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Abstract We describe some examples of classical and explicit h-transforms as particular cases of a general mecha-
nism, which is related to the existence of symmetric diffusion operators having orthogonal polynomials as spectral
decomposition.
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Chapter 1

h-transforms and orthogonal polynomials

Dominique Bakry and Olfa Zribi

1.1 Introduction

When the first author of this paper was a student, he was attending the DEA course of Marc Yor, about Brownian
motions and the many laws that one would compute explicitly for various transformations on the trajectories. It
looked like magic, and was indeed. In particular, the fact that conditioning a real Brownian motion to remain
positive would turn it into a Bessel process in dimension 3, that is the norm of a 3-dimensional Brownian motion,
seemed miraculous. Of course, there are much more striking identities concerning the laws of Brownian motion
that one may find in the numerous papers or books of Marc Yor (see [26] for a large collection of such examples).
The same kind of conditioning appears in many similar situations, and specially in geometric models. This is
related to the fact that we then have explicit h (or Doob)- transforms.

This relation between conditioning and h-transform was first put forward by J.L. Doob [11], and is described in
full generality in Doob’s book [12]. However, this kind of conditioning has been extended in various contexts, and
very reader friendly explained by Marc Yor and his co-authors, in particular in [29, 27]. The fact that conditioning
a d-dimensional model to remain in some set produces a new model in the same family (whatever the meaning of
"family"), moreover with dimension d + 2, appears to be a general feature worth to be further understood. It turns
out that the most known models have a common explanation, due to an underlying structure related to orthogonal
polynomials. The scope of this short note is to shed light on these connections.

The paper is organized as follows. In Section 1.2, we present the langage of symmetric diffusion operators that
we shall use in the core of the text, and explain what h-transforms are. Section 1.3 gives a few classical and known
examples (some of them less well known indeed). They all follow the same scheme, explained in Section 1.4,
which provides the general framework, related to the study of orthogonal polynomials which are eigenvectors of
diffusion operators. The last Section 1.5 provides further examples, as applications of the main result, inspired
from random matrix theory.

D. Bakry · O. Zribi
Institut de Mathématiques, Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse, FRANCE e-mail:
Dominique.Bakry@math.univ-toulouse.fr , Olfa.Zribi@math.univ-toulouse.fr
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4 Dominique Bakry and Olfa Zribi

1.2 Symmetric diffusion operators, images and and h-transforms

1.2.1 Symmetric diffusion operators

We give here a brief account of the tools and notations that we shall be using throughout this paper, most of them
following the general setting described in [2]. A symmetric diffusion process (ξt) on a measurable space E may
be described by its generator L , acting on a good algebra A of real valued functions (we shall be more precise
about this below). The diffusion property is described through the so-called change of variable formula. Namely,
whenever f = ( f1, · · · , fp) ∈ A p, and if Φ : Rp 7→ R is a smooth function such that Φ( f ) ∈ A together with
∂iΦ( f ) and ∂i jΦ( f ), ∀i, j = 1 · · ·n, then

L (Φ( f )) = ∑
i

∂iΦ( f )L ( fi)+∑
i j

∂i jΦ( f )Γ ( fi, f j), (1.1)

where Γ ( f ,g) is the square field operator (or carré du champ), defined on the algebra A through

Γ ( f ,g) =
1
2

(

L ( f g)− fL (g)− gL ( f )
)

.

This change of variable formula (1.1) is some "abstract" way of describing a second order differential operator
with no 0-order term. It turns out that the operators associated with diffusion processes satisfy Γ ( f , f ) ≥ 0 for any
f ∈ A , and that the operator Γ is a first order differential operator in each of its argument, that is, with the same
conditions as before,

Γ (Φ( f ),g)) = ∑
i

∂iΦ( f )Γ ( fi,g), (1.2)

In most cases, our set E is an open subset Ω ⊂R
n, and the algebra A is the set of smooth (that is C ∞) functions

Ω 7→ R. Then, using formula (1.1) for a smooth function f : Ω 7→ R instead of Φ and (x1, · · · ,xn) instead of
( f1, · · · , fn), we see that L may be written as

L ( f ) = ∑
i j

gi j(x)∂ 2
i j f +∑

i

bi(x)∂i f , (1.3)

and similarly
Γ ( f ,g) = ∑

i j

gi j(x)∂i f ∂ jg.

In this system of coordinates, gi j = Γ (xi,x j) and bi = L (xi). The positivity of the operator Γ just says that the
symmetric matrix (gi j)(x) is non negative for any x ∈ Ω , which is usually translated into the fact that the operator
is semi-elliptic. In the same way, the absence of constant term translates into the fact that for the constant function
1, that we always assume to belong to the set A , one has L (1) = 0, which is an easy consequence of (1.3).

It is not always wise to restrict to diffusion operators defined on some open subsets of Rn. We may have to
deal with operators defined on manifolds, in which case one may describe the same objects in a local system of
coordinates. However, using such local system of coordinates in not a good idea. In Section 1.5.1 for example, we
shall consider the group SO(d) of d-dimensional orthogonal matrices. The natural algebra A that we want to use
is then the algebra of polynomial functions in the entries (mi j) of the matrix, and the natural functions Φ acting on
it are the polynomial functions. Since the polynomial structure will play an important rôle in our computations, it
is not wise in this context to consider local system of coordinates (the entries of the matrix cannot play this rôle
since they are related through algebraic relations).

Coming back to the general situation, the link between the process (ξt) and the operator L is that, for any
f ∈ A ,



f (ξt)− f (ξ0)−
∫ t

0
L ( f )(ξs)ds

is a local martingale, and this is enough to describe the law of the process starting from some initial point ξ0 = x ∈
E , provided the set of functions A is large enough, for example when A contains a core of the so-called domain
of the operator L , see [2], chapter 3, for more details.

The law of a single variable ξt , when ξ0 = x, is then described by a Markov operator Pt , as

Pt( f )(x) = Ex( f (ξt )),

and, at least at a formal level, Pt = exp(tL ) is the semigroup generated by L .

In most of the cases that we are interested in, the operator L will be symmetric in some L2(µ) space. That is,
for some subset A0 of A , which is rich enough to describe Pt from the knowledge of L (technically, as mentioned
above, a core in the domain D(L )), one has, for f ,g in A0

∫

fL (g)dµ =
∫

gL ( f )dµ .

This translates into the integration by parts formula
∫

fL (g)dµ =−
∫

Γ ( f ,g)dµ . (1.4)

For an operator given in an open set Ω ⊂ Rn by the formula (1.3), and when the coefficients gi j and bi are
smooth, one may identify the density ρ(x) of the measure µ , when ρ(x)> 0, by the formula

L ( f ) =
1

ρ(x) ∑
i j

∂i(ρgi j∂ j f ),

which gives
bi = ∑

j

(gi j∂ j logρ + ∂ jg
i j), (1.5)

an easy way to recover ρ up to a multiplicative constant provided (gi j) is non degenerate, that is when L is elliptic.
We call this measure µ the reversible measure. Indeed, whenever the measure µ is a probability measure, and under
this symmetry property, then the associated process (ξt) has the property that, whenever the law of ξ0 is µ , then
for any t > 0 the law of (ξt−s,s ∈ [0, t]) is identical to the law of (ξs,s ∈ [0, t]). This justifies in this case the name
"reversible", which we keep in the infinite mass case, following [2].

Through the integration by parts formula, the operator L (and therefore the process and the semigroup them-
selves, provided we know something about a core in the domain), is entirely described by the triple (Ω ,Γ ,µ),
called a Markov triple in [2].

Thanks to the change of variable formula (1.1), it is enough to describe an operator in a given system of coor-
dinates (xi) to describe L (xi) = bi and Γ (xi,x j) = gi j. Indeed, this determines L (Φ(xi)), for any Φ at least C 2.
As outlined earlier, we do not even require that these functions xi form a coordinate system. They may be redun-
dant (that is more variables than really necessary, as for example in the SO(d) mentioned above), or not sufficient,
provided the computed expressions depend only on those variables, as we do for example in Section 1.5.

