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DYNAMO-MAS: a Multi-Agent System for Ontology Evolution
from Text

Zied Sellami · Valérie Camps ·

Nathalie Aussenac-Gilles

Abstract Manual ontology development and evolution are

complex and time-consuming tasks, even when textual doc-

uments are used as knowledge sources in addition to human

expertise or existing ontologies. Processing natural language

in text produces huge amounts of linguistic data that need

to be filtered out and structured. To support both of these

tasks, we have developed DYNAMO-MAS, an interactive

tool based on an adaptive multi-agent system (adaptive MAS

or AMAS) that builds and evolves ontologies from text.

DYNAMO-MAS is a partner system to build ontologies; the

ontologist interacts with the system to validate or modify its

outputs. This paper presents the architecture of DYNAMO-

MAS, its operating principles and its evaluation on three case

studies.

Keywords Ontology engineering from text · Ontology

evolution · Adaptive multi-agent system

1 Introduction

Ontologies are often used to represent a specification of

domain knowledge that reflects a consensual agreement on

the domain or the knowledge required for a specific appli-

cation. Ontologies are now essential in many applications

(access to shared knowledge, semantic web, information
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retrieval, etc.). An ontology model is made of concepts struc-

tured by hierarchical and non-hierarchical semantic relations.

Building and evolving an ontology relies on elaborated

processes to identify the right domain knowledge and to for-

malize it in a relevant way, so that it could be usable by soft-

ware applications and in some cases, interpretable by humans

[26]. These processes can be time-consuming. They require a

constant verification of the ontology with regard to the appli-

cations using it as well as the evolutions of the domain being

modeled.

Indeed, modeling assumes to make various decisions that

organize, classify, and describe the concepts of a specific

domain according to the point of view that best suits the use

of the ontology. Whatever the domain and the application,

several possibilities exist to organize knowledge and it is

difficult to estimate the “best” one [11].

In recent years, the use of text (as knowledge source) and

language processing (as a technique for rapidly detecting

linguistic clues of knowledge in text) have emerged as a

solution to make this task easier [8]. Practically, text-based

approaches rely on the ontologist1 to decide on how to orga-

nize knowledge in the ontology, but they provide him with

data for conceptual structuring, e.g., some candidate phrases

can become concept labels, classes of phrases can contribute

to define concepts, lexical relations can serve as clues for

semantic relations, etc.

Critical steps for the success of ontology evolution from

linguistic material include (i) the choice of a relevant

knowledge-rich corpus; (ii) the selection of appropriate NLP

software tools, adapted to the corpus content and to the

sought knowledge; (iii) the identification of relevant elements

1 The ontologist is the person in charge of building and evolving an

ontology. Either a domain expert or an ontology expert, he knows the

needs to be satisfied by the ontology and the application that will use it.



among the large amount of linguistic data; and finally (iv) an

appropriate formalization of these elements [3].

We are particularly interested in the last two steps: we

want to assist an ontologist who updates an ontology. First,

we want to help him to identify, within the large quantity of

linguistic data that can be extracted from text, those relevant

for the considered field and for the target application.

Next, we want to guide him by proposing a first organi-

zation of these data within a structured model. To this end,

we propose a support software tool (DYNAMO-MAS) that

co-constructs the ontology jointly with the ontologist: (a) the

system provides proposals to the ontologist (such as new con-

cepts, new relations, new terms) who (b) validates, corrects or

rejects them, and (c) the system learns from the answers that it

receives to later provide better proposals. This cyclic process

can be activated whenever new resources are available or

when new needs show that the ontology should be modified.

It is particularly fitted to the management of ontologies in

dynamic environments.

To implement these principles, we rely on adaptive multi-

agent systems (adaptive MAS or AMAS). Adaptive software

agents are defined to represent the ontology being modified

and the linguistic data extracted from the corpus. The agents’

behavior is guided by parameters evaluated from the word

usages in the corpus and by heuristics for structuring the

ontology. To keep track of the linguistic formulations of con-

cepts, a terminological component is added to the ontology

to form a Termino-Ontological Resource (TOR). According

to the TOR data model, terms are represented as classes and

linked to concept classes by a denotation relation. This type

of ontology is particularly relevant for text semantic anno-

tation because terms contribute to link ontologies, semantic

annotations, and texts.

This paper presents the design and evaluation of DYNA-

MO-MAS, an interactive software based on a MAS that aims

at evolving ontologies from text. Section 2 offers an overview

of the DYNAMO project. The architecture of DYNAMO-

MAS is then detailed in Sect. 3. Section 4 contains the

experiments of ontology evolution that were performed with

DYNAMO-MAS and an analysis of their results. Section 5

describes related works regarding existing tools for building

and evolving ontologies from text. We conclude and plan

some future works in Sect. 6.

2 Scientific Context

2.1 The DYNAMO Project

Ontology evolution is the core of the DYNAMO (DYNAMic

Ontology for information retrieval)2 project.

2 http://www.irit.fr/dynamo/ The DYNAMO Projet benefits of the

ANR (French National Research Agency) grant ANR-07-TLOG-004.

This project addresses the improvement of semantic infor-

mation retrieval driven by users’ satisfaction in a dynamic

context. It aims at proposing a method and a set of tools

that enable the definition and the evolution of ontological

resources from a set of textual documents. These resources

are used to facilitate information retrieval within the corpus

by means of semantic indexing.

One of the DYNAMO main originalities is to take into

account the potential dynamics of the searched document

collection, of the domain knowledge as well as the evolution

of users’ needs. The document collections are supposed to be

task-oriented technical documents. They have a reasonable

size (a few hundred documents) that make them manageable

by a human who checks their annotation. DYNAMO does

not aim at dealing with very large web-extracted corpora.

