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This article provides a new method for computing the probability of collision be-

tween two spherical space objects involved in a short-term encounter under Gaussian-

distributed uncertainty. In this model of conjunction, classical assumptions reduce

the probability of collision to the integral of a two-dimensional Gaussian probability

density function over a disk. The computational method presented here is based on an

analytic expression for the integral, derived by use of Laplace transform and D-finite

functions properties. The formula has the form of a product between an exponential

term and a convergent power series with positive coefficients. Analytic bounds on the

truncation error are also derived and are used to obtain a very accurate algorithm.
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Another contribution is the derivation of analytic bounds on the probability of colli-

sion itself, allowing for a very fast and - in most cases - very precise evaluation of the

risk. The only other analytical method of the literature - based on an approximation

- is shown to be a special case of the new formula. A numerical study illustrates the

efficiency of the proposed algorithms on a broad variety of examples and favorably

compares the approach to the other methods of the literature.

Nomenclature

Pc Probability of collision

1A Indicator function for set A: 1A(x) = 1 if x ∈ A else 1A(x) = 0

Lf Laplace transform of function f

B̄(M, δ) Closed disk of center M and radius δ

Re(λ) Real part of complex number λ

R Combined sphere radius, m

µ(r) Mean of the random vector r

Σ Covariance matrix

σ Standard deviation, m

d·e the ceiling function which maps a real number to the smallest following integer.

Subscript

p Primary object

s Secondary object

m Mean value

I. Introduction

The number of space debris has been drastically increasing during the last decades, becoming

an issue for on-orbit safety. These debris can indeed cause serious damage to operational Earth-
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orbiting spacecraft. Avoiding collision has become a usual and necessary task for many satellites

on duty. In order to prevent collisions, space debris are nowadays radar-tracked and conjunctions

with operational spacecraft can be predicted. From this information on a possible collision between

two objects, it is then the task of the operator to assess the risk. Because of the uncertain nature

of the data, the decision parameter is often computed as a probability of collision. If it exceeds

some tolerance threshold, an evasive maneuver will be performed. When modeling conjunctions,

two assumptions are usually made in the literature [1–6]. First, the geometrical shape of the two

objects is supposed to be spherical. Second, uncertainty on the state vectors of the two objects is

modeled with independent normal probability distributions.

Moreover, in this article, only short-term encounters are considered i.e., conjunctions with high

relative velocities. Such cases typically arise in Low Earth Orbit where orbital velocities are fairly

high. Two assumptions define the short-term encounter model [2–6]. First, the relative trajectory of

the objects during the encounter is considered to be a straight line [5, 6]. Secondly, uncertainty on

the velocities is neglected. The probability of collision can then be expressed as a two-dimensional

Gaussian integral over a disk. The integrand is the probability density function of the relative

coordinates in the so-called encounter plane [5] while the domain of integration is the cross-section

of the spherical combined object. As a result, the only inputs needed for the computation of the

probability of collision are: the radius of the combined spherical object, the miss distance and the

covariance matrix of the relative position in the encounter plane at reference time. A more detailed

description is given in Section II.

The computation of the short-term encounter probability of collision has been dealt with in

several ways. First, as a probability, it can be obtained from Monte Carlo trials [7], but this is

a time-consuming process. Another class of methods are based on numerical integration schemes.

In chronological order of apparition, they are: Foster’s [8], Patera’s [3] and Alfano’s [9]. The

main disadvantage of this family of methods is that they are strongly dependent upon the chosen

integration method and suppose to manage a sensitive trade-off between precision and computation

time. Finally, the approach closest to ours is Chan’s [5, 10] who derives an analytic formula, but

with an approximation with respect to the initial model.
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Contribution

In Section III a new analytical formula is proposed, with the following distinguishing features:

• It has the form of a product between an exponential term and a convergent power series

with positive terms. The series is obtained by use of Laplace transform techniques [11]. The

explicit form of the linear recurrence satisfied by the coefficients of the series is derived using

properties of D-finite functions i.e., solutions of linear ordinary differential equations with

polynomial coefficients [12, 13].

• Analytical bounds on the truncation error are provided, enabling the user to evaluate the

truncated series as accurately as required. As a by-product of these bounds on the truncation

error, one obtains analytical bounds on the probability of collision.

• In contrast to Chan’s method, it does not make any approximation of the integral to be

computed. In is shown in Section IV that Chan’s formula is a special case of the new formula.

• When compared to other methods on a large number of test cases, the resulting algorithm

performs well in practice. As illustrated in Section V by numerical examples, it allows for a

very accurate and fast way to estimate the risk in most cases, which is highly desirable from

an operator point of view.

II. Encounter Model

In this section, the general framework of on-orbit collision risk is briefly described. Next,

we present the model of short-term encounters between two spherical objects under Gaussian-

distributed uncertainty.

A. General encounter between two space objects

The system considered is composed of two space objects subject to orbital dynamics over some

time interval. One is called the primary object p and the other one the secondary object s. Typically,

the primary is an active spacecraft while the secondary is a space debris. Information - such as radar

measurements - describes their respective geometry, position and velocity at some detection time.
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The initial conditions - position and velocity of p and s at reference time - are supposed to be

uncertain parameters, resulting in uncertain dynamics for each object. The reference time usually

belongs to the time interval when both objects are in the collision range. Generally, it is the so-called

nominal time of closest approach (TCA) [2]. This date is defined as the instant when the mean

relative distance between the two objects reaches its global minimum over time. This minimum

value is another quantity of great use referred to as the nominal miss distance [2]. Considering that

statistical assumptions are usually made on these initial conditions, the collision risk is naturally

characterized via a probabilistic metric. As a result, it can be defined as the integral of a probability

density function (pdf) over some domain of integration. Without any further assumption, computing

the probability of collision is a hard integration problem for two main reasons. First, the domain of

integration is often impossible to derive analytically, because of its dependency upon the dynamics

of each object which may be fairly complex depending on the model being considered. Secondly,

integrating the probability density function over this domain is also difficult in general since, even

for instance with Gaussian density functions, such an integral generally admits no closed-form

formula [14].

A general method to handle the computation of the probability of collision is based on Monte-

Carlo trials [7]. It consists in simulating the dynamics of a large number of scenarios and in

counting the number of effective collisions. Unfortunately, the number of required trials goes up

with the targeted precision and makes this method quite time-consuming. For so-called rare events

- events with very low probability values - it can even become intractable [7]. Therefore, simplified

encounter models have been designed to reduce the complexity of the computation of the probability

of collision, allowing for faster dedicated algorithms.

B. Short-term encounter between spherical objects

One of these simplified encounter models is the so-called short-term encounter model [2, 5, 6, 8]

that can be used to describe a number of conjunctions when the magnitude of relative velocities at

stake is sufficiently high. This typically happens in Low-Earth Orbit (LEO) where orbital velocities

are the largest in norm [5]. Investigations about the range of validity of the short-term encounter
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model can be found in [5, 15]. In the case of a short-term encounter between spherical objects under

Gaussian-distributed uncertainty, the probability of collision reduces to a 2-D Gaussian integral

over a disk [2, 5, 6, 8]. The present article addresses the practical computation of this quantity.

Five assumptions are needed to define the short-term encounter model under Gaussian-distributed

uncertainty for spherical objects:

1. The relative trajectories are approximated as rectilinear.

2. The velocities at reference time are considered as deterministic variables.

3. Initial position vectors of both objects are Gaussian independent random vectors.

4. Each object is approximated by a spherical geometrical shape.

5. The time boundaries of the conjunction are extended to infinity.

1. Encounter frame

The fact that the relative motion is rectilinear motivates the choice of a frame of study with

one axis along the relative velocity. One possibility is to introduce the so-called encounter frame

[2, 3, 5, 8] defined at reference time. Its exact definition depends on the authors (see for instance [2]

and [5] for two different frames) but it always has the two following characteristics: it is centered

on the mean position of one of the two objects and is built from the so-called encounter plane. This

plane contains the origin and is orthogonal to the direction of the relative velocity.

The configuration considered in this study is represented in Figure 1. The origin of the frame

is located at the center of the primary object p. The basis vector ez̃ is oriented along the relative

velocity v = vs − vp. The basis vector ex̃ belongs to the encounter plane: it points towards the

orthogonal projection of the mean relative position µ(r0) onto the encounter plane. Finally, the

basis vector eỹ completes the right-handed system and thus belongs to the encounter plane as well.