Moreover, it may be convenient in even dimension to use complex variables, that is, for a pair (x,y) of functions
in the domain, to set z = x+ iy and describe L (z) = L (x)+ iL (y), Γ (z,z) = Γ (x,x)−Γ (y,y)+ 2iΓ (x,y) and
Γ (z, z̄) =Γ (x,x)+Γ (y,y), and similarly for many pairs of real variables, or a pair of a real variable and a complex
one. This will be used for example in paragraphs 1.3.4 and 1.5.2. However, we shall be careful in this case to apply
L only to polynomial functions in the variables (x,y), replacing x by 1

2(z+ z̄) and y by 1
2i
(z− z̄). Then, the various

change of variable formulae (on L and Γ ) apply when considering z and z̄ as independent variables.
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6 Dominique Bakry and Olfa Zribi

As we already mentioned, it may happen that we can find some functions Xi, i = 1, · · · ,k such that, for any i,
L (Xi) depend only on (X1, · · · ,Xk) and that the same is true for Γ (Xi,X j) for any pair (i, j). Then, writing X =
(X1, · · · ,Xk)∈Rk, setting Bi(X) =L (X i) and Gi j(X) =Γ (Xi,X j), one writes for any smooth function Φ :Rk 7→R,
L

(

Φ(X)
)

= L̂ (Φ)(X), where
L̂ = ∑

i j

Gi j(X)∂ 2
i j +∑

i

Bi(X)∂i,

which is a direct consequence of formula (1.1). When such happens, the image of the process (ξt) with generator
L under the map X is again a diffusion process (ξ̂t) with generator L̂ . In this situation, we say that L̂ is the
image of L through the map X .

Some caution should be taken in this assertion concerning the domains of the operators, but in the examples
below all this will be quite clear (our operators will mostly act on polynomials). When L is symmetric with respect
to some probability measure µ , then L̂ is symmetric with respect to the image measure µ̂ of µ through X . With
the help of formula (1.5), it may be an efficient way to compute µ̂ .

1.2.2 h-tranforms

Given some diffusion operator L on some open set in Rd , we may sometimes find an explicit function h, defined
on some subset Ω1 of Ω , with values in (0,∞) such that L (h) = λ h, for some real parameter λ > 0. We then look
at the new operator L (h), acting on functions defined on Ω1, described as

L (h)( f ) =
1
h
L (h f )−λ f

is another diffusion operator with the same square field operator than L . This is the so-called h (or Doob’s)
transform, see [11, 12, 2]. Indeed, thanks to formula (1.1), one has

L (h)( f ) = L ( f )+ 2Γ (logh, f ).

When the operator L is symmetric with respect to some measure µ , then L (h) is symmetric with respect to
dµh = h2dµ .

Considering functions with support in Ω1, the application D : f 7→ h f is an isometry betweenL2(µh) and L2(µ).
It is worth to observe that L (h) = D−1(L −λ Id)D : every spectral property (discreteness of the spectrum, cores,
etc.) is preserved through this transformation.

For example, if f ∈ L2(µ) is an eigenvector of L with eigenvalue −λ1, then f/h is an eigenvector of L (h) with
eigenvalue −(λ1 +λ ).

Also, at least formally, for the semigroup P
(h)
t associated with L (h), one has

P
(h)
t ( f ) = e−λ t 1

h
Pt(h f ).

In general, one looks for positive functions h which vanish at the boundary of Ω1, and there is a unique such
function h satisfying L (h) =−λ h, usually called the ground state for L on Ω1. This situation appears in general
in the following context. When L is elliptic on Ω ⊂ R

n, and whenever Ω1 is bounded, with Ω̄1 ⊂ Ω , there one
may consider the restriction of L on Ω1. If we impose Dirichlet boundary conditions, then the spectrum of this
operator consists of a discrete sequence 0 > λ0 > λ1 ≥ ·· · ≥ λn · · · . The eigenvector h associated with λ0 is strictly
positive in Ω1 and vanishes on the boundary ∂Ω1. This is the required ground state h of the operator L on Ω1.



In probabilistic terms, the operator L (h) is the generator of the process (ξt), conditioned to stay forever in the
subset Ω1. However, this interpretation is not that easy to check in the general diffusion case. We shall not be
concerned here with this probabilist aspect of this transformation, which is quite well documented in the literature
(see [12] for a complete account on the subject, and also [29, 27] for many examples on conditioning), but rather
play around some algebraic aspects of it in concrete examples. However, for the sake of completeness, we shall
briefly explain the flavor of this conditioning argument in the simplest example of finite discrete Markov chains,
where all the analysis for justification of the arguments involved may be removed.

For this, let us consider a finite Markov chain (Xn) on some finite space E , with probability transition matrix
P(x,y), (x,y) ∈ E2, which would play the rôle of P1 in the diffusion context. For simplicity, let us assume that
P(x,y)> 0 for any (x,y) ∈ E2. Consider now a subset A ∈ E , and look at the restriction PA of the matrix P to A×A.
The Perron-Frobenius theorem asserts that there exists a unique eigenvector V0 for PA, associated with a positive
eigenvalue µ0, which is everywhere positive. This eigenvectorV0 corresponds to the ground state h described above
in the diffusion context. Then, one may look at the matrix Q on A×A, defined through

Q(x,y) =
V0(y)

µ0V0(x)
P(x,y),

which is a Markov matrix on A×A. This Markov matrix Q plays on A the rôle of exp(L (h)) when h is the ground
state on Ω1.

Fix now n > 0 and N > n. Let AN be the event (X0 ∈ A, · · · ,XN ∈ A). For the initial Markov chain (Xn)
with transition matrix P and for X0 = x ∈ A, consider now the law of (X0, · · · ,Xn) conditioned on AN . When
F(X0, · · · ,Xn) = f0(X0) · · · fn(Xn), it is quite easy to check that

E(F(X0, · · ·Xn)1AN
)

E(1AN
)

=
1

QN(1/V0)(x)
Ẽ
(

F(X0, · · · ,Xn)Q
N−n(1/V0)(Xn)

)

,

where Ẽ denotes the expectation for the law of a Markov chain with matrix transition Q.

Now, using the irreducibility of the Markov matrix Q, one sees that, when N goes to infinity, both QN−n(1/V0)(Xn)
and QN(1/V0)(x) converge to

∫ 1
V0

dν , where ν is the (unique) invariant measure for the matrix Q. In the limit, we
recover the interpretation of the transition matrix transition Q as a matrix of the conditioning of the Markov chain
(Xn) to stay forever in A.

Coming back to the general case, it is worth to observe that, at least formally, the transformation L 7→ L (h) is
an involution. Indeed, L (h)( 1

h
) = − λ

h
and (L (h))(1/h) = L . However, in the usual context of ground states, the

interpretation of the associated process as a conditioning is more delicate, since 1/h converges to infinity at the
boundary of the domain Ω1.

It is not in general easy to exhibit explicit examples of such ground states h, but there are many very well known
examples in the literature. We shall show that in the realm of diffusion processes which are associated to families
of orthogonal polynomials, there is a generic argument to provide them, and that this family of examples cover
most of the known ones, either directly, either as limiting cases.