In this project, three corpora are provided by partners

coming from three different domains: research in arche-

ology about techniques, automotive diagnosis (automotive

components, symptoms, engine failures, etc.), and software

bug reports. The first two corpora are written in French,

while the last one is written in English. These corpora serve

as knowledge sources and are used to update each domain

ontology. Two ontology evolution approaches are performed

in DYNAMO: (i) EvOnto, that deals with the joint evolu-

tion of an ontology and semantic annotations [41] and (ii)

DYNAMO-MAS, an adaptive AMAS that supports ontology

evolution. DYNAMO-MAS is the subject of this article.

2.2 The Ontology Meta-model in the DYNAMO Project

In the DYNAMO project, the ontology and its lexical com-

ponents form what we call a TOR. A TOR consists of a con-

ceptual component (the ontology) and a lexical component

(the terminology) [2,10,26].

In DYNAMO, a TOR (called “ontology” in the rest of

the paper) is formalized using the OWL3-based TOR model

proposed in [35]. This model recently became a meta-model,

where concepts and terms are two meta-classes adapted from

owl:class. In this model, concepts are related to their lin-

guistic manifestations in documents (i.e., terms): a term

“denotes” at least one concept. For example, in a TOR rep-

resenting the automotive diagnosis field, the car concept is

denoted by several terms such as car, vehicle, and automo-

bile.

2.3 Why Use of a Multi-agent System?

The DYNAMO-MAS tool aims at reducing the need for the

ontologist’s intervention when modifying an existing ontol-

ogy from textual resources. From the results of text analy-

sis and the current state of an ontology, the MAS gener-

3 OWL: web ontology language.



ates a new version of this ontology. Results are then dis-

played to the ontologist for validation. The ontologist can

either approve, move, or reject each of the terms, concepts,

relations, and denotation links proposed by the MAS. His

approval or changes are sent back to the MAS that accord-

ingly updates its knowledge. Then the MAS self-organizes

and proposes a new ontology.

To define and implement this MAS, we used the Adaptive

Multi-Agent System (AMAS) paradigm [9,17]. This para-

digm is based on an organizational approach particularly rel-

evant to build MAS that continuously and locally self-adapt

to the dynamics of the environment. AMAS agents gener-

ally are numerous. Each of them has a local knowledge on

itself and on “neighbor” agents with whom it already has

interacted. Several types of agents can interact in one sin-

gle system. Each type of agent behaves simply according to

cooperative interaction rules. Its knowledge and its behav-

ior depend on the application, but its rules have to guaranty

that all the agents collectively achieve the intended overall

complex function.

The collective function of DYNAMO-MAS is to pro-

vide an ontology that is no longer challenged by the ontol-

ogist. Two types of agents have been defined in DYNAMO-

MAS : concept agents and term agents. The output TOR

is built from the MAS subset whose agents evaluate them-

selves as good candidate terms or good candidate concepts.

Each agent knows its relations with other agents, some lin-

guistic elements from the corpus (terms and lexical rela-

tions) and manages some parameters. Each agent aims at

finding its “right position” (the one that optimizes some of

its parameters) in the MAS. An agent can appear, disap-

pear, or change its relations with other agents. The MAS

has to react to the perturbations generated by the addi-

tion of new documents to the corpus and/or by the ontol-

ogist’s actions. To reach this goal, each agent compos-

ing the MAS and involved in these perturbations, has to

self-adapt accordingly by updating its knowledge on exist-

ing agents, by creating or removing agents and relations

with agents, and/or by communicating with other agents.

When the MAS reaches a stable state, the resulting orga-

nization defines a new version of the ontology. The archi-

tecture and the DYNAMO-MAS principles are detailed in

Sect. 3.3.

The use of an adaptive MAS is motivated by the following

reasons:

– The MAS runs identically when building a new ontol-

ogy or when evolving an existing one (building can be

seen as a subclass of evolution where the initial ontol-

ogy is an empty one). Ontology building and evolution

are incremental processes: when new data is added to

the corpus, the ontology evolves without resuming the

evolving process from scratch.

– The linguistic data extracted from text have properties

that are suited to define agents: terms are numerous; they

have a local “knowledge” on the neighbor terms that they

are related with in a given pattern; and they may (or not)

be good candidates for the ontology.

– The practices of ontology building from text enable to

define some simple rules, heuristics, or numerical para-

meters (such as frequency or productivity of a term) that

lead to validate or reject a term, to move a term closer

to other terms (that have a similar linguistic behavior or

similar neighbor terms in corpus for example), to decide

where to set a concept in the ontology (differentiation

criteria or common properties), etc. Various heuristics

have been adapted to implement the behavior of each

type of agent and the way they react to environmental

perturbations (the ontologist’s actions or the addition of

documents to the corpus).

From a practical point of view, an agent behavior defines

how to react to pieces of information received from other

agents and how to communicate with them. Agent parame-

ters and knowledge have been defined to account for the

relevance of linguistic elements with regard to the ontology

under construction.

3 The DYNAMO System

A first version of DYNAMO-MAS has been presented with

a single and basic experimentation in [38], [37], and [36].

Since then, the agents’ behavior has been improved and new

experimentations have been carried out. This paper provides

an overall view on the evolution process, details a more effi-

cient agent behavior, and provides promising results from

new experimentations.

3.1 The Evolution Process and the Architecture

of the System

The evolution process in DYNAMO is based on extracting

terms and lexical relations from text, on providing such data

to agents that react and self-organize, and finally on translat-

ing some of the agents into an OTR representation. The OTR

on the right of Fig. 1 is relevant to the text on the left. Under-

lined words in the corpus correspond to a linguistic manifes-

tation of a lexical relation between terms (terms marked in

bold).