In summary, one has

ez̃ = v

‖v‖
, eỹ = v × µ(r0)

‖v × µ(r0)‖ , ex̃ = eỹ × ez̃. (1)

Let (x̃m, 0, z̃m) be the coordinates of the mean relative position in the encounter frame where
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the ỹ coordinate is zero by construction. It is worth noticing that, since the relative trajectory is

rectilinear, x̃m is in fact equal to the miss distance.

p

s

v = vs − vp

x̃

ỹ

z̃

x̃m

z̃m

Figure 1: Encounter plane and frame (ex̃, eỹ, ez̃)

2. Integral representation

Under the assumptions of the short-term encounter model, the probability of collision can be

formulated as a 2-D integral in the encounter plane. For spherical objects, the domain of integration

is a closed disk B̄((0, 0), R) centered at the origin of radius R. The quantity R is the combined

radius and is defined as the sum of the respective radii of the two objects i.e. R = Rp + Rs.

The two-dimensional pdf involved in the probability of collision describes the distribution of the

relative position in the encounter plane. From the hypothesis on the nature of uncertainty, it is a

multivariate normal law. Therefore, it is completely defined by its mean vector and its variance-

covariance matrix [16]. Let Σx̃ỹ be the covariance matrix of the relative coordinates in the encounter

plane. The probability of collision can then be written as:

Pc = 1
2π
√
|Σx̃ỹ|

∫
B̄((0,0),R)

exp
(
−1

2 [x̃− x̃m ỹ] Σ−1
x̃ỹ [x̃− x̃m ỹ]T

)
dx̃dỹ. (2)

Equation (2) shows that the probability of collision only depends on the combined radius R, the

miss distance x̃m and the covariance matrix Σx̃ỹ of the relative coordinates in the encounter plane.
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3. Frame rotation

Further calculations allow to write a formula with a simpler integrand. As a covariance matrix,

Σx̃ỹ can be written as:

Σx̃ỹ =

 σ2
x̃ ρx̃ỹσx̃σỹ

ρx̃ỹσx̃σỹ σ2
ỹ

 , (3)

where σx̃, σỹ ∈ R+
∗ are the standard deviations of the relative coordinates in the encounter plane and

ρx̃ỹ ∈ (−1, 1) is the correlation coefficient. In order to eliminate the cross-terms of the Gaussian

function, a rotation to the principal axis of the covariance matrix is performed in the encounter

plane (see Figure 2). The new coordinates, denoted (x, y), are respectively along the major and

the minor axis. Consistently with Chan’s notation [5], let −θ be the corresponding rotation angle.

Nevertheless, the reader should be aware that Chan actually uses this symbol to denote any angle

rotating to the principal axis, not necessarily with the major axis aligned with the first axis as done

here. This transformation does not change the nature of the domain of integration which remains

a disk of radius R centered at the origin. It follows that:

Pc = 1
2πσxσy

∫
B̄((0,0),R)

exp
(
−1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dxdy, (4)

where the quantities σx and σy are standard deviations of the new coordinates. As a matter of fact,

σ2
x and σ2

y are respectively the largest and the smallest eigenvalues of Σx̃ỹ:σ
2
x̃ + σ2

ỹ

2 ±

√√√√(σ2
x̃ − σ2

ỹ

2

)2

+ ρ2
x̃ỹσ

2
x̃σ

2
ỹ

 . (5)

Accordingly to the rotation of angle −θ, one has:

xm = x̃m cos θ, ym = −x̃m sin θ. (6)

The angle θ can always be chosen in (−π2 ,
π
2 ]. If ρx̃ỹ 6= 0, it is given by the following formula:

θ = arctan

 σ2
ỹ − σ2

x̃

2ρx̃ỹσx̃σỹ
+ sign(ρx̃ỹ)

√√√√1 +
(
σ2
ỹ − σ2

x̃

2ρx̃ỹσx̃σỹ

)2
 . (7)

If ρx̃ỹ = 0, the matrix Σx̃ỹ is in fact already diagonal and two subcases can occur. If σx̃ ≥ σỹ, no

rotation is needed and θ = 0; if σx̃ < σỹ, one only needs to interchange the axis and θ = π
2 .
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x

y

ym

combined xm

level sets

θ

R

x̃m

x̃

ỹ

disc

θ

Figure 2: Rotation to the principal axis of the covariance matrix in the encounter plane

Equation (4) defines the so-called short-encounter formula for the probability of collision between

two spherical objects under Gaussian-distributed uncertainty. It has the form of a 2-D integral over

a disk centered at the origin of a Gaussian function with no cross-terms. Several methods have been

developed in the literature to compute this integral and are summarized in the following subsection.

The contribution of the article is to propose a new systematic computation method that will be

presented in details in the next section.

C. State of the art for the computation of Pc

Monte Carlo methods can be used to compute the probability of collision for short-term en-

counters. But as for the general collision model, they are time-consuming and ill-fitted to compute

probabilities with very low values. Moreover, they do not take advantage of the particular expres-

sion of the short-term encounter formula. On the other hand, four methods have been developed so

far to specifically handle this computation.

The first of these methods - used by NASA [5] - originates from an article by Foster and Estes [8].

It consists in a direct application of a numerical discretization scheme to the two-dimensional integral

after switching to polar coordinates. While being fairly precise, it is relatively slow compared to

other methods [5]. Patera [3] reformulates the probability of collision as a one-dimensional integral
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by writing it as a path-integral over the contour of the domain of integration. A numerical scheme

- namely the midpoint method - is used for actual computation. By use of the error function,

Alfano [4] also formulates the probability of collision as a one-dimensional integral. Then, Simpson’s

integration scheme is applied to compute it. The outcome is a finite sum involving exponential and

error functions.

Chan’s method [5] is the only one based on an analytical formula rather than a numerical

scheme. However, it is derived via an approximation of the domain of integration. Geometrically,

Chan considers the integration problem of an isotropic Gaussian function over an ellipse - isotropic

meaning that the level sets of the Gaussian function are circles. It is strictly equivalent to the

original integration problem of an anisotropic Gaussian function over a disk. Then, the actual

elliptic domain of integration is approximated by a disk of equivalent area and same center. Thus,

the probability of collision reduces to the integral of an isotropic Gaussian function over a disk

shifted from its peak. This integration problem can be solved analytically by use of properties of

the first modified Bessel function. Finally, Chan is able to write the probability of collision as an

infinite series with positive terms. The advantage of this approach is to provide the user with a

truncation error that can be bounded. The major drawback lies in the fact that the formula itself

is only an approximation of the original integral and that the discrepancy between the two is hard

to quantify. One of the advantages of the present paper is to propose a different analytic formula

for the probability of collision - derived without any approximation.

III. A new method to compute the probability of collision

The three main ingredients used in the derivation of the new formula are:

1. A method introduced by Lasserre and Zeron [11] to integrate Gaussian functions over Eu-

clidean balls is used. Specifically, equation (4) is reformulated as a function g(ξ), with ξ = R2,

whose Laplace transform Lg is computed in closed-form. The function is then expanded in a

Laurent series. A term by term application of the inverse Laplace transform leads to a power

series for the initial integral.

2. For the first time, a simple form for these coefficients is found. In Section III B, they are proved
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to satisfy a linear recurrence with polynomial coefficients (in the index variable). Classical

theory and properties of D-finite (or holonomic) functions [12, 13] are used for this purpose.

For manipulating D-finite functions/P-recursive sequences, we use the Maple Gfun (version

3.65) package [17]. This allows us to show that g is D-finite and to obtain the recurrence

formula satisfied by the coefficients of its power series∗. This recurrence formula can of course

be also obtained/checked in a rather tedious way by pen and paper derivation.

3. From a numerical point of view, the direct evaluation of the series obtained for g(ξ) can be

difficult. Roughly speaking, although the power series expansion of g(ξ) is convergent, the

evaluation of the sum in finite precision arithmetic is prone to high cancellation [18, 19]. This

comes from consecutive terms that are close in magnitude, but of different signs, so that their

sum in finite precision arithmetic contains very few correct significant digits. This makes

the power series evaluation impractical for large values of ξ. Therefore, a so-called precon-

ditionning [18, 19] is used in order to obtain a series suitable for low cancellation numerical

evaluation. Instead of g, the function ψ · g is considered, where the so-called preconditionner

ψ is a D-finite function as well. By carefully choosing the preconditionner, both ψ and ψ · g

can be efficiently numerically evaluated.

In the end, the formula for the probability of collision has the following form:

Pc = exp
(
− R2

2σ2
y

) +∞∑
k=0

βkR
2k, (8)

where (βk)k≥0 is a positive sequence given by an explicit linear recurrence. This is detailed in what

follows.