Remark 1. Observe that, beyond the case where h is a positive eigenvector for L , one may use the same transfor-
mation for any positive function h. One may then look at L (h)( f ) = 1

h
L (h f ) = L ( f )+2Γ (logh, f )+V h, where

V = L (h)
h

. In particular, with operators in Rn of the form L ( f ) = ∆( f ) +∇ logV ·∇ f , which have reversible
measure Vdx, one may use h =V−1/2, which transforms in an isospectral way L into a Shrödinger type operator
∆ f +V f , associated with Feynman-Kac semigroups. This allows to remove a gradient vector field, the price to
pay is that one adds a potential term. This technique may be used to analyse spectral properties of such symmetric
diffusion operators through the techniques used for Shrödinger operator (see [2], for example).
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8 Dominique Bakry and Olfa Zribi

1.3 Some examples

1.3.1 Bessel operators

We start form the Brownian motion in R. The operator L is given by L ( f ) = 1
2 f ′′. Here, Γ ( f , f ) = 1

2 f ′2 and µ

is the Lebesgue measure. If we consider Ω = (0,∞) and h = x, one has λ = 0 and L (h)( f ′′) = 1
2 ( f ′′+ 2

x
f ′). This

last operator is a Bessel operator B3. More generally, a Bessel process Bes(n) with parameter n has a generator in
(0,∞) given by

Bn( f ) =
1
2
( f ′′+

n− 1
x

f ′),

and it is easily seen, when n≥ 1 is an integer, to be the generator of ‖Bt‖, where (Bt) is an n-dimensional Brownian
motion (indeed, Bn is the image of the Laplace operator 1

2 ∆ under x 7→ ‖x‖, in the sense described in Section 1.2).
This B3 operator is also the generator of a real Brownian motion conditioned to remain positive. Observe however
that the function h is this case does not vanish at the infinite boundary of the set (0,∞), and that the probabilistic
interpretation would require some further analysis than the one sketched in the previous section.

From formula (1.5), it is quite clear that a reversible measure for the operator Bn is xn−1dx on (0,∞), which for
n ∈ N

∗, is also, up to a constant, the image of the Lebesgue measure in R
n through the map x 7→ ‖x‖.

This h-transform may be extended to the general Bessel operator. Indeed, for any n > 0, one may consider the

function hn(x) = x2−n, for which Bn(hn) = 0, and then B
(hn)
n = B4−n.

The change of Bn into B4−n is perhaps more clear if we consider the generator through the change of variable
x 7→ x2, that is if we consider the generator of the process (ξ 2

t ) instead of the process (ξt) with generator Bn. A
simple change of variable provides the image operator

B̂n( f ) = 2x f ′′+ n f ′, (1.6)

for which the reversible measure has density ρ(x) = x(n−2)/2, and the function h is nothing else than 1/ρ .

Under this form, we shall see that is a particular case of a phenomenon related to orthogonal polynomials,
developed in Section 1.4, although here there are no polynomials involved here, the reversible measure being
infinite.

Remark 2. It is not hard to observe that for 0 < n < 2, the process (ξt) with associated generator Bn, and starting
from x > 0 reaches 0 in finite time. Then, B4−n is the generator of this process conditioned to never reach 0.
However, it is well known that the Bessel operator is essentially self-adjoint on (0,∞) as soon as n > 3 (see [2],
page 98, for example). This means that the set of smooth function compactly supported in (0,∞) is dense in the
L2 domain of Bn. Since this is a spectral property, it is preserved through h-transform and this also shows that it
is also essentially self adjoint for any n < 1. In particular, there is a unique symmetric semi-group for which the
generator coincides with Bn on the set of smooth compactly supported functions. On the other hand, for 1 ≤ n < 2,
since the associated operator hits the boundary in finite time, there are at least two such semigroups with Bn as
generator acting on smooth functions, compactly supported in (0,∞) : the one corresponding to the Dirichlet
boundary condition, corresponding to the process killed at the boundary {x = 0}, and the one corresponding to
the Neuman boundary condition, corresponding to the process reflected at the boundary. Through h-transforms,
one sees then that there are also at least two positivity preserving semi groups in the case 2 < n ≤ 3, which may
be a bit surprising since then the associated process does not touch the boundary. However, although the Dirichlet
semigroup is Markov (Pt(1) < 1), its h-transform is Markov (Pt(1) = 1), while the h-transform of the Neuman
semigroup (which is Markov), satisfies Pt(1)≥ 1.



1.3.2 Jacobi operators

This is perhaps the most celebrated case of known explicit h-transform, since it is closely related in some special
case to the Fourier transform on an interval. The Jacobi operator on the interval (−1,1) has generator

Jα ,β ( f ) = (1− x2) f ′′−
(

(α +β )x+α −β
)

f ′

and is symmetric with respect to the Beta measure on (−1,1) which is Cα ,β (1− x)α−1(1+ x)β−1dx, Cα ,β being
the normalizing constant. We always assume that α,β > 0. There is a duality through h-transforms exchanging
Jα ,β and J2−α ,2−β , the function h being (1− x)1−α(1− x)1−β , that is, as in the Bessel case in the appropriate
coordinate system, the inverse of the density measure.

In a similar way that the Bessel process may be described as a norm of a Brownian motion, one may see the
symmetric Jacobi operator (α = β ) as an image of a spherical Brownian motion in dimension 2α . Namely, if one
considers the unit sphere Sn in Rn+1, and looks at the Brownian motion on it (with generator ∆Sn being the Laplace
operator on the sphere), and then one looks at its first component, one gets a process on (−1,1) with generator
L n/2,n/2. (We refer to paragraph 1.3.5 for details about the spherical Laplacian, from which this remark follows
easily, see also [2, 31]). One may also provide a similar description in the asymmetric case, when the parameters α
and β are half integers. In this case, Lα ,β is, up to a factor 4, the image of the spherical Laplace operator acting on

the unit sphere S2α+2β−1 through the function X : S2α+2β−1 7→ [−1,1] defined, for x = (x1, · · · ,x2α+2β ) ∈R2α+2β

as

X(x) =−1+ 2
2α

∑
i=1

x2
i .

The operator Jα ,β may be diagonalized in a basis of orthogonal polynomials, namely the Jacobi polynomials.
They are deeply related to the analysis on the Euclidean case in the geometric cases described above. For example,
when α = β is an half-integer, then, for each degree k, and up to a multiplicative constant, there exists a unique
function on the sphere which depends only on the first coordinate and which is the restriction to the sphere of
an homogeneous degree k harmonic polynomial in the corresponding Euclidean space : this is the corresponding
degree k Jacobi polynomial (see [31, 2] for more details). In other words, if Pk(x) is one of these Jacobi polyno-
mials with degree k corresponding to the case α = β = n/2, then the function (x1, · · · ,xn+1) 7→ ‖x‖kPk(

x1
‖x‖ ) is an

homogeneous harmonic polynomial in Rn+1. A similar interpretation is valid in the asymmetric case, whenever the
parameters α and β are half-integers, if one reminds that the eigenvectors of the Laplace operator on the sphere
are restriction to the sphere of harmonic homogeneous polynomials in the ambient Euclidean space (see [31]).

For α = β = 1/2, Jα ,β this is just the image of the usual operator f ′′ on (0,π) through the change of variables
θ 7→ cos(θ ) = x. More generally, in the variable θ , Jα ,β may be written as

Jα ,β =
d2

dθ 2 +
(α +β − 1)cos(θ )+α −β

sin(θ )
d

dθ
.

For α = β = 1/2, corresponding to the arcsine law, the associated orthogonal polynomials P
1/2,1/2
n are the

Chebyshev polynomials of the first kind, satisfying

P
1/2,1/2
n (cos(θ )) = cos(nθ ).

For α = β = 3/2, corresponding to the semicircle law, they correspond to the Chebyshev polynomials of the
second kind, satisfying the formula

sin(θ )P3/2,3/2
n (cos(θ )) = sin(nθ ).

9 March 24, 2015
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These formulae indeed reflect the h-transform between J 1/2,1/2 and J 3/2,3/2. While P
1/2,1/2
n (cos(θ )) is a basis

of L
2
(

(0,π),dx
)

with Neuman boundary conditions, sin(θ )P3/2,3/2
n (cos(θ )) is another basis of L2

(

(0,π),dx
)

,
corresponding to the Dirichlet boundary condition. This is the image of the eigenvector basis for L 3/2,3/2 through
the inverse h transform, the function h being in this system of coordinates nothing else than (sin θ )−1.