When new documents are added to the corpus (Fig. 2), new

knowledge can appear. If the OTR is supposed to annotate the

document on the left of Fig. 2, it needs to contain new terms

and their corresponding concepts: automobiles, airplanes,

aircrafts, and means of air transport. One can rely on the

lexical relations in the text to decide how to integrate them



Fig. 1 Part of an OTR about

means of transport [ellipses

(resp. rectangles) represent

concepts (resp. terms)]

Fig. 2 Evolution of the OTR about means of transport after adding a new document

in the ontology. For instance, the expression are also called

reveals that the automobiles and cars terms are similar or

synonymous. So the ontologist can add automobile as a new

term denoting the Car concept.

The overall evolution process that includes the use of

DYNAMO-MAS can be decomposed into the following four

steps:

1. Adding new documents to a corpus;

2. Extracting and selecting new terms and lexical relations

from the new documents (and only those);

3. Semantic interpretation of the selected terms and lexical

relations to update the ontology;

4. Evaluation of the ontology evolution suggestions: the

ontologist controls the quality of the system proposals

and makes additional modifications.

The architecture of DYNAMO (Fig. 3) is composed of

three modules: steps 2 and 3 are implemented respectively in

DYNAMO Corpus Analyzer and DYNAMO-MAS, whereas

step 4 is supported by the “proposal manager” module. Each

module is detailed in the following sections.

3.2 The Corpus Analyzer

The goal of the corpus analyzer is to prepare inputs for the

MAS. It runs the YaTeA [1] term extractor, a lexical relation

Fig. 3 Architecture of the DYNAMO system

generator, and a term and lexical relations selector. It outputs

< Ti , Rel, T j > triplets where Ti and T j are candidate terms

and/or terms (if the term belongs to the ontology) and Rel is a

lexical relation label. Each triplet has a confidence score (Q,

I) where Q is the quality of the relation and I is the number



of occurrences of this relation in the corpus. Four types of

lexical relations are generated by the relation extractor. The

type of a relation determines the ontological knowledge that

the MAS will define from a triplet:

1. Hyperonymy: it expresses a generic-specific relation

between terms and may lead to define is a relation between

the concepts denoted by these terms;

2. Meronymy: it expresses a part-hood relation between

terms and may lead to define a part of or an ingredient of

or a member of relation between the concepts denoted by

these terms;

3. Synonymy: it may lead to connect the related terms to the

same concept with a denote relation;

4. Other relations (called “transverse relations”) are domain

specific. They may lead to define specific semantic rela-

tions between the concepts denoted by the related terms,

such as causes, contributes to, affects, etc..

Lexical relations can be extracted by three means: (i) by

matching lexico-syntactic patterns, the four kinds of relations

can be found; (ii) syntactic term inclusions extract hyper-

nymy relations; and (iii) similarity between (candidate) terms

(measured with the Levenshtein distance [24]) is used to com-

pute synonymy relations.

Several lexico-syntactic patterns have been defined to

extract each type of relation. In a specific domain, a pattern

conveys a regularity in the linguistic expression of a lexical

relation. We assume that all the term pairs found by matching

the same pattern are linked with the same type of relation.

However, a pattern can extract an invalid relation. So we have

defined a pattern confidence score composed of Q (quality of

the extraction) and I (number of pattern occurrences). The Q

quality of the extraction is a value ranging from 1 to 10, and

given by the person who defines the pattern from her empiri-

cal evaluation of the pattern occurrences. The correctness of

the extracted relation is directly correlated with the pattern

quality value. In other words, a low quality value for a pattern

means that any relation extracted with this pattern is likely

to be wrong.

In order to select the candidate terms for which an agent

will be defined (in the text that follows, we will call this

process to agentify a term) and the lexical relations to be

processed, we defined two confidence scores: a confidence

score for relations and a confidence score for terms. Like

the confidence score defined for patterns, a confidence score

consists of a pair (Q, I).

The confidence score of relation Ri between terms4 Tx

and Ty is the pair (Q Ri
, IRi

) such that:

4 either belonging to the TOR or being candidate terms.

– Q Ri
is the maximum quality of the relation. It is equal

to the maximum quality of a lexico-syntactic pattern that

matches Ri relation;

– IRi
is the sum of the instances of the lexico-syntactic

patterns having a quality Qia with a distance to Q Ri
lower

or equal than δQ .

The (Q, I) confidence score of a relation is normalized

according to the following formula:

Con f
(

Ri (Tx , Ty)
)

= (Q Ri
, IRi

) =
(

Max(Qi j );

n
∑

a=1

Iia |Qia ≥ Max Qi j ) − δQ

)

– Tx and Ty are two terms;

– Ri is a lexical relation i between terms Tx and Ty ;

– Qi j (resp. Qia) is the quality of the lexico-syntactic pat-

tern j (resp. a) for relation i;

– Iia is the number of occurrences of lexico-syntatic pattern

a for relation i;

– δQ is a threshold that determines the patterns taken into

account when counting the relation instances. Only pat-

terns with a quality score Qia close to the best one are

selected. We arbitrarily set δQ to 0.5 (5 % of the max-

imum value of Q which is 10) . If δQ is set to 0, only

instances of the best pattern will be counted. If δQ equals

10 (maximum value), instances of all available patterns

for relation Ri will be taken into account.