∗For convenience, the Maple files used are available at http://homepages.laas.fr/mmjoldes/CollisionProba/
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A. Laplace transform computation of the preconditioned probability of collision

The probability of collision given by (4) may be written as Pc = g(R2) where the function

g : R+ 7→ R+ is defined as follows:

g(ξ) = 1
2πσxσy

∫
B̄((0,0),

√
ξ)

exp
(
−1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dxdy. (9)

This function is in fact the cumulative density function (cdf) of the random variable Ξ = X2 + Y 2

where X ∼ N (xm, σ2
x) and Y ∼ N (ym, σ2

y) are independent random variables.

The function f = ψ · g is considered instead of the function g to prevent the cancellation

phenomenon. The heuristic for a good choice of ψ is based on a method presented in [19] (using

several complex analysis results and properties obtained for g which are detailed in Appendix B). In

our case, it may be proved that an exponential function ψ : ξ 7→ exp(pξ) is a good choice for several

values of p. The perconditioner p = 1
2σ2
y
is chosen, since it leads to a simple proof of positivity of

the series coefficients of g and moreover, allows for a unified and generalized way of interpreting

the exact analytic formula obtained by Chan [5, Chap. 4] in the isotropic case i.e., for σx = σy (see

Section IV). The following proposition provides the closed-form Laplace transform for f .

Proposition III.1. Let f : R+ 7→ R+, such that

f(ξ) = exp(pξ)g(ξ), (10)

where p ∈ R+. Then, the Laplace transform Lf of the function f , is given by

Lf (λ) =
exp

(
−(λ− p)

(
x2
m

2(λ−p)σ2
x+1 + y2

m

2(λ−p)σ2
y+1

))
(λ− p)

√
2(λ− p)σ2

x + 1
√

2(λ− p)σ2
y + 1

, for |λ| > p. (11)

Proof. The function g can be expressed as an integral over R2 by use of the set-indicator function:

g(ξ) = 1
2πσxσy

∫
R2

1B̄((0,0),
√
ξ)(x, y) exp

(
−1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dxdy. (12)

Consider now the Laplace transform Lg of g. Then, for all λ ∈ C such that Re(λ) > 0,

Lg(λ) =
+∞∫
0

g(ξ) exp(−λξ)dξ,

= 1
2πσxσy

+∞∫
0

∫
R2

1B̄((0,0),
√
ξ)(x, y) exp

(
−λξ − 1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dxdydξ. (13)
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Interchanging integrals is justified by Fubini’s theorem, by absolute convergence of (13), that be-

comes:

Lg(λ) = 1
2πσxσy

∫
R2

+∞∫
0

1B̄((0,0),
√
ξ)(x, y) exp (−λξ) exp

(
−1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dξ dxdy,

= 1
2πσxσyλ

∫
R2

exp
(
−λ(x2 + y2)− 1

2

(
(x− xm)2

σ2
x

+ (y − ym)2

σ2
y

))
dxdy, (14)

= 1
2πσxσyλ

∫ +∞

−∞
exp

(
−λx2 − (x− xm)2

2σ2
x

)
dx
∫ +∞

−∞
exp

(
−λy2 − (y − ym)2

2σ2
y

)
dy. (15)

Next, each individual one-dimensional integral can be computed analytically. Indeed, after a change

of variables aiming at completing the square and scaling the expression inside the exponential, the

remaining integral is
∫ +∞

−∞
exp

(
−r

2

2

)
dr =

√
2π. In the end, one gets:

Lg(λ) =
exp

(
−λ
(

x2
m

2λσ2
x+1 + y2

m

2λσ2
y+1

))
λ
√

2λσ2
x + 1

√
2λσ2

y + 1
. (16)

Multiplying the function g(ξ) by exp(pξ) corresponds to a translation in the Laplace domain

Lf (λ) = Lg(λ− p). Plugging this p-shift into (16) gives (11).

Note that in fact the function λ 7→ λLg(−λ) is, by definition, the moment generating function

of the random variable Ξ previously defined [16].

B. Power series of f using D-finiteness

For simplicity, the following notations are used: p = 1
2σ2
y
, φ = 1−

σ2
y

σ2
x

, ωx = x2
m

4σ4
x

, ωy = y2
m

4σ4
y

and

α0 = 1
2σxσy

exp
(
−1

2

(
x2
m

σ2
x

+ y2
m

σ2
y

))
.

Note that 0 ≤ φ < 1, ωx ≥ 0, ωy ≥ 0 and α0 > 0. With this notation, equation (11) becomes:

Lf (λ) =
α0 exp

(
ωy
λ + ωx

λ−pφ

)
√
λ(λ− pφ)(λ− p)

. (17)

From (17), it is possible to obtain the power series of f by performing a term-by-term inverse

Laplace Transform on the principal part of Laurent series (i.e., the series of terms with negative

degree) of Lf [20, Chap. 9], [21, Chap. 2.14].

Note first that the principal part of the Laurent series of Lf can be obtained by computing

the Taylor expansion at infinity of Lf . This is done by computing the coefficients of the power
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series expansion (at zero) of Lf (λ−1). Since the first two coefficients of Lf (λ−1) are zero, let

L̂f (λ) := λ−2Lf (λ−1) in order to simplify subsequent formulas. The multiplication by λ−2 is a

technicality: it means just a shift by two positions in the series coefficients.

A simple computation gives Lf (λ−1) =
α0λ

2 exp
(
ωyλ−ωxpφ−

ωx
pφ(pφλ−1)

)
√

1−pφλ(1−pλ)
. A simple derivation shows

that L̂f verifies:

dL̂f (λ)
dλ = ϕ(λ)L̂f (λ), L̂f (0) = α0, (18)

where

ϕ(λ) = ωy −
pφ

2(pφλ− 1) −
p

pλ− 1 + ωx
(pφλ− 1)2 . (19)

Hence, L̂f (λ) is D-finite and may be expanded in
∞∑
k=0

αkλ
k, for all {λ, |λ| < 1

p}. Therefore, the

sequence (αk)k≥0 satisfies a linear recurrence obtained using Gfun and given by:

(k + 4)αk+4 = −p3φ2ωyαk + p2φ

(
pφ

(
k + 5

2

)
+ 2ωy

(
φ

2 + 1
))

αk+1

−p
(
pφ

(
φ

2 + 1
)

(2k + 5) + φ

(
2ωy + 3p

2

)
+ ωx + ωy

)
αk+2

+
(
p(2φ+ 1)(k + 3) + p

(
φ

2 + 1
)

+ ωx + ωy

)
αk+3 (20)

with initial conditions: α0 given above,

α1 = α0

(
p

(
φ

2 + 1
)

+ ωx + ωy

)
,

α2 = α0

2

((
p

(
φ

2 + 1
)

+ ωx + ωy

)2
+ p2

(
φ2

2 + 1
)

+ 2pφωx

)
,

α3 = α0

6

((
p

(
φ

2 + 1
)

+ ωx + ωy

)3
+ 3

(
p

(
φ

2 + 1
)

+ ωx + ωy

)(
p2
(
φ2

2 + 1
)

+ 2pφωx
)

+ 2
(
p3
(
φ3

2 + 1
)

+ 3p2φ2ωx

))
. (21)

The final formula for the convergent series expansion of f and the positivity of the coefficients of

this series is stated in the following theorem.

Theorem III.2. The convergent series expansion of f is:

f(ξ) =
+∞∑
k=0

βkξ
k, (22)
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where

β0 = 0, βk+1 = αk
(k + 1)! , (23)

(αk)k≥0 are defined in equations (20), (21) and βk > 0, for all k ≥ 0.

Proof. The equation (23) can be seen as a term-by-term Inverse Laplace Transform, since

L−1
( αk
λk+2

)
= αkξ

k+1

(k + 1)! . The proper justification for this is based on [20, Chap. 9]. Moreover,

in can be proven using complex analysis arguments [21, Chap. 2.14] that f is an entire function,

which implies the convergence of the series in equation (22). The positivity of the coefficients βk

is deduced from the positivity of the coefficients αk. Indeed, since ϕ(λ) =
∞∑
k=0

ϕkλ
k is a rational

fraction, the general closed-form for its power series coefficients ϕk can be obtained by hand, based

on the partial fraction decomposition of ϕ (or using ratpolytocoeff Gfun procedure):

ϕk = pk+1
(

1 + φk
(
ωx(k + 1)

p
+ φ

2

))
+


0, k > 0

ωy, k = 0.