For n = 1, one gets the projection of the Brownian motion on the circle, which is locally a Brownian motion
on the real line, up to a change of variables. The first coordinate x1 on the sphere plays the rôle of a distance to
the point (1,0, · · · ,0) (more precisely, arccos(x1) is the Riemannian distance on the sphere from (1,0, · · · ,0) to
any point with first coordinate x1), and we have a complete analogue of the case of the one dimensional Brownian
motion. Namely,

Proposition 1. The Brownian motion on the half interval (identified with the circle) conditioned to never reach the

boundaries is, up to a change of variable, the radial part of a Brownian motion on a 3 dimensional sphere.

1.3.3 Laguerre operators

This is the family of operator on (0,∞) with generator

L(α)( f ) = x f ′′+(α − x) f ′,

which is symmetric with respect to the gamma measure

dµ (α) =Cα xα−1e−xdx.

For α > 0, the Laguerre family of operators is another instance of diffusion operators on the real line which may
be diagonalized in a basis of orthogonal polynomials : these polynomials are the Laguerre polynomials, and are
one of the three families, together with Jacobi polynomials and Hermite polynomials, of orthogonal polynomials
in dimension 1 which are at the same time eigenvectors of a diffusion operator, see [3]. The Laguerre operator is
closely related to the Ornstein-Uhlenbeck operator defined in (1.7), and plays for this operator the same rôle that
the one played by Bessel operators for the Euclidean Brownian motion.

It is indeed quite close to the Bessel generator under the form (1.6), and in fact the Bessel operator may be
seen as a limit of Laguerre operators under proper rescaling. It is also a limit of asymmetric Jacobi operators, also
under proper rescaling (see [2]). The function h = x1−α satisfies L(α)(h) = (α − 1)h, and the h-tranform of L(α)

is L(2−α).

As mentioned above, when α is a half-integer n/2, the Laguerre operator may be seen as the radial part of the
Ornstein-Uhlenbeck operator in Rn with generator

L OU = ∆ − x∇, (1.7)

which is symmetric with respect to the standard Gaussian measure. More precisely, for α = n/2, L OU f ( ‖x‖2

2 ) =

2
(

L(α) f
)

( ‖x‖2

2 ). It is therefore an image of the n-dimensional Ornstein-Uhlenbeck operator in the sense of Sec-

tion 1.2. In other words, the Laguerre process with generator 2L(n/2) is nothing else than the squared norm of an
Ornstein-Uhlenbeck process in R

n. For α = 1/2, this corresponds to the modulus of a one dimensional Ornstein-
Uhlenbeck, that is the one dimensional Ornstein-Uhlenbeck operator itself on (0,∞), and we get, as the particular
case for n = 1/2,

Proposition 2. The law of an Ornstein-Uhlenbeck operator in dimension 1, conditioned to remain positive is the

same as the law of the norm of a 3-dimensional Orntein-Uhlenbeck operator.



1.3.4 An example in R2

The following example, less well known, had been pointed out by T. Koornwinder [22], not exactly under this form
of h-transform, but in terms of duality between two families of orthogonal polynomials in dimension 2. It shows
that the law of a Brownian motion in the plane, conditioned not to reach the boundaries of an equilateral triangle,
has the law of the spectrum of an Brownian SU(3) matrix.

This example, closely related to root systems and reflection groups in the plane, consists in observing the image
of a planar Brownian motion reflected along the edges of an equilateral triangle. This triangle generates a triangular
lattice in the plane, and this image is observed through some function Z : R2 7→R2 which has the property that any
function R2 7→ R which is invariant under the symmetries among the lines of the lattice is a function of Z. This
image of R2 through the function Z is a bounded domain in R2, with boundary the Steiner’s hypocycloid.

The Steiner hypocycloid (also called deltoid curve) is the curve obtained in the plane by rotating (from inside) a
circle with radius 1 on a circle with radius 3. Is is the boundary of a bounded open region in the plane which we call
the deltoid domain ΩD. It is an algebraic curve of degree 4. It’s equation may be written in complex coordinates as
{D(Z, Z̄) = 0}, where D is defined in Proposition 5.

Fig. 1.1 The deltoid domain.

Consider the following application R2 7→ R2, which is defined as follows. Let (1, j, j̄) be the three third roots
of units in the complex plane C, and, identifying R2 with C, let Z(z) : R2 7→R2 be the function

Z(z) =
1
3

(

exp(i(1 · z))+ exp(i( j. · z))+ exp(i( j̄ · z))
)

,

where z1 · z2 denotes the scalar product in R2.

We have

Proposition 3. Let L be the lattice generated in the plane by the points with coordinates M1 = (0,4π/3) and

M2 = (2π/3,2π/
√

3), and T the (equilateral) triangle with edges {(0,0),M1,M2}.

11 March 24, 2015
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1. The image of R2 under the function Z is the closure Ω̄D of the deltoid domain.

2. Z : R2 7→R2 is invariant under the symmetries along all the lines of the lattice L. Moreover, it is injective on the

triangle T .

We shall not give a proof of this, which may be checked directly. We refer to [32] for details. As a consequence,
any measurable function R2 7→ R which is invariant under the symmetries of L may be written f (Z), for some
measurable function f : ΩD 7→ R.

The particular choice of this function Z is due to the fact that the Laplace operator in R2 has a nice expression
through it. Using complex coordinates as described in Section 1.2, one has

Proposition 4. For the Laplace operator ∆ in R2 and its associated square field operator Γ , one has











Γ (Z,Z) = Z̄ −Z2,Γ (Z̄, Z̄) = Z − Z̄2,

Γ (Z̄,Z) = 1/2(1−ZZ̄),

∆(Z) =−Z,∆(Z̄) =−Z̄,

(1.8)

This may be checked directly. One sees that the Laplace operator in R2 has an image through Z in the sense
described in Section 1.2, given in Proposition 4. This describes the generator of the Brownian motion in the plane,
reflected along the lines of this lattice, coded through this change of variables. One may express the image measure
of the Lebesgue measure on the triangle in this system of coordinates. With the help of formula (1.5), we get

Proposition 5. Let D(Z, Z̄) = Γ (Z, Z̄)2 −Γ (Z,Z)Γ (Z̄, Z̄), where Γ is given by equation (1.8). Then,

1. D(Z, Z̄) is positive on ΩD.

2. {D(Z, Z̄) = 0} is the deltoid curve (that is the boundary of ΩD).

3. The reversible measure for the image operator described by (1.8) has density D(Z, Z̄)−1/2 with respect to the

Lebesgue measure.

4. If we write z1 = exp(i(1 · z)), z2 = exp(i( j. · z)), z3 = exp(i( j̄ · z)), then

D(Z, Z̄) =−(z1 − z2)
2(z2 − z3)

2(z3 − z1)
2/(2233).

Remark 3. Observe that thanks to the fact that |zi|= 1 and z1z2z3 = 1, the expression (z1 − z2)
2(z2 − z3)

2(z3 − z1)
2

is always non positive. Moreover, given a complex number Z in the deltoid domain ΩD, there exist three different
complex numbers (z1,z2,z3) with |zi| = 1 and z1z2z3 = 1 such that Z = 1

3 (z1 + z2 + z3). They are unique up to
permutation, and are the solutions of X3 − 3ZX2+ 3Z̄X − 1 = 0. Indeed, for such numbers z1,z2,z3,

3Z̄ = z̄1 + z̄2 + z̄3 =
1
z1

+
1
z2

+
1
z3

= z2z3 + z1z3 + z1z2.

One may now consider the family of operator L (λ ) defined through











Γ (Z,Z) = Z̄ −Z2,Γ (Z̄, Z̄) = Z − Z̄2,

Γ (Z̄,Z) = 1/2(1−ZZ̄),

L (λ )(Z) =−λ Z,L (λ )(Z̄) =−λ Z̄,

(1.9)

which is symmetric with respect to the measure µλ = D(Z, Z̄)(2λ−5)/6dZ, with support the set {D(Z, Z̄) ≥ 0}
(where dZ is a short hand for the Lebesgue measure in the complex plane) as a direct (although a bit tedious)



computation shows from a direct application of formula (1.5) (see Section 1.4 for a proof in a general context
which applies in particular here).