The Q Ri
confidence score of a relation increases with the

quality of the patterns that identify it. The number of occur-

rences of this relation (IRi
) is the sum of the number of occur-

rences of the patterns with a quality score close to the max-

imum value (more or less ). I increases when Q decreases:

the lower the quality threshold, the more patterns and rela-

tion occurrences are taken into account, even those who have

no meaning. This is why we set constant δQ to 0.5: we want

the system to consider relations of good quality [(Q is close

to the Maximum Quality (QR)], but not only the best one,

also those with a quality “close to” the best one. Because Q1

and Q2 values range between 0 and 10, with δQ equal to 0.5,

“close to” means a 5 % difference.

When a relation is found not using pattern matching, but

thanks to one of the other implemented methods (syntactic

analysis and the Levenshtein distance), I is set to 1; and the

quality Q is set to the confidence score of the results provided

by these tools.

The confidence score of term Tx is represented by the pair

(QTx , ITx ) such that:

– QTx is the maximum quality of all the relations involving

Tx ;



– ITx is the sum of all the occurrences of the relations

involving Tx , the quality Q of which has a distance

smaller than δQ to the maximal quality QTx .

A good candidate term is one that is involved in high

quality relations. So the confidence score of relations is

used in the evaluation of the term confidence score. More-

over, the formula to estimate the confidence score of term

Tx is similar to the one defined for the relation confidence

score:

Con f (Tx ) = (QTx , ITx ) =
(

Max(Q Ri
);

n
∑

a=1

IRa |Q Ra ≥ Max(Q Ri
) − δQ

)

– Q Ri
is the quality of relation Ri involving Tx ;

– IRa is the number of instances of relation Ra involving

Tx ;

– Q Ra is the quality of relation Ra involving Tx ;

– δQ is arbitrarily set to 0.5 to select the relations with the

quality close to the best one.

These two formulas are used to select the most relevant

candidate terms and relations. We chose to define a term

agent from each candidate term with a quality score above

the average (5). All the candidate terms that have a score

lower than the average are then considered to be noise. If

all candidate terms have a quality score below average, no

proposal is made to the ontologist. In this case, we consider

the average of all the qualities of all candidate terms as a

selection criterion.

3.3 DYNAMO-MAS: the Multi-Agent System

The MAS includes the ontology that will be proposed to

the ontologist. Its inputs are the triplets provided by the cor-

pus analyzer and an OWL ontology. It provides as output

an ontology expressed according to the OWL meta-model

presented in Sect. 2.2.

The MAS consists of two types of agents: (i) term agents

represent candidates for the terminological part of the ontol-

ogy and (ii) the concept agents represent candidates for the

conceptual part of the ontology. The definition of two types

of agents partly reflects the structure of a DYNAMO TOR:

a concept (resp. term) of a DYNAMO ontology corresponds

to a concept agent (resp. a term agent). The relations of the

ontology as well as the linguistic relations are part of an agent

knowledge and are not agentified. This option is motivated

by the need to reduce the number of agents and the compu-

tation time of the system, and also to restrict and to simplify

the interactions between agents. Thus, relations between con-

cepts (resp. terms) are represented as links between concept

(resp. term) agents in each of the related concept (resp. term)

agent, and denotation relations between terms and concepts

are links between term agents and concept agents. All the

links are part of the knowledge of the concerned (term or

concept) agent.

The algorithms (or behaviors) of the two types of agents

composing the MAS are presented in this section. The ini-

tial state of the MAS is an organization composed of con-

cept agents and term agents created by “agentifying” con-

cepts and terms of an existing ontology. Each agent knows

its confidence score (Q, I). Each concept agent knows the

concept agents to which it is related and the relation name,

as well as the term agents that denote it. Each term agent

knows the concept agents that it denotes, the term agents

with which it is lexically related, and the name of these

relations.

Currently, DYNAMO-MAS only suggests enriching the

initial ontology with new concepts, terms, or relations with-

out any change on the original content; if needed, it is

up to the ontologist to manually modify these initial ele-

ments. This solution has been adopted at the request of the

project partners. However, DYNAMO-MAS is able to sug-

gest changes to concepts, terms, and relations that were in

the ontology before its evolution (by adding an intermedi-

ate concept between two concepts, by changing relations

between concepts and terms, etc.). To make these changes

possible, one just needs to activate those features in the

agents.

3.3.1 Term Agents

The term agents represent the terminological part of an ontol-

ogy. A term agent has a status (candidate term or term) indi-

cating whether the agent is actually part of the ontology or

is at proposal stage. Each agent is connected to other term

agents in accordance with the lexical relations extracted from

the corpus. According to the meta-model of the ontology (that

requires that each class term is connected by at least one

denotation relation to a class concept), a term agent must be

connected to at least one concept. Each relation between two

term agents < Ti , Rel, T j > is assigned a confidence value

(Q, I).

A term agent has to achieve three objectives: (i) to denote

at least one concept agent, (ii) to process all its lexical rela-

tions, and (iii) if possible, to propose itself to the ontologist.

During its life cycle, the term agent processes its goals as

well as the requests received from other agents (from the

highest priority to the lowest priority). Its primary objective

is to denote a concept agent. Other priorities are determined

by the agent according to the confidence in the relation to be

processed, the relevance of the agent for proposing itself to

the ontologist, and the priorities of the requests it receives.

The general algorithm of a term agent is Algorithm 1.



(i) In order to denote a concept agent, a term agent asks

for the creation of a concept agent (Fig. 4). A concept

agent is created if a concept agent having the same label

as the term agent does not exist yet in the MAS. Then the

term agent sends back to the concept agent a denotation

request (➊). This request is always accepted by a concept

agent (➋). This denotation link has a confidence value

calculated by the term agent according to the formula

given in Sect. 3.2.