(24)

It follows that ϕk > 0, for all k ∈ N. Injecting the series
∞∑
k=0

ϕkλ
k and

∞∑
k=0

αkλ
k into the

differential equation (18) and extracting the coefficient of λk, one gets:

(k + 1)αk+1 =
k∑
i=0

ϕiαk−i, (25)

and hence, since α0 > 0, it follows that αk > 0, for all k ∈ N and therefore βk > 0, for all k ∈ N.

This entails the final analytic series form of the collision probability formula:

Pc = g(R2) = exp
(
−pR2) +∞∑

k=0
βkR

2k. (26)

For an efficient computation of truncations of this series, it is important to remark that also

the terms βkR2k satisfy the following linear recurrence:

Proposition III.3. Let ck = βkR
2k. Then

Pc = exp
(
−pR2) +∞∑

k=0
ck, (27)

15



and (ck)k≥0 satisfies:

(k + 4)ck+4 = − R8p3φ2ωy
(k + 2)(k + 3)(k + 4)(k + 5)ck +

R6p2φ
(
pφ
(
k + 5

2
)

+ 2ωy
(
φ
2 + 1

))
(k + 3)(k + 4)(k + 5) ck+1

−
R4p

(
pφ
(
φ
2 + 1

)
(2k + 5) + φ

(
2ωy + 3p

2
)

+ ωx + ωy

)
(k + 4)(k + 5) ck+2

+
R2
(
p(2φ+ 1)(k + 3) + p

(
φ
2 + 1

)
+ ωx + ωy

)
k + 5 ck+3, (28)

with initial conditions

c0 = α0R
2,

c1 = α0R
4

2

(
p

(
φ

2 + 1
)

+ ωx + ωy

)
,

c2 = α0R
6

6

((
p

(
φ

2 + 1
)

+ ωx + ωy

)2
+ p2

(
φ2

2 + 1
)

+ 2pφωx

)
,

c3 = α0R
8

24

((
p

(
φ

2 + 1
)

+ ωx + ωy

)3
+ 3

(
p

(
φ

2 + 1
)

+ ωx + ωy

)(
p2
(
φ2

2 + 1
)

+ 2pφωx
)

+ 2
(
p3
(
φ3

2 + 1
)

+ 3p2φ2ωx

))
.

Proof. The recurrence for ck is a direct computation (by hand or with Gfun), obtained from the

recurrence on αk (see equation (20)).

Truncating the series in (27) gives a straightforward algorithm (see Algorithm 1) for computing

the probability of collision Pc. Besides the fact that this series is the exact analytic formula for the

probability, this algorithm features numerical stability. The coefficients ck are positive, so partial

sums of the series already provide a lower bound for the exact value of Pc. Note that this algorithm

requires two exponential function evaluations and O(N) basic arithmetic operations, where N is the

number of terms in the partial sum.
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Algorithm 1 Computation of the Probability of Collision.
Input: Parameters: σx, σy, xm, ym; combined object radius: R; Number of terms: N .

Output: P̃c – truncated series approximation of Pc.

1: p = 1
2σ2
y
; φ = 1−

σ2
y

σ2
x
; ωx = x2

m

4σ4
x
; ωy = y2

m

4σ4
y
; α0 = 1

2σxσy
exp
(
−1

2

(
x2
m

σ2
x

+ y2
m

σ2
y

))
;

2: c0 = α0R
2;

3: c1 = α0R
4

2

(
p
(
φ
2 + 1

)
+ ωx + ωy

)
;

4: c2 = α0R
6

6

((
p
(
φ
2 + 1

)
+ ωx + ωy

)2 + p2
(
φ2

2 + 1
)

+ 2pφωx
)
;

5:
c3 = α0R

8

24

((
p
(
φ
2 + 1

)
+ ωx + ωy

)3 + 3
(
p
(
φ
2 + 1

)
+ ωx + ωy

)(
p2
(
φ2

2 + 1
)

+ 2pφωx
)

+ 2
(
p3
(
φ3

2 + 1
)

+ 3p2φ2ωx

))
;

6: for k ← 0 to N − 5 do

7:

ck+4 = − R8p3φ2ωy
(k+2)(k+3)(k+4)2(k+5)ck +

R6p2φ
(
pφ(k+ 5

2 )+2ωy
(
φ
2 +1
))

(k+3)(k+4)2(k+5) ck+1

−
R4p
(
pφ
(
φ
2 +1
)

(2k+5)+φ(2ωy+ 3p
2 )+ωx+ωy

)
(k+4)2(k+5) ck+2

+
R2
(
p(2φ+1)(k+3)+p

(
φ
2 +1
)

+ωx+ωy
)

(k+4)(k+5) ck+3

8: end for

9: s← 0

10: for k ← 0 to N − 1 do

11: s← s+ ck;

12: end for

13: P̃c ← exp
(
−pR2) s;

14: return P̃c.

C. Computing the probability of collision with guaranteed accuracy

While Algorithm 1 provides already a lower bound for Pc, it is useful to also have an upper

bound for the truncation error entailed by computing the partial sum P̃n = exp
(
−pR2) n−1∑

k=0
ck.

The choice of the order n of truncation is strongly dependent upon the trade-off between the

numerical complexity involved in the computation and the precision of the obtained result. Thus,

it is important to have sharp order-dependent error estimates that will help the user to manage this

trade-off. Let us first define what may be interpreted as the truncation of order n:

εn = Pc − P̃n(R2), (29)
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where P̃n = exp
(
−pR2) n−1∑

k=0
ck = exp(−pR2)

n−1∑
k=0

αk
(k + 1)! (R

2)k+1. The objective of the next propo-

sition is to give accurate bounds on εn. As will be seen in the following, truncation error bounds

also allow for an a priori computation of the truncation order, when a pre-specified precision on the

collision probability is required. To avoid rather tedious developments, the proofs of the propositions

presented in this Section are gathered in Appendix A.

Proposition III.4. The following bounds hold for the truncation error:

ln ≤ Pc − P̃n(R2) ≤ un, (30)

where

ln := α0 exp(−pR2)(pR2)n+1

p(n+ 1)! (31)

and

un :=
α0 exp

(
p
(
φ
2 + ωx+ωy

p

)
R2
)(

p
(

1 + φ
2 + ωx+ωy

p

)
R2
)n+1

p
(

1 + φ
2 + ωx+ωy

p

)
(n+ 1)!

, (32)

for all n ≥ 1.

These bounds are used for computing the probability of collision with a guaranteed accuracy.

Let δ be the probability threshold for executing some collision avoidance maneuver, say δ = 0.001 in

practice. The test Pc ≤ δ needs to be performed safely, which means that at least d− log10 δe digits

need to be guaranteed in the computation of Pc. Practically, for δ = 0.001, 3 or 4 guaranteed digits

(after the decimal dot, that is in absolute error) should be sufficient. In the following proposition,

a sufficient value for n is given such that the required accuracy holds.

Proposition III.5. Let

N1 = 2
⌈
epR2

(
1 + φ

2 + ωx + ωy
p

)⌉
, (33)

N2 =

log2

α0 exp
(
pR2

(
φ
2 + ωx+ωy

p

))
δp
√

2πN1

(
1 + φ

2 + ωx+ωy
p

)
 , (34)

and

n+ 1 = max {N1, N2} . (35)
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Then, un − ln < δ.

In the proof of Proposition III.4 presented in Appendix A, Proposition A.3 provides two majo-

rant/minorant series εn and εn for the truncation error εn. These can be also used to obtain directly

an upper/lower bound for the probability Pc as stated below.

Proposition III.6. Let

l0 = α0
1− exp(−pR2)

p
,

and

u0 = α0
exp

(
p
(
φ
2 + ωx+ωy

p

)
R2
)
− exp(−pR2)

p
(

1 + φ
2 + ωx+ωy

p

) .

Then:

l0 ≤ Pc ≤ u0. (36)

The formulas obtained for l0 and u0 are simple and sufficient in most practical cases. They

provide a guaranteed enclosure for the actual value of the probability (see Section V, Table 2 for

numerical examples).

Propositions III.6, III.4 and III.5 allow for computing an enclosure of the exact value of the

probability with a guaranteed absolute error less then a given threshold δ. This is implemented in

Algorithm 2. The advantage of this algorithm is to allow for an a priori computation of a sufficient

number n of terms to be taken in the series such that the accuracy requirement holds. This algorithm

calls Algorithm 1 (line 10, Algorithm 2) to obtain the sum of the truncated series of n terms i.e., an

approximation P̃c of the probability of collision. The variables ln and un (line 11, 12, Algorithm 2)

provide lower and upper bounds on the truncation error. Whence, one obtains an effective enclosure

of the true value of the probability in lines 13, 14 of Algorithm 2. Numerical results are given in

Section V (see Figure 3 in particular).