This family of operators plays a rôle similar in this context to the one played by the family Jα ,β for Jacobi
polynomials introduced in Section 1.3.2 or for the family L(α) introduced in Section 1.3.3 for Laguerre polyno-
mials.

This density equation (1.5) indicates that, for any pair of smooth functions compactly supported in {D(Z, Z̄)>
0}, the integration by parts (1.4) holds true. Indeed, we have a much stronger result, which extends this formula
to any pair of smooth functions defined in a neighborhood of Ω̄ . This relies of some miraculous property of ∂Ω
itself, which has as boundary equation {D(Z, Z̄) = 0} and for which

{

Γ (Z,Z)∂ZD+Γ (Z, Z̄)∂Z̄D =−3ZD,

Γ (Z̄,Z)∂ZD+Γ (Z̄, Z̄)∂Z̄D =−3Z̄D.
(1.10)

In particular, Γ (Z,D) and Γ (Z̄,D) vanish on {D= 0}. This is a sufficient (and indeed necessary) for the integration
by parts formula (1.4) to be valid for any pair smooth functions restricted on the set {D ≥ 0}, in particular for
any pair of polynomials (see [4]). Since on the other hand the operator L (λ ) maps polynomials in (Z, Z̄) into
polynomials, without increasing their total degrees, the restriction of L (λ ) on the finite dimensional space of
polynomials with total degree less than k is a symmetric operator (with respect to the L2(µλ )-Euclidean structure)
on this linear space. We may therefore find an orthonormal basis of such polynomials which are eigenvectors for
L (λ ), and therefore construct a full orthonormal basis of polynomials made of eigenvectors for L (λ ).

These polynomials are an example of Jack’s polynomials associated with root systems (here the root system A2),
see [24, 15], generalized by MacDonald [23, 24, 25], see also [17, 18, 8], and for which the associated generators
are Dunkl operators of various kinds, see [21, 20, 14, 28, 30].

For λ = 4, it turns out that this operator is, up to a scaling factor 8/3, the image of the Laplace (Casimir)
operator on SU(3) acting on the trace of the matrix. More precisely, on the compact semi-simple Lie group SU(3),
we associate to each element E in the Lie algebra G a (right) vector field XE as follows

XE( f )(g) = ∂t( f (getE))|t=0.

Then, one choses in the Lie algebra G an orthonormal basis Ei for the Killing form (which is negative definite), and
we consider the operator L = ∑i X2

Ei
. This is the canonical Laplace operator on the Lie group, and it commutes

with the group action, from left and right : if Lg( f )(x) = f (xg), and Rg( f )(x) = f (gx), then L Lg = LgL and
L Rg = RgL . For the Casimir operator acting on the entries (zi j) of an SU(d) matrix, one may compute explicitly
this operator, and obtain, up to a factor 2, the following formulae











L SU(d)(zkl) =−2 (d−1)(d+1)
n

zkl , L SU(d)(z̄kl) =−2 (d−1)(d+1)
n

z̄kl

Γ SU(d)(zkl ,zrq) =−2zkqzrl +
2
d

zklzrq, Γ (zkl , z̄rq) = 2(δkrδlq − 1
d

zkl z̄rq).

(1.11)

A Brownian motion on SU(d) is a diffusion process which has this Casimir operator as generator (there are of
course many other equivalent definitions of this Brownian motion).

On SU(3), if one considers the function SU(3) 7→ C which to g ∈ SU(3) associates Z(g) = 1
3 trace(g), then

one gets for this function Z and for this Casimir operator, an image operator which is the operator 8
3L (4), where

L (λ ) is defined through equation (1.9). Of course, one may perform the computation directly, or use the method
described in paragraph 1.5.2 to compute from the operator given of SU(d) through formulas (1.11), the actions
of the generator and the carré du champ on the characteristic polynomial P(X) = det(XId− g) (see also [6] for
another approach, together with [7] for nice connections with the Riemann-Zeta function).

13 March 24, 2015
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It is worth to observe that functions on SU(3) which depend only on this renormalized trace Z are nothing else
but spectral functions. Indeed, if a matrix g ∈ SU(3) have eigenvalues (λ1,λ2,λ3), with |λi|= 1 and λ1λ2λ3 = 1,
then a spectral function, that is a symmetric function of (λ1,λ2,λ3), depends only on λ1 +λ2 +λ3 = 3Z and, as
observed in Remark 3, λ1λ2 +λ2λ3 +λ3λ1 = 3Z̄.

Then, using the function D which is the determinant of the metric involved in equation (1.10), one may check
directly that

L (λ )
(

D(Z, Z̄)(5−2λ )/6)= (2λ − 5)D(Z, Z̄)(5−2λ )/6,

so that one may use the function h = D(Z, Z̄)(5−2λ )/6 to perform an h transform on L (λ ) and we obtain

(L (λ ))(h) = L (5−λ ).

Indeed, as we shall see in Section 1.4, this h-transform identity relies only on equation (1.10). In particular,
moving back to the triangle through the inverse function Z−1, for λ = 1, which corresponds to the Brownian
motion reflected at the boundaries of the triangular lattice, the h transform is L (4), which corresponds to the
spectral measure on SU(3). Then, for this particular case λ = 1, we get

Proposition 6. A Brownian motion in the equilateral triangle T , conditioned to never reach the boundary of the

triangle, has the law of the image under Z−1 of the spectrum of an SU(3) Brownian matrix

1.3.5 An example in the unit ball in Rd

Another example comes from the spherical Brownian motion on the unit sphere

S
d = {(x1, · · · ,xd+1) ∈ R

d+1,∑
i

x2
i = 1}.

To describe the Brownian motion on Sd , we look at its generator, that is this the spherical Laplace operator may. It
may be described through its action on the restriction to the sphere of the coordinates xi, seen as functions Sd 7→R.
Then,for the Laplace operator ∆S

d
and its associated carré du champ operator Γ , one has

∆S
d

(xi) =−dxi, Γ (xi,x j) = δi j − xix j. (1.12)

This operator is invariant under the rotations of Rd+1, and as a consequence its reversible probability measure
is the uniform measure on the sphere (normalized to be a probability). A system of coordinates for the upper
half sphere {xd+1 > 0} is given by (x1, · · · ,xd) ∈ Bd , where Bd = {∑d

1 x2
i = ‖x‖2 < 1} is the unit ball in Rd . In

this system of coordinates, and thanks to formula (1.5), one checks easily that, up to a normalizing constant, the
reversible measure is (1−‖x‖2)−1/2dx, which is therefore the density of the uniform measure on the sphere in this
system of coordinates (see [2]).

Now, one may consider some larger dimension m > d and project the Brownian motion on Sm on the unit ball in
R

d through (x1, · · · ,xm+1) 7→ (x1, · · · ,xd). Formula (1.12) provides immediately that this image is again a diffusion
process with generator

L (m)(xi) =−mxi,Γ (xi,x j) = δi j − xix j, (1.13)

that is the same formula as (1.12) except that now m is no longer the dimension of the ball. Once again,
formula (1.5) provides the reversible measure for this operator, which is, up to a normalizing constant, (1 −
‖x‖2)(m−1−d)/2dx, which is therefore the image measure of the uniform measure of the sphere through this projec-
tion.



As before, the boundary of the domain (the unit ball) has equation {1−‖x‖2 = 0}, and we have a boundary
equation

Γ
(

xi, log(1−‖x‖2)
)

=−2xi, (1.14)

similar to equation (1.10).

Now, it is again easily checked that, for the function h = (1−‖x‖2)−(m−1−d)/2, one has

L (m)(h) = d(m− d− 1)h,

so that one may perform the associated h-transform for which

(L (m))(h) = L (2d+2−m).

In the case where m = d, on sees that L (d), which is the Laplace operator in this system of coordinates, is trans-
formed into L (d+2), which is the projection of the spherical Laplace operator in S

d+2 onto the unit ball in R
d .

