P. de Vries, G. Kazai, M. Lalmas, Tolerance to irrelevance:
a user­effort evaluation of retrieval systems without
predefined retrieval unit, in: Proceedings of RIAO 2004,
Avignon, France, 2004, pp. 463–473.

[126] B. Piwowarski, P. Gallinari, G. Dupret, Precision recall with
usermodeling (prum): application to structured information
retrieval, ACM Trans. Inf. Syst. 25 (1) (2007).

[127] J. Pehcevski, J.A. Thom, Hixeval: highlighting XML retrieval
evaluation, in: INEX, 2005, pp. 43–57.

[128] J. Pehcevski, B. Piwowarski, Evaluation metrics for struc­
tured text retrieval, in: Encyclopedia of Database Systems,
2009, pp. 1015–1024.

[129] A. Trotman, Q.Wang, Overview of the INEX 2010 data centric
track, in: INEX 2010 pre­proceedings, 2010, pp. 128–137.

[130] D.V. Ayala, D. Pinto, C. Balderas, M. Tovar, BUAP: a first
approach to the data­centric track of INEX 2010, in: INEX
2010 pre­proceedings, 2010, pp. 159–168.

[131] F. Hummel, A. da Silva, M. Moro, A. Laender, Automatically
generating structured queries in XML keyword search,
in: INEX 2010 pre­proceedings, 2010, pp. 138–149.

[132] Q. Li, Q. Wang, S. Wang, Inferring query pattern for XML
keyword retrieval, in: INEX 2010 pre­proceedings, 2010,
pp. 150–158.

[133] Q. Wang, G. Ramírez, M.M. Marx, M. Theobald, J. Kamps,
Overview of the inex 2011 data­centric track, in: Focused
Retrieval and Evaluation: 10th International Workshop of
the Initiative for the Evaluation of XML Retrieval, INEX 2011,
in: Lecture Notes in Computer Science, vol. 7424, Springer,
Hofgut Imsbach, Theley, Germany, 2012.

[134] R. Schenkel, M. Theobald, Overview of the INEX 2009
Efficiency Track, in: INEX, 2009, pp. 200–212.

[135] A. Trotman, M. Lalmas, Why structural hints in queries
do not help XML­retrieval, in: Proceedings of the 29th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2006,
Seattle, Washington, USA, 2006, pp. 711–712.

[136] K. Sauvagnat, M. Boughanem, C. Chrisment, Why using
structural hints in XML retrieval? in: Flexible Query
Answering Systems, 7th International Conference, FQAS
2006, Milan, Italy, 2006, pp. 197–209.

[137] C. Laitang, K. Pinel­Sauvagnat, M. Boughanem, DTD based
costs for TreeEdit distance in Structured Information
Retrieval, in: European Conference on Information Retrieval
(ECIR), Moscou, Russie, 25–27 March 2013.

[138] S. Stahl, The embeddings of a graph­a survey, J. Graph
Theory 2 (1978) 275–298.

[139] C. Dürr, M. Heiligman, P. Hoyer, M. Mhalla, Quantum query
complexity of some graph problems, in: Proceedings of
ICALP’04, 2004, pp. 481–493.