IV. Comparison with Chan series

In the isotropic case (i.e., σx = σy := σ), Chan [5, Chap. 4] reformulates the initial 2-D

integral (4) as a one dimension integral over the Rice probability distribution. This integral is
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Algorithm 2 Computation of probability of collision with guaranteed accuracy.
Input: Parameters: σx, σy, xm, ym; combined object radius: R; Threshold δ.

Output:
[
Pc,Pc

]
such that Pc ≤ Pc ≤ Pc and Pc − Pc ≤ δ.

1: p = 1
2σ2
y
; φ = 1−

σ2
y

σ2
x
; ωx = x2

m

4σ4
x
; ωy = y2

m

4σ4
y
; α0 = 1

2σxσy
exp
(
−1

2

(
x2
m

σ2
x

+ y2
m

σ2
y

))
;

2: l0 = α0
1− exp(−pR2)

p
;

3: u0 = α0
exp
(
p
(
φ
2 + ωx+ωy

p

)
R2)− exp(−pR2)

p
(
1 + φ

2 + ωx+ωy
p

) ;

4: if u0 − l0 ≤ δ then

5: return [l0, u0];

6: else

7: N1 = 2
⌈
epR2 (1 + φ

2 + ωx+ωy
p

)⌉
;

8: N2 =

⌈
log2

α0 exp
(
pR2 (φ

2 + ωx+ωy
p

))
δp
√

2πN1
(
1 + φ

2 + ωx+ωy
p

)⌉;
9: n = max {N1, N2} − 1

10: P̃c ← Algorithm 1 (σx, σy, xm, ym, R, n);

11: ln = α0 exp(−pR2)(pR2)n+1

p(n+ 1)! ;

12: un =
α0 exp

(
p
(
φ
2 + ωx+ωy

p

)
R2) (p (1 + φ

2 + ωx+ωy
p

)
R2)n+1

p
(
1 + φ

2 + ωx+ωy
p

)
(n+ 1)!

;

13: Pc = P̃c + ln;

14: Pc = P̃c + un;

15: return
[
Pc,Pc

]
.

16: end if

then computed analytically in the form of a power series using some knowledge (identities, integral

tables) on the modified Bessel function of the first kind and the Rice distribution. We recover the

same series applying our procedure described in Section III B. In the isotropic case, the Laplace

transform in equation (16) is:

Lgiso(λ) =
exp

(
x2
m+y2

m

σ2(2σ2λ+1)

)
λ (2σ2λ+ 1) . (37)

Applying a similar preconditionning method [18, 19], a preconditioning parameter p = 1
2σ2 is

derived. A result similar to Theorem III.2 is easily derived. Note that since σx = σy, one has φ = 0,
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ωx + ωy = x2
m + y2

m

4σ4 and α0 = 1
2σ2 exp

(
−x

2
m + y2

m

2σ2

)
. Define L̂fiso(λ) := λ−2Lfiso(λ−1), then

dL̂fiso(λ)
dλ = ϕiso(λ)L̂fiso(λ), L̂fiso(0) = α0, (38)

where

ϕiso(λ) = ωx + ωy −
p

pλ− 1 . (39)

L̂fiso(λ) can be expanded in
+∞∑
k=0

αkλ
k, for all {λ, |λ| > p} and (αk)k≥0 satisfies

(k + 2)αk+2 = −p (ωx + ωy)αk + (p(k + 2) + ωx + ωy)αk+1 (40)

with initial conditions: α0 given above and α1 = α0 (p+ ωx + ωy).

Proposition IV.1. The convergent series expansion of the function fiso is:

fiso(z) =
+∞∑
k=0

βkz
k (41)

where

β0 = 0, βk+1 = αk
(k + 1)! for all k ≥ 0, (42)

(αk)k≥0 are defined in equation (40) and βk > 0, for all k ≥ 0.

The advantage in this simpler case is that in (40), one has:

(k + 2) (αk+2 − pαk+1) = (ωx + ωy) (αk+1 − pαk) , (43)

which easily gives the closed-form for αk+1 − pαk = α0(ωx+ωy)k+1

(k+1)! , and hence,

αk = α0p
k

k∑
i=0

(ωx + ωy)i

pii! . (44)

It follows that the final probability becomes:

exp
(
−pR2)Piso(R2) =

∞∑
k=0

αkR
2k+2

(k + 1)!

= exp
(
−ωx + ωy

p

) ∞∑
k=0

(pR2)k+1

(k + 1)!

k∑
i=0

(ωx + ωy)i

pii!

= exp
(
−ωx + ωy

p

) ∞∑
i=0

(ωx + ωy)i

pii!

∞∑
k=i

(pR2)k+1

(k + 1)! ,
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or equivalently,

Piso(R2) = exp
(
−ωx + ωy

p

) ∞∑
i=0

(ωx + ωy)i

pii!

(
1− exp

(
−pR2) i∑

k=0

(pR2)k

k!

)
. (45)

Formula (45) and equivalent ones obtained by simple re-summation are the ones used by Chan, see

e.g., [5, eq. 4.17, Chap. 4], where the notation is u = R2

σ2 and v = x2
m+y2

m

σ2 .

In the non-isotropic case, Chan builds an approximation of the integral which allows for the

following two changes of variables: u = r2

σ2
xσ

2
y

and v = x2
m

σ2
y

+ y2
m

σ2
y

in (45), used to compute the

final approximated probability. In Chan’s approach, a closed formula, namely equation (44), is

maintained for the sequence αk in the final formula for the non-isotropic case which remains an

approximation of the genuine probability of collision. In contrast, the analytic formula obtained

in this paper is exact and the sequence αk (eq. (20)) is given by a linear recurrence which is

numerically stable for a machine computation.

V. Numerical tests

The performance of our method is assessed from two perspectives. First, since it is based on

a series expansion, the numerical accuracy varies in function of the number of terms computed.

Algorithm 2 offers an automatic way of computing the number of terms needed for a user-required

accuracy. We exemplify it in what follows on practical cases. Second, our method is compared

with other methods from the literature concerning the quality of the results obtained. Three algo-

rithms from the literature, namely Alfano’s [4], Patera’s [3] and respectively Chan’s [5] have been

implemented. The chosen test cases are described in Table 1: the first 12 cases can be found in [5,

Chapter 5] and are supposed to be representative of real short-term encounters; the next 3 cases are

real-case scenarios: the data were retrieved from CSMs (Conjunction Summary Messages) sent by

the Joint Space Operations Center to the industrial partner of this study; the last two cases were

obtained using the physical parameters of test cases number 3 and 5 provided by Alfano [7].
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Case Input parameters (m)

# σx σy R xm ym

Chan 1 50 25 5 10 0

Chan 2 50 25 5 0 10

Chan 3 75 25 5 10 0

Chan 4 75 25 5 0 10

Chan 5 3,000 1,000 10 1,000 0

Chan 6 3,000 1,000 10 0 1,000

Chan 7 3,000 1,000 10 10,000 0

Chan 8 3,000 1,000 10 0 10,000

Chan 9 10,000 1,000 10 10,000 0

Chan 10 10,000 1,000 10 0 10,000

Chan 11 3,000 1,000 50 5,000 0

Chan 12 3,000 1,000 50 0 5,000

CSM 1 152.8814468961533 57.918666623295984 10.3 60.583685340533115 84.875546447209487

CSM 1 5,756.840725983703 15.988242371297744 1.3 115.0558998093139 -81.618369910317043

CSM 3 643.4092722122279 94.230921098486149 5.3 693.4058939950484 102.1772470067133

Alfano 3 114.2585190378857 1.410183033040157 15 0.159164620813659 -3.887207383647396

Alfano 5 177.8109003935867 0.037327944173609 10 2.123006718041866 -1.221789517557463

Table 1: Inputs for test cases from Chan (1–12), CSMs (1–3) and Alfano (3,5)

A. Analysis of our method

In Proposition III.6 two very simple formulas (evaluations of exponentials) are provided for

guaranteed lower and upper bounds of the probability of collision. These two simple formulas (line

2, 3, Algorithm 2) provide enough accuracy in most practical cases, as shown in Table 2. Except

in Alfano’s cases, they seem to be very effective due to their simplicity and may suffice in most

practical cases.
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Case Guaranteed Value Relative Significant Digits Absolute Significant Digits

Chan 1 0.0097[04, 75] 2 4

Chan 2 0.0091[39, 82] 2 4

Chan 3 0.0065[42, 72] 2 4

Chan 4 0.006[09, 13] 1 3

Chan 5 0.15765[61, 76] · 10−4 5 9

Chan 6 0.10108[60, 81] · 10−4 5 9

Chan 7 0.6443[04, 23] · 10−7 4 11

Chan 8 0.321[45, 86] · 10−26 3 29

Chan 9 0.3032[58, 61] · 10−5 4 9

Chan 10 0.96[43, 56] · 10−27 2 29

Chan 11 0.1038[31, 71] · 10−3 4 7

Chan 12 0.15[18, 65] · 10−8 2 10

CSM 1 0.001[878, 900] 1 3

CSM 2 2.0[101, 557] · 10−11 2 13

CSM 3 7.[194, 200] · 10−5 1 6

Alfano 3 [0.27 · 10−3, 1.14 · 10101] 0 0

Alfano 5 [3.2 · 10−228, 3.8 · 107757429] 0 0

Table 2: Guaranteed correct digits obtained with formulas in Proposition III.6. The notation

e.g. 0.15[18, 65] · 10−8 stands for the fact that the probability is surely enclosed in the interval

[0.1518 · 10−5, 0.1565 · 10−8] and helps visualizing the guaranteed digits.