As a consequence, we get

Proposition 7. A spherical Brownian motion on the unit sphere Sd ⊂ Rd+1 conditioned to remain in a half sphere

{xd+1 > 0}, has the law of the projection of a spherical Brownian motion on Sd+2 onto the unit ball in Rd , lifted

on the half upper sphere in Rd+1.

1.4 General h-transform for models associated with orthogonal polynomials

We shall see in this section that all the above examples appear as particular examples, or limit examples, of a
very generic one when orthogonal polynomials come into play. Everything relies on a boundary equation similar
to (1.10) or (1.14), which appears as soon as one has a family of orthogonal polynomials which are eigenvectors
of diffusion operators.

Let us recall some basic facts about diffusion associated with orthogonal polynomials, following [4]. We are
interested in bounded open sets Ω ⊂ Rd , with piecewise C 1 boundary. On Ω , we have a probability measure
µ with smooth density ρ with respect to the Lebesgue measure, and an elliptic diffusion operator L which is
symmetric in L2(µ). We suppose moreover that polynomials belong to the domain of L , and that L maps the set
Pk of polynomials with total degree less than k into itself. Then, we may find a L2(µ) orthonormal basis formed
with polynomials which are eigenvectors for L . Following [2], this is entirely described by the triple (Ω ,Γ ,µ),
where Γ is the square field operator of L .

We call such a system (Ω ,Γ ,µ) a polynomial system.

Then, one of the main results of [4] is the following

Theorem 1.

1. The boundary ∂Ω is included in an algebraic surface with reduced equation {P = 0}, where P is a polynomial

which may we written as P1 · · ·Pk, where the polynomials Pi are real, and complex irreducible.

2. If L = ∑i j gi j∂ 2
i j +∑i bi∂i, where the coefficients gi j are degree at most 2 polynomials and bi are polynomials

with degree at most 1.

3. The polynomial P divides det(gi j) (that we write det(Γ ) in what follows, and which is a polynomial with degree

at most 2d).

4. For each irreducible polynomial Pr appearing in the equation of the boundary, there exist polynomials Li,r with

degree at most 1 such that

15 March 24, 2015
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∀i = 1, · · · ,d, ∑
j

gi j∂ logPr = Li,r. (1.15)

5. Let Ω be a bounded set, with boundary described by a reduced polynomial equation {P1 · · ·Pk = 0}, such that

there exist a solution (gi j,Li,k) to equation (1.15) with (gi j) positive definite in Ω . Call Γ ( f , f ) = ∑i j gi j∂i f ∂ j f

the associated squared field operator. Then for any choice of real numbers {α1, · · · ,αk} such that P
α1
1 · · ·Pαk

k is

integrable over Ω for the Lebesgue measure, setting

µα1,··· ,αk
(dx) =Cα1,··· ,αk

P
α1
1 · · ·Pαk

k dx,

where Cα1,··· ,αk
is a normalizing constant, then (Ω ,Γ ,µα1,··· ,αk

) is a polynomial system.

6. When P =Cdet(Γ ), that is when those 2 polynomials have the same degree, then there are no other measures

µ for which (Ω ,Γ ,µ) is a polynomial system.

Remark 4. Equation (1.15), that we shall call the boundary equation (not to be confused with the equation of the
boundary), may be written in a more compact form Γ (xi, logPr) = Li,r. Thanks to the fact that each polynomial Pr

is irreducible, this is also equivalent to the fact that Γ (xi, logP) = Li, for a family Li of polynomials with degree at
most 1.

One must be a bit careful about the reduced equation of the boundary {P = 0}, when P = P1 · · ·Pk. This means
that each regular point of the boundary is contained in exactly one of the algebraic surfaces {Pi(x) = 0}, and that
for each i = 1 · · ·k, there is at least one regular point x of the boundary such that Pi(x) = 0. In particular, for a regular
point x ∈ ∂Ω such that Pi(x) = 0, then for j 6= i, Pj(x) 6= 0 in a neighborhood U of such a point, and Pi(x) = 0
in U ∩ ∂Ω . It is not too hard to see that such a polynomial Pi, if real irreducible, is also complex irreducible (if
not, it would be written as P2 +Q2, and P = Q = 0 on U ∩∂Ω ). It is worth to observe that since P divides det(Γ )
and that (gi j) is positive definite on Ω , then no one of the polynomials Pi appearing in the boundary equation may
vanish in Ω . We may therefore chose them to be all positive on Ω .

The reader should also be aware that equation (1.15), or more precisely the compact form given in Remark 4,
and which is the generalization of equations (1.10) and (1.14), is a very strong constraint on the polynomial P.
Indeed, given P, if one wants to determine the coefficients (gi j) and Li, this equation is a linear equation in terms of
the coefficients of gi j and Li, for which we expect to find some non vanishing solution. But the number of equations
is much bigger than the number of unknowns, and indeed very few polynomials P may satisfy those constraints.
In dimension 2 for example, up to affine invariance, there are exactly 10 such polynomials, plus one one parameter
family (see [4]). The deltoid curve of paragraph 1.3.4 is just one of them.

Remark 5. We shall not use the full strength of this theorem in the examples developed here. The important fact
is the boundary equation (1.15), which may be checked directly on many examples, and is the unique property
required for the general h-transform described in Theorem 2.

Given a bounded set Ω and an operator Γ satisfying the conditions of Theorem 1, and for any choice of
{α1, · · · ,αk} such that P

α1
1 · · ·Pαk

k is integrable over Ω for the Lebesgue measure, we have a corresponding sym-
metric operator Lα1,··· ,αk

. For this operator, as was the case in paragraphs 1.3.4 and 1.3.5, one may extend the
integration by parts (1.4) to any pair of polynomials, and this provides a sequence of orthogonal polynomials
which are eigenvectors of the operator Lα1,··· ,αk

.

Conversely, the boundary equation (1.15) is automatic as soon as we have a generator on a bounded set with
regular boundary, and a complete system of eigenvectors which are polynomials. But it may happen that those
conditions are satisfied even on non bounded domains, and even when the associated measure is infinite (this
appears in general in limits of such polynomial models, as in the Laguerre and Bessel cases). We may therefore
give a statement in a quite general setting.



Theorem 2. Assume that a symmetric positive definite matrix (gi j) on some open set Ω ⊂ Rd , is such that for any

(i, j), gi j is a polynomial of degree at most 2. Let us call Γ the associated square field operator. Suppose moreover

that we have some polynomials Pk, positive on Ω , such that, for any k,

∀i = 1, · · · ,d, ∑
i

gi j∂ j logPr = ∑
i

Γ (xi, logPk) = Li,k, (1.16)

where Li,k are degree 1 polynomials. For any (α1, · · · ,αk), let µα1,··· ,αk
be the measure with density P

α1
1 · · ·Pαk

k

with respect to the Lebesgue measure on Ω , and let Lα1,··· ,αk
be the generator associated with the Markov triple

(Ω ,Γ ,µα1,··· ,αk
).

Then, there exist constants ck such that, for any (α1, · · · ,αk), the function h = P
−α1
1 · · ·P−αk

k satisfies

Lα1,··· ,αk
(h) =−(∑

k

αkck)h.

Moreover, (Lα1,··· ,αk
)(h) = L−α1,··· ,−αk

.

Proof. We shall prove the assertion with ck = ∑i ∂iLi,k.

With ρ = P
α1
1 · · ·Pαk

k , we write our operator Lα1,··· ,αk
as

∑
i j

gi j∂ 2
i j +∑

i

bi∂i,

where
bi = ∑

j

∂ jg
i j +∑

r, j

αrg
i j∂ j logPr = ∑

j

∂ jg
i j +∑

r

αrLi,r. (1.17)

With
L0 = ∑

i j

gi j∂ 2
i j +∑

i

∂ jg
i j∂i,

then
Lα1,··· ,αk

( f ) = L0( f )+∑
i

αiΓ (logPi, f ). (1.18)

What we want to show is Lα1,··· ,αk
(h) = ch, or

Lα1,··· ,αk
(logh)+Γ (logh, logh) = c.