Fig. 4 Interactions between term agents and concept agents

(ii) A term agent processes its outgoing lexical relations.

Every relation has a confidence value and a status

(unprocessed, processed, or rejected). An agent con-

siders its relations from the most relevant one (with

the highest confidence value) to the less relevant one

by sending to the concept agents; it denotes a request

to process the lexical relation (➌). The concept agent

processes the relation and then it notifies the term agent

with a message of acceptance or reject with a (Q, I) con-

fidence score (➍). The term agent updates the status of

the relation that has been processed.

Let’s assume that the bug term agent processes a syn-

onymy relation between the termsbug and error (fig-

ure 5, ➎). The bug concept agent that it denotes sends

to error-term a request to change its denotation link

(➏). If the (Q, I) score of the current denotation link of

error-term is lower than the value of the request, it

accepts the request, changes its denotation link (➐) and

notifies bug-concept of its agreement (➑). Otherwise,

it notifies bug-concept of its reject with the confidence

score of the denotation link between error-term and

error-concept. bug-term (that sent the first request)

is then notified (➒).

The status of a relation may change at each iteration

of the algorithm after the addition of new documents

to the corpus. The term agent may request again the

Fig. 5 Interactions between term agents and concept agents to manage

a synonymy relation



processing of a rejected relation if its confidence value

increases and exceeds the rejection threshold.

(iii) In order to propose itself to be part of the ontology, a

term agent computes its relevance score according to the

following formula:

term AgRelevance =

α1 ∗ P1 + α2 ∗ P2 + α3 ∗ P3 + α4 ∗ P4

where P1 is the maximum value of all its lexical rela-

tions; P2 is the accuracy of its term agent neighbors;

P3 expresses the accuracy of the term agent lexical rela-

tions; P4 expresses the diversity of the term agent lexical

relations and α1, α2, α3, α4 are the different weights of

the Pi . More precisely:

– P1 = MaxLexicalRelationConfidence = Max(Q Ri
);

– P2 = (nbRTAInTOR - nbRTANotInTOR)/ (nbRTAIn-

TOR + nbRTANotInTOR) where RTA (Related Term

Agent) are term agents in relation with the evaluated term

agent;

– P3 = (nbAcceptedLRA - nbRefusedLRA) / (nbAccept-

edLRA + nbRefusedLRA) where LRA (Lexical Relation

of the Agent) are lexical relations known by the evaluated

term;

– P4 = nbDifferentAgentLexicalRelation / nbAllPossi-

bleLexicalRelation.

After various experiments with DYNAMO-MAS, we

empirically fixed the values of α1 to 0.5, α2 to 2, α3 to 2

and α4 to 1. These values best weighed the parameters of the

agent relevance.

The relevance of an agent is the maximum confidence

score of all its relations with its neighboring agents (concept

agents and term agents). Above a threshold (between 1 and

10), a term agent proposes itself to be part of the ontology by

sending a request to the proposal manager. The user can tune

this threshold starting with a low value at the beginning of the

evolution process (to get a lot of suggestions) and increasing

this value when the ontology provides good annotations for

all the documents in the corpus.

When the ontologist accepts or rejects a proposal, the pro-

posal manager notifies the term agent by a reject or an accep-

tance. The term agent updates its status. To prevent term

agents to propose themselves again after the ontologist has

rejected them, a high value (8) has been assigned to the ontol-

ogist’s interventions (this parameter can be adjusted accord-

ing to the application). Indeed, during the ontology evolution,

an ontologist can qualify a candidate term as irrelevant for the

domain and can eventually later reverse his decision. In this

case, the term agent can propose itself again if its relevance

value exceeds the ontologist’s reject value.

3.3.2 Concept Agents

Concept agents represent the conceptual part of an ontology.

A concept agent has a status (candidate concept or concept)

indicating whether the agent is part of the ontology or is at

proposal stage. A concept agent is connected to other con-

cept agents by conceptual relations. It is also connected to

term agents by denotation links. Its relations can have the

status unprocessed, processed, or rejected. A concept agent

has to achieve its three objectives: (i) to have semantic rela-

tions with concept agents and denotation links with term

agents; (ii) to determine a preferred label, and (iii) to pro-

pose itself to the ontologist. As for term agents, the concept

agent processes its objectives from the highest priority to the

lowest priority. The general algorithm of a concept agent is

Algorithm 2.

(i) A concept agent receives requests from other term

agents (Fig. 4, ➊) to process lexical relations and

requests from concept agents to establish conceptual

relations (➋). When a concept agent processes a request

from a term agent to process a lexical relation, it sends

a request to the concept agents denoted by the second

term agent in the lexical relation (➋). It asks these con-

cept agents to establish a conceptual relation with itself.

For example (Fig. 6), when applet-concept is infor-

breakmed that applet-term has program-term as

hypernym, applet-concept asks program-concept

to establish the “applet-concept is a program-

concept” relation. A concept agent can either accept

or refuse to take into account a relation with another

concept agent. It rejects it if a stronger conceptual

relation already exists between itself and the other

agent. Here, program-concept sends back a positive

notification of its decision to applet-concept (➌).

But, if a part-of relation between applet-concept

and program-concept was requested by applet-

concept toprogram-concept, thenprogram-concept

compares the confidence of these relations and only

keeps the relation with the highest score. When receiv-

ing a notification, applet-concept updates the status

of the concerned relation and updates its links with

program-concept (➍). applet-term is then notified

byapplet-concept that has established the conceptual

relation (➎).

(ii) To determine a preferred label, the concept agent

choses the name of the term agent having the denota-

tion link with the highest weight. This label can evolve

if new term agents denote the concept agent or if the

value of the denotation links changes.