If more accuracy is needed, the subsequent lines of Algorithm 2 are employed. Figure 3 shows

the number n of series terms needed in Algorithm 2 for a requested accuracy δ ranging from 10−1 to

10−13. We observe that the number of terms for the absolute error to reach the machine precision

(10−13) is less 40 in all of Chan’s Cases and CSM cases. Note that this number is computed a

priori and it is a sufficient number. The actual number of terms for the accuracy to be met may be

smaller in some cases, but for these practical examples it is not conservative. Chan’s cases 8 and

10 are not drawn since zero terms (that is the values computed in Table 2 with the simple bounds)

24



are sufficient for the whole range of absolute error considered.

On the other hand, for Alfano’s cases, our Algorithm needs much more terms. One observes in

Table 2 that the bounds obtained for these two examples are meaningless. In order to reach a good

accuracy, Algorithm 2 computes n = 689 for Alfano’s Case 3 and n = 1013 for Alfano’s Case 5. This

is conservative, since 90 terms for Case 3 and respectively 37000 terms for Case 5 are sufficient to

obtain the value given in Table 5. This shows however that in some degenerate cases the number

of terms needed may increase drastically.

Figure 3: Number of terms in the series needed in Algorithm 2 for a requested accuracy δ ranging

from 10−1 to 10−13. Cases shown: Chan’s Cases (left) and CSM cases (right) from Table 1.

B. Comparison with other methods

The corresponding results for the probability of collision obtained with different methods are

summarized in Tables 3, 4 and 5. The reference values in Table 3 were provided by NASA [5] using

Foster’s method. For Table 4, they were given by the industrial partner and for Table 5 they were

obtained from Monte Carlo trials. All tests were performed with Matlab c© R2014a on an Intelr

Xeonr at 3.60GHz.

Since in our method the required accuracy can be set a priori in Algorithm 2, the obtained

values are identical (in most cases) or very close to the reference. For Chan’s test cases, number

1 to 12, Patera’s method gives also 0% of relative error. For the same examples, Alfano’s method

25



also performs well, but it fails for very low probabilities like in test cases 8 and 10. On the other

hand, Chan’s method gives non negligible relative errors for some cases - namely 1, 2, 3, 4, 8, 10, 12

and CSM1–3. As far as precision is concerned, it is definitely the least effective. It is not surprising

since it is based on an additional approximation with respect to the original short-term encounter

model. For that reason, it gives meaningless results for the two test cases provided by Alfano [7], see

Table 5. These examples were originally designed to compare the efficiency of several methods of the

literature and are somehow more tedious as far as computation is concerned. They are challenging

also for our method, since the number of terms to be considered in the series expansion is important.

Nevertheless, the new method gives satisfactory results.

Concerning timings, our method is very fast: for each case tested, the results are obtained

in less than one second; in frequent cases, when the bounds l0 and u0 are sufficient (lines 2 − 3,

Algorithm 2), the response is almost instantaneous (10−5 seconds).

Case Collision Probability (-)

Alfano Patera Chan Algorithm 2 Reference

Chan 1 9.742× 10−3 9.741× 10−3 9.754× 10−3 9.742× 10−3 9.742× 10−3

Chan 2 9.181× 10−3 9.181× 10−3 9.189× 10−3 9.181× 10−3 9.181× 10−3

Chan 3 6.571× 10−3 6.571× 10−3 6.586× 10−3 6.571× 10−3 6.571× 10−3

Chan 4 6.125× 10−3 6.125× 10−3 6.135× 10−3 6.125× 10−3 6.125× 10−3

Chan 5 1.577× 10−5 1.577× 10−5 1.577× 10−5 1.577× 10−5 1.577× 10−5

Chan 6 1.011× 10−5 1.011× 10−5 1.011× 10−5 1.011× 10−5 1.011× 10−5

Chan 7 6.443× 10−8 6.443× 10−8 6.443× 10−8 6.443× 10−8 6.443× 10−8

Chan 8 0 3.219× 10−27 3.216× 10−27 3.219× 10−27 3.219× 10−27

Chan 9 3.033× 10−6 3.033× 10−6 3.033× 10−6 3.033× 10−6 3.033× 10−6

Chan 10 0 9.656× 10−28 9.645× 10−28 9.656× 10−28 9.656× 10−28

Chan 11 1.039× 10−4 1.039× 10−4 1.039× 10−4 1.039× 10−4 1.039× 10−4

Chan 12 1.564× 10−9 1.564× 10−9 1.556× 10−9 1.564× 10−9 1.564× 10−9

Table 3: Comparison of collision probability value –with 4 significant digits– for Chan’s test cases

number 1 to 12. The digits different from the reference value are represented in bold.
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Case Collision Probability (-)

Alfano Patera Chan Algorithm 2 Reference

CSM 1 1.9002× 10−3 1.9001× 10−3 1.8934× 10−3 1.9002× 10−3 1.9002× 10−3

CSM 2 2.0553× 10−11 2.0552× 10−11 2.0135× 10−11 2.0553× 10−11 2.0553× 10−11

CSM 3 7.2004× 10−5 7.2000× 10−5 7.2000× 10−5 7.2003× 10−5 7.2003× 10−5

Table 4: Comparison of collision probability value –with 5 significant digits– for tests cases from

CSMs. The digits different from the reference value are represented in bold.

Case Collision Probability (-)

Alfano Patera Chan Algorithm 2 Reference

Alfano’s No. 3 1.0038× 10−1 1.0087× 10−1 3.1264× 10−2 1.0038× 10−1 1.0085× 10−1

Alfano’s No. 5 4.4712× 10−2 4.4520× 10−2 1.6618× 10−77 4.4509× 10−2 4.4499× 10−2

Table 5: Comparison of collision probability value - with 5 significant digits - for test cases from [7].

VI. Conclusions

A new method to compute the probability of collision for short-term space encounters between

two spherical objects under Gaussian-distributed uncertainty has been proposed. The formula has

the form of a product between an exponential term and a convergent power series with positive

coefficients. It is derived by use of Laplace transform theory and D-finite functions properties. The

variable in the power series is the squared radius of the combined object. The series coefficients

depend on the other parameters of the encounter, namely the miss distance and the standard

deviations of the relative position of the objects in the encounter plane. It was shown that the

formula is in fact an improvement on the only other analytical method of the literature - namely

Chan’s - since it is more general. Compared with state-of-the-art numerical methods, this work has

several advantages. First of all, it provides an accurate algorithm to compute the probability of

collision based on an analytic expression. Moreover, it gives a fast way to compute an estimate of

the risk, which is often close-enough to the real value for the decision maker.

As a short term objective, we intend to address, in a finer manner, the cases for which the
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number of terms to be considered in the series expansion is too high. We will use for that purpose, a

saddle-point based method [22, Chapter VIII]. In addition, a parameter sensitivity analysis similar

to the one done by Chan, would be useful since we expect to obtain similar results (although with

a better accuracy on the probability, due to the advantages of our method).

Appendix A: DERIVATION OF THE BOUNDS ON THE TRUNCATION ERROR

1. Proof of Proposition III.4

In order to prove the Proposition III.4, some preliminary results are needed. First, remember

that

εn = Pc− P̃n(R2) = Pc− exp(−pR2)
n−1∑
k=0

βk(R2)k+1 = Pc− exp(−pR2)
n−1∑
k=0

αk
(k + 1)! (R

2)k+1. (A1)

Then, recall that (αk)k≥0 is known only through its recurrence and a closed formula is unlikely to

be found. So, in order to compute effective truncation error bounds, two sequences (αk)k≥0 and

(αk)k≥0 are used, which have closed-forms and provide respectively upper and lower bounds for

(αk)k≥0.