With, logh =−∑i αi logPi, and comparing with equation (1.18), this amounts to

L0(logh) =−∑
r

αqL0(logPr) = c.

We may first take derivative in equation (1.16) with respect to xi and add the results in i to get

∑
i j

gi j∂i j logPr +∑
i

∂i(g
i j)∂ j logPr = ∑

i

∂iLi,r = cr,

that is L0(logPr) = cr.

It remains to add these identities over r to get the required result.

Comparing the reversible measures, it is then immediate to check that (Lα1,··· ,αk
)(h) = L−α1,··· ,−αk

, ⊓⊔
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Remark 6. The function h is always the inverse of the density with respect to the Lebesgue measure, in the system
of coordinates in which we have this polynomial structure. Of course, the choice of the coordinate system is
related to the fact that, in those coordinates, we have orthogonal polynomials (at least when the measure is finite
on a bounded set). In the Bessel case, for example, which is a limit of a Laguerre models, one has to change x to x2

to get a simple correspondance between the h function and the density. The same is true in many natural examples,
where one has to perform some change of variable to get the right representation (for example from the triangle to
the deltoid in paragraph 1.3.4).

Remark 7. In many situations, there are natural geometric interpretations for these polynomial models when the
parameters (α1, · · · ,αk) are half integers, in general with αi ≥ −1/2. The case αi = −1/2 often corresponds to
Laplace operators, while the dual case αi = 1/2 often corresponds to the projection of a Laplace operator in larger
dimension.

1.5 Further examples

We shall provide two more examples, one which follows directly from Theorem 2, and another one on a non
bounded domain with infinite measure. One may provide a lot of such examples, many of them arising from Lie
group theory, Dunkl operators, random matrices, etc. However, we chose to present those two cases because they
put forward some specific features of diffusion operators associated with orthogonal polynomials.

1.5.1 Matrix Jacobi processes

This model had been introduced by Y. Doumerc in his thesis [13], and had also been studied in the complex case,
especially from the asymptotic point of view in [9, 10]. It plays a similar rôle than the one-dimensional Jacobi
processes for matrices. One starts from the Brownian motion on the group SO(d). Since SO(d) is a semi-simple
compact Lie group, it has a canonical Casimir operator similar to the one described in equation (1.11). If O = (mi j)
is an SO(d) matrix, then the Casimir operator may be described through it’s action on the entries mi j. One gets

L (mi j) =−(d− 1)mi j, Γ (mkl ,mqp) = δ(kl)(qp)−mkpmql . (1.19)

Observe that when restricted to a single line or column, one recovers the spherical Laplace operator on Sd−1

described in equation (1.12).

An SO(d)-Brownian matrix is then a diffusion process with generator this Casimir operator on SO(d).

It is again clear from the form of the operator L that it preserves for each k ∈ N the set of polynomials in the
entries (mi j) with total degree less that k. However, these "coordinates" (mi j) are not independent, since they satisfy
algebraic relations, encoded in the fact that OO∗ = Id. We may not apply directly our main result Theorem 2. We
shall nevertheless look at some projected models on which the method applies.

One may extract some p×q submatrix N by selecting p lines and q columns, and we observe that the generator
acting on the entries of this extracted matrix N depend only on the entries of N. Therefore, the operator projects on
these extracted p× q matrices and the associated process is again a diffusion process : we call this the projection
of the Brownian motion in SO(d) onto the set Mp,q of p× q matrices. Thanks to formula (1.5), one may compute
the density of the image measure, with respect to the Lebesgue measure in the entries of N. Whenever p+ q ≤ d,
it happens to be, up to a normalizing constant det(Id−NN∗)(d−1−p−q)/2, with support the set Ω = {N,NN∗ ≤ Id}.
This formula is easy to check if we recall that, for a matrix M with entries (mi j),



∂mi j
logdet(M) = M−1

ji ,

a consequence of Cramer’s formula.

When p+q ≥ d+1, there are however algebraic relations between the entries of N and the image measure has
no density with respect to the Lebesgue measure. For example, when p+q = d+1, then the measure concentrates
on the algebraic set {det(Id−NN∗) = 0}. It may be checked that it has a density with respect of the Lebesgue
measure of this hypersurface. Indeed, one may fix p and q and consider d as a parameter. It is worth to observe that
the function det(Id−NN∗)α is not integrable on the domain Ω whenever α ≤ −1. Moreover, , when α >−1 and
α → −1, the probability measure with density Cα det(Id−NN∗)α concentrates on the set {det(Id−NN∗) = 0},
and the limit is a measure supported by this surface with a density with respect of the surface measure. Things
become even worse as the number p+ q increases, the measure being concentrated on manifolds with higher and
higher co-dimensions.

We are in a situation different from the sphere case here, since we may not chose the parameters in which
the operator has a nice polynomial expression as a local system of coordinates. Indeed, the Lie group SO(d) is
a d(d − 1)/2 manifold. Since we want algebraically independent coordinates, we are limited to pq ones, with
p+ q ≤ d, we may have at most d2/4 algebraically independent such polynomial coordinates, which for d > 2 is
less than the dimension of the manifold.

It is worth to observe that, again when p+ q ≤ d, one has pq variables, the determinant of the metric Γ is a
degree 2pq polynomial, whereas det(Id−NN∗) = det(Id−N∗N) is of degree at most 2min(p,q). We are not in the
case of maximal degree for the boundary equation. When p+q= d, the density measure is det(Id−NN∗)−1/2, but
the corresponding operator is not a Laplace operator (for which the density of the measure would be det(Γ )−1/2).
Since we are in the situation of orthogonal polynomials as described in Section 1.4, we know that we may perform
an h-transform.

For the particular case where d = p+ q, we get

Proposition 8. The matrix N projected from an SO(d)-Brownian matrix on Mp,q conditioned to remain in the set

{NN∗ < Id} has the law of the projection of a SO(d+ 2)-Brownian matrix on Mp,q.

1.5.2 Brownian motion in a Weyl chamber

This last example is again quite well known, but is happens to fit also with the general picture associated with
orthogonal polynomials, although no orthogonal polynomials are associated with it. Indeed, it does not follow
directly from the setting of Section 1.4, one the one side because it is non compact, on the other because the
reversible measure in this situation is infinite. But it satisfies the all the algebraic properties described is Section 1.4,
and we may then check that we may apply the result for the associated h-transforms. Indeed, one may replace in
what follows Brownian motion by Ornstein-Uhlenbeck operators, which have as reversible measure a Gaussian
measure with variance σ2, and then let σ go to infinity. In the Ornstein-Uhlenbeck case, we are in the setting
of orthogonal polynomials, however with a non bounded domain. But this would introduce further complication,
since the Brownian case gives simpler formulas.

As described above, the h-transform is easy to compute in a system of coordinates which have some relevant
polynomial structure. Here, one good choice for the coordinate system are the elementary symmetric functions in
d variables. We shall perform mainly computations on these elementary symmetric functions of the components of
the d-dimensional Brownian motion, following [5]. In Rd , one may consider the Brownian (B1

t , · · · ,Bd
t ) and reflect

it around the hyperplanes which are the boundaries of the set {x1 < · · · < xd}, which is usually called a Weyl
chamber. To describe this reflected Brownian motion, it is easier to consider the elementary symmetric functions
which are the coefficients of the polynomial
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P(X) =
d

∏
i=1

(X − xi) =
d

∑
i=0

aiX
i,

where ad = 1 and the functions ai, i = 0, · · ·d − 1 are, up to a sign, the elementary symmetric functions of the
variables (xi). The map (xi) 7→ (ai) is a diffeomorphism in the Weyl chamber {x1 < · · · < xd} onto it’s image. To
understand the image, one has to consider the discriminant disc(P), a polynomial in the variables (ai), which is,
up to a sign (−1)d(d−1)/2, the following (2d− 1)× (2d− 1) determinant

































1 ad−1 ad−2 · · · a0 0 · · · 0
0 1 ad−1 · · · a1 a0 · · · 0
0 0 1 · · · a2 a1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ap−2 · · · a1 a0

1 (d − 1)ad−1 (d− 2)ad−2 · · · a1 0 · · · 0
0 1 (d− 1)ad−1 · · · 2a2 a1 · · · 0
0 0 1 · · · 3a3 2a2 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · 2a2 a1

































It turns out that this discriminant is ∏i< j(x j −xi)
2. The image of the Weyl chamber is the connected component

Ω of the set {disc(P) 6= 0} which contains the image of any polynomial with d real distinct roots, and the image of
the boundary of the Weyl chamber is ∂Ω , a subset of the algebraic surface {disc(P) = 0}. It is not hard to observe
(by induction on the dimension d) that the image of the Lebesgue measure dx1 · · ·dxd on the Weyl chamber is
nothing else than 1Ω disc(P)−1/2 ∏dai.