(iii) In order to propose itself to the ontologist, in a similar

way as a term agent does it, a concept agent checks its

relevance value. If it is higher than the relevance thresh-



old, it proposes itself. The relevance value is evaluated

according to the following formula:

concept AgRelevance =

α1 ∗ P1 + α2 ∗ P2 + α3 ∗ P3 + α4 ∗ P4 + α5 ∗ P5

where P1 is the maximum confidence value of all its con-

ceptual relations; P2 is the accuracy of the concept agents

Fig. 6 Interactions between term agent and concept agent to establish

an is_a relation

that are in relation with; P3 expresses the accuracy of the

conceptual relations of the concept agent ; P4 is the depth

in the ontology; P5 is the proportion of relevant term agents

that denote this concept agent and α1, α2, α3, α4, α5 are the

different weights of Pi . More precisely:

– P1 = MaxConceptualRelationConfidence;

– P2 = (nbRCAInTOR - nbRCANotInTOR) / (nbRCAIn-

TOR + nbRCANotInTOR) where RCA (Related Concept

Agent) are concept agents in relation with the evaluated

concept agent;

– P3 = (nbAcceptedCRA - nbRejectedCRA) / (nbAccept-

edCRA + nbRejectedCRA) where CRA (Conceptual

Relations of the Agent) are conceptual relations known

by the evaluated concept;

– P4 = {-1;1} : -1 if the concept agent is connected to the

top agent of the ontology, 1 otherwise;

– P5 = (nbRelevantTermAgent - nbNotRelevantTermA-

gent) / (nbRelevantTermAgent + nbNotRelevantTermA-

gent) where the term agents are denoting the concept

agent.

After some experiments with DYNAMO-MAS, we empir-

ically fixed the values of α1 to 0.5, α2 to 1, α3 to 1, α4 to 1,

and α5 to 2.

The processing of synonymy relations implies changing

the denotation link between term agents and concept agents.

If a concept agent is no more connected to any agent, it cannot

receive any request and cannot reach any of its objectives: it

becomes useless in the MAS and disappears.

3.3.3 The Proposal Manager

The proposal manager enables the ontologist to both visualize

the ontology and the MAS proposals and to interact with the

MAS (Fig. 3). Its main goal are (i) to sort out the proposals

sent by the concept agents and the term agents for display

via the GUI and (ii) to convey the decisions made by the



ontologist (acceptance, reject, or modification) to the concept

and term agents with regard to their proposals.

The proposal manager is able to process proposals coming

from term and concept agents. It stores them as long as the

agents evaluate themselves as relevant for the ontology and

send it some messages. Once the activity of the MAS is sta-

bilized, i.e., when all the agents have processed the requests

that they received, the proposal manager sorts out the pro-

posals, deletes contradictory ones, and conveys the final list

to the ontologist. Contradictions may appear either when an

agent proposes itself but later disappears from the MAS, or

when an agent proposes a conceptual relation and later pro-

poses another relation involving the same concepts with a

different relation. The system considers that the most recent

one is the only one which is valid.

The proposal manager finally brings back to the agents

that made the proposal the evaluation from the ontologist.

This notification is a new request sent to the agents that will

process it.

4 Evaluation of DYNAMO-MAS

We report the experiments that we carried out with

DYNAMO-MAS and we analyze their results. DYNAMO

is implemented as a plug-in in the ontology editor Protégé5

(Fig. 7). DYNAMO-MAS extends TextViz [35], another Pro-

tégé plug-in dedicated to semantic annotation of text docu-

ments.

The agents in DYNAMO-MAS have been implemented

with the MAY: Make Yourself Agents 6 platform [30]. MAY is

a generator of agent APIs (application programming inter-

face) written in Java. It is an Eclipse plug-in7. The user of

MAY first specifies an abstract agent model using an architec-

ture description language called muADL. The model is com-

posed of a set of micro-components dedicated to the creation

of new agents, to the communication between agents, to the

management of the agent knowledge,... Then, the model and

the behavior of the agents are implemented in Java classes.

Interaction between agents is done via asynchronous mes-

sage exchange. These messages have been defined as a Java

class for the application.

When the ontologist adds new texts to the corpus, the

DYNAMO-MAS is triggered. The corpus analyzer extracts

new candidate terms and new lexical relations. It sends them

as inputs to the MAS; new term agents are created and interact

with the other agents. So, most of the agents in the MAS

update their knowledge, react, and communicate with each

5 Protégé: http://protege.stanford.edu/.

6 MAY: http://www.irit.fr/MAY.

7 Eclipse: http://www.eclipse.org.

other until a stable state is reached. The agents of DYNAMO-

MAS use only a local knowledge and behavior to evaluate

their relations with other agents, which is expected to set

them at their best place in the organization. Then, the MAS

proposes a new ontology (the initial ontology that has been

enriched and modified) to the ontologist in the GUI (Fig. 7).

Changes are displayed in the concept panel (➊) and in

the term panel (➋): proposed concepts and terms are the

underlined one. A second Tab Widgets, called DYNAMO -

Virtual Ontologist Proposals (➌), has been added to Pro-

tégé. It is a tabular view of the MAS proposals, incorporat-

ing non-hierarchical relations that cannot be seen in the two

first panels. The ontologist validates, deletes, or modifies the

concepts, terms, and relations proposed by DYNAMO-MAS

via the Graphical User Interface (➍).

4.1 Experiment

We have carried out tests using DYNAMO-MAS with three

different ontologies and associated corpora. Each ontology

has been manually designed and validated with regard to the

corpus annotation: it enables an annotation of its associated

corpus that is precise enough to support an efficient docu-

ment retrieval. In these three domains, the corpus contains a

reduced number of small size documents (a few paragraphs).