Proposition A.1. Let αk = α0p
k and αk = α0p

k
(

1 + φ
2 + ωx+ωy

p

)k
. Then αk ≤ αk ≤ αk, for all

k ∈ N.

Proof. The proof follows by induction. First, one has α1 = α0ϕ0 = α0p
(

1 + φ
2 + ωx+ωy

p

)
, so

α1 = α0p ≤ α0ϕ0 ≤ α0p

(
1 + φ

2 + ωx + ωy
p

)
= α1. (A2)

To prove the induction step, let us first note:

α0ϕk
αk+1

= 1 + φk
(
ωx(k + 1)

p
+ φ

2

)
+


0, k > 0

ωy
p
, k = 0.

(A3)

and

α0ϕk
αk+1

=



1 + φk
(
ωx(k + 1)

p
+ φ

2

)
(

1 + φ
2 + ωx+ωy

p

)k+1 , k > 0

1, k = 0,

(A4)
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which implies:

α0ϕk
αk+1

≥ 1 ≥ α0ϕk
αk+1

. (A5)

To prove these two inequalities, remember that φ = 1−
σ2
y

σ2
x

≥ 0 since σ2
x and σ2

y are assumed to be

respectively the largest and smallest eigenvalues of Σx̃ỹ. Indeed, α0ϕk
αk+1

≥ 1 is easily obtained from

the positivity of all the terms (φ, φk, ωx, ωy, p) involved in (A3). The second inequality comes

from the following series of inequalities and from the binomial formula, still using positivity of the

previous terms:

1 + φk
(
ωx(k + 1)

p
+ φ

2

)
≤ 1 + ωx(k + 1)

p
+ φ

2

≤ 1 + (ωx + ωy)(k + 1)
p

+ φ

2

≤
(

1 + (ωx + ωy)
p

+ φ

2

)k+1
.

Suppose αk ≤ αk ≤ αk,∀k ≤ n. Then:

n∑
k=0

ϕkαn−k ≤
n∑
k=0

ϕkαn−k ≤
n∑
k=0

ϕkαn−k (A6)

Since αn−k =
α0αn+1
αk+1

and αn−k = α0αn+1

αk+1
, it comes that:

αn+1

n∑
k=0

α0ϕk
αk+1

≤
n∑
k=0

ϕkαn−k ≤ αn+1

n∑
k=0

α0ϕk
αk+1

. (A7)

Hence,

αn+1(n+ 1) ≤
n∑
i=0

ϕiαn−i ≤ αn+1(n+ 1), (A8)

and the conclusion follows from (25).

It is then quite immediate to get the following result.

Corollary A.2. The coefficients (βk)k≥0 satisfy αk
(k + 1)! ≤ βk+1 ≤

αk
(k + 1)! .

Proof. Direct application of Proposition A.1 and Theorem III.2.

Upper and lower bounds for the truncation errors are now obtained based on the above mino-

rant/majorant sequences.
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Proposition A.3. Let P̃n(t) = exp(−pt)
n−1∑
i=0

αi
(i+ 1)! t

i+1, εn(t) = exp(−pt)
∞∑
i=n

αi
(i+ 1)! t

i+1 and

εn(t) = e−pt
∞∑
i=n

αi
(i+ 1)! t

i+1. For each n ≥ 0, one has

εn(R2) ≤ Pc − P̃n(R2) ≤ εn(R2), (A9)

with the particular case P̃0(t) := 0, for n = 0.

Proof. From equation (26) and β0 = 0, one gets: Pc − P̃n(R2) = exp(−pR2)
∞∑
k=n

αk
(k + 1)!R

2(k+1).

Apply then Corollary A.2.

To conclude the proof of the Proposition III.4, note that in general, for γ > 0,

1
γ

(γt)n+1

(n+ 1)! ≤
∞∑
i=n

γiti+1

(i+ 1)! ≤
eγt

γ

(γt)n+1

(n+ 1)! , (A10)

which gives straightforwardly εn(R2) ≥ ln and εn(R2) ≤ un, hence (30).

2. Proof of Proposition III.5

From equations (31), (32) and using the Stirling inequality [23] on ln,

un − ln = ln

(
exp

(
pR2

(
1 + φ

2 + ωx + ωy
p

))(
1 + φ

2 + ωx + ωy
p

)n
− 1
)

< ln exp
(
pR2

(
1 + φ

2 + ωx + ωy
p

))(
1 + φ

2 + ωx + ωy
p

)n
<
α0 exp(−pR2)(epR2)n+1

p
√

2π(n+ 1)(n+ 1)n+1
exp

(
pR2

(
1 + φ

2 + ωx + ωy
p

))(
1 + φ

2 + ωx + ωy
p

)n

<

epR2
(

1 + φ
2 + ωx+ωy

p

)
n+ 1

n+1
α0 exp

(
pR2

(
φ
2 + ωx+ωy

p

))
p
√

2π(n+ 1)
(

1 + φ
2 + ωx+ωy

p

) .
For n+ 1 = N1 in the previous inequality, the obtained bound for the absolute error is:

uN1−1 − lN1−1 <

(
1
2

)N1 α0 exp
(
pR2

(
φ
2 + ωx+ωy

p

))
p
√

2πN1

(
1 + φ

2 + ωx+ωy
p

) . (A11)

If this is not less than δ, one has for all N ≥ N1:

uN−1 − lN−1 ≤
(

1
2

)N α0 exp
(
pR2

(
φ
2 + ωx+ωy

p

))
p
√

2πN1

(
1 + φ

2 + ωx+ωy
p

) . (A12)

Finally, one has (by construction):(
1
2

)N2 α0 exp
(
pR2

(
φ
2 + ωx+ωy

p

))
p
√

2πN1

(
1 + φ

2 + ωx+ωy
p

) ≤ δ, (A13)

so, n+ 1 = max {N1, N2} is suitable.
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3. Proof of Proposition III.6

In general, for γ > 0,
∞∑
k=0

γktk+1

(k + 1)! = eγt − 1
γ

, hence:

∞∑
k=0

αkR
2(k+1)

(k + 1)! = α0
exp(pR2)− 1

p
(A14)

and:

∞∑
i=0

αiR
2(i+1)

(i+ 1)! = α0
exp

(
p
(

1 + φ
2 + ωx+ωy

p

)
R2
)
− 1

p
(

1 + φ
2 + ωx+ωy

p

) . (A15)

By multiplying the above expressions by e−pR2 , one obtains: l0 = ε0(R2) = α0
exp(pR2)− 1

p
and:

u0 = ε0(R2) = α0
exp

(
p
(
φ
2 + ωx+ωy

p

)
R2
)
− exp(−pR2)

p
(

1 + φ
2 + ωx+ωy

p

) .

εn(R2) + P̃n(R2) = e−pR
2

(+∞∑
k=n

αk
(k + 1)!R

2(k+1) +
n−1∑
k=0

αk
(k + 1)!R

2(k+1)

)
(A16)

≥ e−pR
2
∞∑
k=0

αkR
2(k+1)

(k + 1)! = ε0(R2) (A17)

≥ α0
exp(pR2)− 1

p
, (A18)

Similarly, one gets: ε0(R2) + P̃n(R2) ≤ ε0(R2).

Appendix B: SOME REMARKS ABOUT FUNCTION EVALUATION WITHOUT

CANCELLATION

1. Introduction

We consider a Taylor series of the form

g(ξ) =
∞∑
i=0

giξ
i, gi ∼ (−1)iλ α

i

i!κ , (B1)

where λ, α, κ > 0. For large ξ > 0, the computation in finite precision arithmetic of such sum is

prone to cancellation. This is because the terms
∣∣giξi∣∣ are first growing, before the series starts to

converge when iκ ≥ αξ. When iκ ' αξ the terms
∣∣giξi∣∣ usually get much larger than |g(ξ)|. So the

leading bits cancel out while the lower-order bits which actually contribute to the first significant

bits of the actual result get lost in the roundoff errors. So we are interested in minimizing the ratio

dg(ξ) = log
max
i

∣∣giξi∣∣
|g(ξ)| . (B2)
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Example B.1. A classical example of catastrophic cancellation is for g(ξ) = exp(−ξ). One has

g(ξ) =
∞∑
i=0

(−1)i
i! ξi. The values

∣∣∣ (−1)i
i! ξi

∣∣∣ are plotted in Figure 4 for ξ = 15. Observe that dg(ξ) ' 12

lost digits (taking log10). Summing the first 101 terms with 10 digits precision in Maple,

Digits:=10:

add((-15.)^i/i!, i=0..100);

gives −0.4847810247 · 10−4, while exp(−15) ' 3.06 · 10−7.