Now, the Brownian motion in Rd may be described, up to a factor 2, through

Γ (xi,x j) = δi j, ∆(xi) = 0.

We want to describe this operator acting on the variables (a0, · · · ,ad−1). Since any of the functions a j is a degree
1 polynomial in the variables xi, one has ∆(a j) = 0, j = 0, · · · ,d. To compute Γ (ai,a j), it is simpler to compute

Γ (P(X),P(Y )) = ∑
i, j

X iY jΓ (ai,a j).

We obtain

Proposition 9. The image of the operator ∆ in Rn on the coefficients of the polynomial P(X) = ∏i(X −xi) is given

by

Γ (P(X),P(Y )) =
1

Y −X

(

P′(X)P(Y )−P′(Y )P(X)
)

, ∆(P(X)) = 0. (1.20)

Proof. The second formula is a direct consequence of ∆(ai) = 0, while for the first, it is simpler to look at
Γ (logP(X), logP(Y )).

Γ (logP(X), logP(Y )) = ∑
i j

Γ (log(X − xi), log(Y − x j))

= ∑
i j

1
(X − xi)(Y − x j)

Γ (xi,x j)

= ∑
i

1
(X − xi)(Y − xi)

=
1

Y −X

(P′(X)

P(X)
− P′(Y )

P(Y )

)

.



⊓⊔

Remark 8. From formula (1.20), it is clear that Γ (ai,a j) are degree 2 polynomials in the variables ai.

The image of the Brownian motion Bt in the variables (ai) is nothing else than the Brownian motion reflected
through the walls of the Weyl chamber. Its generator is described through the Γ operator given in equation (1.20)
and it is the image of the Laplace operator on the Weyl chamber. Since it is an Euclidean Laplace operator, the
reversible measure is, up to a constant, det(Γ )−1/2, and this shows that the determinant det(Γ ) of the metric is, up
to a constant, disc(P).

Moreover, from the general representation of diffusion operators (1.3), and the equation (1.5) giving the re-
versible measure, we have, with ρ = disc(P)−1/2, bi = 0,

∑
i j

Γ (ai,a j)∂ai
logρ =−∑

j

∂a j
Γ (ai,a j). (1.21)

Since ∂a j
Γ (ai,a j) is a degree at most one polynomial in the variables ai, this is nothing else than the boundary

equation (1.15) for general polynomial models. We may therefore apply the general result described in Section 1.4.

In order to identify the result of the h-transform, an important formula relating Γ and the discriminant function
is the following

Proposition 10. For the operator Γ defined in (1.20), one gas

Γ
(

P(X), logdisc(P)
)

=−P′′(X). (1.22)

Proof. One may find a proof of this formula in [5], but the one we propose here is simpler. To check equation (1.22),
it is enough to establish it it in a Weyl chamber {x1 < x1 < · · · < xd} where P(X) = ∏(X − xi) and disc(P) =
∏i< j(xi − x j)

2, since the map (x1, · · · ,xk) 7→ P(X) is a local diffeormorphism in this domain.

In those coordinates, Γ (xi,x j) = δi j and, from the change of variable formula (1.2), one has

Γ (logP(X),disc(P)) = 2 ∑
i, j<k

Γ (log(X − xi), log(x j − xk)) =−2 ∑
i, j<k

1
X − xi

1
x j − xk

(δi j − δik).

From which one gets

Γ (logP(X), logdisc(P)) =−2 ∑
i6= j

1
X − xi

1
xi − x j

.

On the other hand,

P′′

P
=

(P′

P

)′
+
(P′

P

)2
= ∑

i6= j

1
(X − xi)(X − x j)

= ∑
i6= j

( 1
X − xi

− 1
X − x j

) 1
xi − x j

,= 2 ∑
i6= j

1
X − xi

1
xi − x j

.

From this we get

Γ (logP, logdisc(P)) =−P′′

P
,

which in turns gives (1.22). ⊓⊔

Proposition 10 is central in the identification of various processes with the same Γ given by (1.20). It turns out
that the same operator with this Γ operator and reversible measure disc(P)1/2 has a nice geometric interpretation:
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namely, it is the Dyson complex process, that is the law of the spectrum of Hermitian Brownian matrices, intro-
duced by Dyson [16]. In the same way, the case where the reversible measure is the Lebesgue measure corresponds
to Dyson process for real symmetric matrices, and ρ = disc(P)3/2 corresponds to Dyson process for symmetric
quaternionic matrices , see [1, 5, 19].

Let us show a direct way to check this (first in the real symmetric case, where it is simpler). The Brownian
motion on symmetric matrices is nothing else that the Brownian motion of the Euclidean space of symmetric
matrices M, endowed with the Euclidean norm ‖M‖2 = trace(M2). When M = (mi j), this may be described as

Γ (mi j,mkl) =
1
2
(δikδ jl + δilδ jk), L (mi j) = 0.

One may look at its action of the characteristic polynomial P(X) = det(XId−M). We get

Proposition 11. For the characteristic polynomial associated with a Brownian symmetric matrix, one has

Γ
(

logP(X), logP(Y )
)

=
1

Y −X

(P′(X)

P(X)
− P′(Y )

P(Y )

)

, L P(X) =−1
2

P′′.

Proof. To compute Γ
(

P(X),P(Y )
)

and L
(

P(X)
)

. In order to apply the change of variable formula (1.3), we may
apply the general formulas for the determinant function

∂mi j
logdet M = M−1

ji , ∂mi j
∂mkl

logdet M =−M−1
jk M−1

li ,

which are direct consequences of Cramer’s formulas for the inverse matrix.

Then the formulas are direct applications of the chain rule formula. ⊓⊔

We may now compare with equation (1.22) to see that the reversible measure for the spectral measure for
Brownian symmetric matrices, given by the general formula (1.5), in the system of coordinates which are the
coefficients (ai) of the characteristic polynomial, is the Lebesgue measure.

We may perform the same computation for Hermitian matrices. In this situation, one would consider a complex
valued matrix M with entries (zi j) and satisfying

Γ (zi j ,zkl) = 0, Γ (zi j , z̄kl) = δilδ jk, L (zi j) = 0.

One may again perform the same computation on P(X) = det(XId−M), and we get

Proposition 12. For the characteristic polynomial associated with a Brownian Hermitian matrix, one has

Γ (P(X),P(Y )) =
1

Y −X

(

P′(X)P(Y )−P′(Y )P(X)
)

, L P(X) =−P′′.

We do not give the proof, which follows along the same lines that the one of Proposition 11. More details may
be found in [5].

As a consequence, comparing with equation (1.22) and equation (1.5) in the system of coordinates given by the
coefficients of P(X), the density of the reversible measure for the Hermitian Dyson process is disc(P)1/2 whereas
the density of the reversible measure of the Brownian motion in the Weyl chamber is disc(P)−1/2.

Transfering back to the Weyl Chamber through the local diffeomorphism between the coefficients of P(X) and
the roots (x1 < x2 < · · ·< xd) of P(X). We obtain

Proposition 13. The Brownian motion conditioned not to reach the boundary of the Weyl chamber {x1 < · · ·< xd}
has the law of the spectrum of an Hermitian d × d matrix.
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