– Artal ontology: an English ontology on software bug

reports, made up of 887 terms and 582 concepts; the cor-

pus is composed of 287 documents (bug report files);

– Arkeotek ontology: a French ontology on archeology

about traditional techniques, made up of 733 terms and

380 concepts; the corpus is composed of 299 documents

(rule-based formulation of scientific papers);

– Actia ontology: a French ontology on automotive diag-

nosis, made up of 579 terms and 330 concepts; the cor-

pus is composed of 710 documents (files that report fault

descriptions and repair procedures).

We have defined two scenarios to evaluate DYNAMO-

MAS:

1. The first evaluation (quality evaluation) illustrates an

ontology evolution process and evaluates the relevance

of the DYNAMO-MAS suggestions: we check if the sug-

gestions are considered as valid by the ontologist.

2. The second evaluation (performance evaluation) is

designed to test the performance of the MAS in terms

of scalability and perturbation diffusion inside the

system.



Fig. 7 The DYNAMO-MAS tool in the Protégé ontology editor

4.1.1 Quality Evaluation

To evaluate the quality of DYNAMO-MAS proposals, we

compared a manual and an automatic ontology evolution. In

each domain, an ontologist has accepted, rejected, and/or

modified the MAS proposals via the graphical interface

(Fig. 7).

After the addition of 21 new documents to the Artal cor-

pus, the ontologist enriched the ontology with 19 new terms

and 9 new concepts. Starting with the same ontology and

new documents, DYNAMO-MAS proposed 24 new terms (of

which the ontologist accepted 16) and 18 new concepts (of

which the ontologist accepted 10). Table 1 shows a detailed

report of this result.

In the Artal case-study, although DYNAMO-MAS com-

prises a large number of agents (1,469 agents), it is able to

reach good quality results: 67 % of term proposals are rele-

vant and 56 % of concept proposals are relevant. DYNAMO-

MAS is also able to suggest terms and concepts that have not

been identified manually (12 terms and 9 concepts). So the

MAS can be seen as an interesting tool to help an ontologist

to make a precise evolution of his ontology.

After the addition of 12 new documents to the Arkeotek

corpus, the ontologist enriched the ontology with inserting 19

new terms and 7 new concepts. From the same ontology and

new documents, DYNAMO-MAS proposed 32 new terms (of

which the ontologist accepted 22) and 27 new concepts (of

which the ontologist accepted 16). Table 2 shows the details

of this result.

With the Arkeotek dataset, DYNAMO-MAS attained

68.75% of relevant term proposals and 59.26 % of relevant

concept proposals. DYNAMO-MAS suggested 18 terms and

14 concepts not identified by the ontologist.

After the addition of 50 new documents to the Actia cor-

pus, the ontologist enriched the ontology with 19 new terms

and 9 new concepts. DYNAMO-MAS proposed 54 new terms

(of which the ontologist accepted 9) and 30 new concepts (of

which the ontologist accepted 6). Table 3 shows the details

of this result.

With the Actia dataset, DYNAMO-MAS reaches only

16.98 % of relevant term proposals and 22.22 % of relevant

concept proposals. DYNAMO-MAS has been able to sug-

gest terms and concepts not identified manually (5 terms and

5 concepts). It obtained a poorer result with the Actia dataset

because the new documents added to the corpora contain

very little new knowledge. The Actia ontology covers most

of the knowledge expressed in the corpus. In return, how-

ever, the Artal and Arkeotek ontologies are not achieved. In

both cases, DYNAMO-MAS provides significant and helpful

rewards to the ontologist.



Table 1 Results of the

DYNAMO-MAS after adding

21 documents to the Artal

corpus

Quality of the proposals Term Concept

Relevant proposals (set at the right place in the ontology) 13 5

Correct proposals (set at a wrong place in the ontology) 3 5

Acceptable proposals (useful for the domain but not accepted by the ontologist) 0 0

Useless proposals (useful for the domain but useless for the annotation process) 1 0

Wrong and rejected proposals 7 8

Proposals made both by the ontologist and the MAS 4 1

Table 2 Results of the

DYNAMO-MAS after adding

12 documents to the Arkeotek

corpus

Quality of the propositions Term Concept

Relevant proposals (set at the right place in the ontology) 18 5

Correct proposals (set at the wrong place in the ontology) 4 11

Acceptable proposals (useful for the domain but not accepted by the ontologist) 0 0

Useless proposals (useful for the domain but useless for the annotation process) 5 2

Wrong and refused proposals 5 9

Proposals made both by the ontologist and the MAS 4 2

Table 3 Results of the

DYNAMO-MAS after adding

50 new documents to the Actia

corpus

Quality of the proposals Term Concept

Relevant proposals (set at the right place in the ontology) 6 2

Correct proposals (set at the wrong place in the ontology) 3 4

Acceptable proposals (useful for the domain but not accepted by the ontologist) 1 0

Useless proposals (useful for the domain but useless for the annotation process) 18 0

Wrong and rejected proposals 27 24

Proposals found both by the ontologist and the MAS 4 1

4.1.2 Performance Evaluation

The performance evaluation studies the time performance of

the MAS and it scalability. In DYNAMO-MAS, the ontology

is a subset of a MAS. So, when new documents are added to

the corpus, new agents are defined in the MAS that is conse-

quently disturbed. Then, the goal of the MAS is to react to

this disturbance and to come back to a stable state. To evalu-

ate the DYNAMO-MAS behavior, we studied the ontology

evolution when varying the number of documents added to

the corpus (4, 8, 16, 32, 64, 128, 256 and 512). We measured

the time required for the MAS stabilization and the num-

ber of agents in the initial MAS impacted by the new agents

resulting from evolution process.