Figure 4: Values of
∣∣∣ (−1)i15i

i!

∣∣∣, i = 0, . . . , 100, compared to the actual value of

exp(−15) ' 3.06 · 10−7.

In order to avoid this cancellation problem, for this simple function, one could use the series

of exp(x) for which all terms are positive and compute afterwards 1
exp(x) . This is the most basic

instance of the idea employed in [18, 19] that consists in evaluating two "well conditioned" series,

say f and ψ such that g = f
ψ . In this example, ψ = exp and f = 1.

This idea is developed in [19], by Gawronski, Müller and Reinhard, who provide a method

(called GMR from now on) for evaluating an entire function on some complex sector with reduced

cancellation. We use a simple instance of their method in the following, since we focus only on

positive real line evaluation. Before explaining GMR method and how to apply it for our case, we

review some classical complex analysis notions (see [24, Chap.1, 9] for example).
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2. GMR Method in a nutshell

a. Some classical complex analysis notions. Let g(ξ) =
∞∑
n=0

gnξ
n be an entire function (i.e.,

analytic on the whole complex plane, lim
n→∞

n
√
|gn| = 0).

• The order (of growth) ρ of g is given by ρ = lim sup
n→∞

log logMg(r)
log r , where Mg(r) := max

|ξ|=r
|g(ξ)|.

The order relates to the coefficients:

ρ = lim sup
n→∞

n logn
log |gn|−1 . (B3)

• If 0 < ρ <∞, the type σ is given by

σ = lim sup
n→∞

logMg(r)
rρ

. (B4)

The following relation between order, type and coefficients growth holds: if g is of order ≤ ρ:

σ = 1
eρ

lim sup
n→∞

n |gn|ρ/n. (B5)

• The indicator function with respect to ρ is h:

h(θ) = lim sup
n→∞

log |g(reiθ)|
rρ

. (B6)

This describes the growth of g along a ray, {ξ : arg ξ = θ}. It is well known that h is continuous

and that

max
θ∈[0,2π]

h(θ) = σ. (B7)

The first idea of GMR is that, with these notions, one can say that for large values of r,

log
∣∣g(reiθ)

∣∣ ∼ h(θ)rρ in some vague sense. This allows for quantizing the cancellation in function

of the type σ and indicator function.

b. Relation between cancellation and type and indicator functions. Equation (B2) states that

we are interested in minimizing the ratio

dg(reiθ) = log
max
n
|gn| rn

|g(reiθ)| .
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According to [25, Theorem 10.1], one can replace Mg(r) by µg(r) := max
n
|gn| rn in (B4), since

logµg(r)
logMg(r)

→ 1, (r → ∞). Under certain additional assumptions [19] and using (B6) one can

estimate that

dg(reiθ) ∼ rρ(σg − hg(θ)). (B8)

Equation (B8) is the main starting point in trying to find a way to evaluate the series (B1)

without cancellation. One has to ensure that σg − hg(θ) is as small as possible when evaluating

along some ray or sector corresponding to θ. In the present case, θ = 0, since the evaluation is along

the positive real axis.

3. The order, type and indicator of the probability function

This function, denoted by g, see Section IIIA, equation (9), is an entire function of order ρ = 1,

also called entire function of exponential type (EFET).

Proposition B.2. Let Lg(λ) be the Laplace transform of g, given in equation (16). Let Lg(λ) =
∞∑
n=0

ln
( 1
λ

)n+1, for {|λ| > 1
2σ2
y
}, assuming σx ≥ σy > 0. Then, g(ξ) =

∞∑
n=0

ln
n!ξ

n is EFET, with

σg = 1
2σy2 .

Proof. This is proved using the correspondence between Borel and Laplace transforms, see for ex-

ample [25, Prop. 11.5, Cor. 11.5 and Prop. 11.7].

Finally, the indicator of g is obtained with Polya theorem, recalled below.

c. Borel Transform and Polya Theorem Let g be an EFET as above and the function Lf (λ) =
∞∑
n=0

ln
( 1
λ

)n+1 (also called the Inverse Borel Transform of g). This series converges outside the

disk {|λ| ≤ σg} and diverges inside this disk. The smallest convex compact set containing all its

singularities is called the conjugate indicator diagram of g. We denote by kg(θ) the supporting

function of this compact set. In general, the supporting function k(θ) of a set K ⊂ C is:

k(θ) = sup
z∈K
{x cos θ + y sin θ} = sup

z∈K
{Re(ze−iθ)}, θ ∈ [0, 2π]. (B9)

The following Theorem B.3 relates the growth of the EFET function g along a ray to the location

of the singularities of its Inverse Borel transform.
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Theorem B.3. Polya [24, Chapter 9]. For every EFET g(ξ) the relation

hg(θ) = kg(−θ) holds.

Remark B.4. For our case, the singularities are S =
{

1
2σ2
x
, 1

2σ2
y
, 0
}
. Hence, the indicator function is:

hg(θ) = sup
x∈
[

−1
2σy2 ,0

]{x cos(−θ)}, θ ∈ [0, 2π]

=


− cos θ
2σy2 if θ ∈ [π2 ,

3π
2 ]

0 if θ ∈ [0, π2 ) ∪ ( 3π
2 , 2π].

(B10)

d. Reasons behind choosing to multiply by epξ. The indicator function hg is showed in Figure 5

(a). One can see that in this case, dg(r) = σg > 0 and thus, the sum is not optimally conditioned

to be evaluated on the real axis. The GMR method suggests to multiply g by some preconditioner

function ψ such that both ψ and f := ψg be very well conditioned for evaluation at the considered

sector (positive real line in our case). If ψ is entire of order 1, we expect f(reiθ) ∼ exp((hg(θ) +

hψ(θ))r). One possible choice is ψ(ξ) = epξ for which the indicator function, hψ = p cos(θ), θ ∈

[0, 2π] is given in Figure 5 (b) for p > 0.

One can compute now the type and indicator of the preconditioned probability f , based on the

Laplace transform of f given in Prop. III.1.

The singularities are s̃0 = p, s̃1 = p− 1
2σx2 and s̃2 = p− 1

2σy2 , and hence

σf = max
{
|p| ,

∣∣∣∣p− 1
2σy2

∣∣∣∣} . (B11)

Note that
∣∣∣p− 1

2σx2

∣∣∣ is always between the two other values, since by convention σx ≥ σy > 0.

Similarly, using Polya Theorem,

hf (θ) = sup
x∈
[
p− 1

2σy2 ,p

]{x cos(−θ)}, θ ∈ [0, 2π]

=


(
p− 1

2σy2

)
cos θ if θ ∈ [π2 ,

3π
2 ]

p cos θ if θ ∈ [0, π2 ) ∪ ( 3π
2 , 2π].

(B12)

35



From (B8) and (B12),

df (reiθ)
r

=


max

{
|p| ,

∣∣∣p− 1
2σy2

∣∣∣}− (p− 1
2σy2

)
cos θ if θ ∈ [π2 ,

3π
2 ]

max
{
|p| ,

∣∣∣p− 1
2σy2

∣∣∣}− p cos θ if θ ∈ [0, π2 ) ∪ ( 3π
2 , 2π].

(B13)

For effective evaluation on the positive real axis only (θ = 0), one has

df (r)
r

= max
{
|p| ,

∣∣∣∣p− 1
2σy2

∣∣∣∣}− p,
which is minimized for p ≥ 1

4σy2 .

Hence, from this analysis which follows closely the GMRmethod, the resulting series is optimally

conditioned on the positive real axis for p ≥ σg
2 . We give for example the indicator function obtained

when p = σg
2 in Figure 5 (c) and respectively p = σg in Figure 5 (d). For this problem, p = σg is

considered.

Other choices are of course possible for ψ and currently, there is no established technique in

the literature to assess which one is better. There are also "obvious bad choices": take for instance

sin(ξ) which is entire of order 1 and indicator function hsin = ω |sin(θ)|, ω > 0. For real line

evaluation, this will never give an optimal conditioning in zero.

(a) (b) (c) (d)

Figure 5: Indicator functions of (a) probability g; (b) precondition ξ 7→ epξ; (c) ξ 7→ e
σg
2 ξg(ξ);

(d) ξ 7→ eσgξg(ξ).
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