Figure 8 presents the time required for the MAS to stabi-

lize after the addition of new agents. In the three curves, the

X2 coefficient being close to zero, the time required for the

MAS to stabilize is almost linear. For example, in Fig. 8, the

addition of 512 documents to the Arkeotek corpus has gener-

ated the creation of 1,468 new agents in the Arkeotek MAS

(before evolution, the MAS was composed of 2,796 agents)

and the stabilization time has been around 4 min and 30 s.

The stabilization time of the MAS is much shorter (around

20 s) for the Artal ontology and the Actia ontology where the

number of added agents did not exceed 700 agents. Figure 8

shows that DYNAMO-MAS stabilizes very quickly.

Figure 9 presents the number of affected agents after the

introduction of new agents. In the three curves, we can notice

that the addition of new agents to the MAS does not disrupt

the whole system. For instance, when we added 512 docu-

ments to the Arkeotek corpus, the 1,468 new agents impact

and change the knowledge of only 755 agents. We consider

the disturbance as local.

4.2 Analysis

To sum up, DYNAMO-MAS runs ontology evolution in dif-

ferent domains and it supports two languages (English and

French).

Despite the high percentage of bad proposals obtained in

the Actia experiment, results are encouraging and the MAS

approach seems relevant. In fact, even if DYNAMO-MAS is

composed of more than 1,000 agents, the new concept agents

and term agents use local and distributed mechanisms to set



Fig. 8 Stabilization time of the MAS and number of added agents compared with the number of added documents

Fig. 9 Propagation of the disturbance inside the MAS

themselves at the right place in the MAS organization (the

ontology). Furthermore, the MAS is able to propose many

of the concepts and terms that have been added manually by

the ontologist. It is also able to propose concepts and terms

that have been forgotten by the ontologist.

The results provided by DYNAMO-MAS have a different

quality depending on the corpus and on the initial state of

the ontology. It seems that as the ontology construction pro-

gresses, the insertion of results supplied by DYNAMO-MAS

becomes more complex, or conversely when the conceptu-

alization is in its early stages, the MAS brings more help to

the ontologist.

In DYNAMO-MAS, several parameters (δQ and αi ) were

set arbitrarily and empirically after testing the system in the

three experimentations. Here, we comment why and how

their value could be more precisely tuned.

The δQ is involved in the evaluation of the quality of the

Dynamo Corpus Analyzer (DCA) and in the selection of the

concepts and relations that will be agentified. So a modifica-

tion of δQ value has no effect on the output of the DCA, but

it may have a significant impact on the content of the agent

system in DYNAMO-MAS and, consequently, on the way

the ontology is modified. In DYNAMO-MAS, the modifi-

cation of δQ changes the relations and concepts considered

as agents. In fact, the behaviors of term agents and concept

agents depend on the selection of relations with the higher

Q values, which are the one close to the maximum Q score.

When an agent needs to select among several competing rela-

tions that could connect it with another agent, it will select

the relation with the highest value for Q. When two relations

have the same Q value, the agent selects the relation with the

higher value for I (i.e., the larger number of occurrences).

When δQ increases, more patterns and more relation occur-

rences are taken into account for this relation. So the concepts

and semantic relations added to the ontology can be different

when δQ is modified.

In practice, we did not find any case in which a term agent

or a concept agent needed to use the I parameter to choose

between two relations. As a perspective, we will study more

precisely the influence of the modification of δQ on the qual-

ity of the evolved ontology.

In a similar way, the αi parameters in the termAgRele-

vance and the conceptAgRelevance formula have been set

after comparing the quality of different ontology evolution

results. For the time being, the selected value for αi pro-

duces the best results for ontology evolution in the three

experimental domains. As a perspective, we want to intro-

duce an Adaptive Value Tracker (AVT) component [23] to

adjust the value of the αi parameters in DYNAMO-MAS. An

AVT is a software component that finds the optimal value of

a dynamic variable in a given space thanks to successive

feedbacks. In our case, feedbacks come from the ontolo-

gist. When the ontologist rejects or accepts a set of con-

cepts, relations, and terms, the AVT will adjust αi . The goal

of the AVT is to make the relevance of refused terms and

concepts lower than the proposal threshold while maintain-

ing the relevance of accepted terms and concepts greater or

equal to the proposal threshold. As a result, we will obtain

more precise values of the αi parameters for the evolved

ontology.



Finally, in a general way, the evolution of ontologies from

text faces some technical problems due to the limitations of

current NLP tools. Indeed, when some terms have not been

detected by the term extractor, the MAS fails to propose the

corresponding concept.

5 Related Works

5.1 Evolving Ontologies from Text

When the DYNAMO project began (2007), we identified

very few studies dealing with ontology evolution from text.

Since then, several surveys about ontology evolution have

been published [18,33]. Nevertheless, it seems that little

attention has been paid to the automatic identification of

knowledge (especially in text) in the perspective of ontol-

ogy evolution.

Existing works dealing with ontology evolution refer

mainly to the management of the evolution process after

one or more changes (usually a manual one) or to the man-

agement and the comparison of versions [14,21]. These

research works established an ontology of change types

[21], the main stages of the evolution process [39], tools

to detect change needs [12], to implement them [39], and

to formally manage the consistency of the ontology after

a change [13,39]. Some works refer to the propagation

of changes to dependent artifacts of the modified ontol-

ogy, i.e., to the objects, meta-data, ontologies, and applica-

tions that use this ontology [21,25,39]. Ontology evolution

from text is addressed by two approaches: DYNAMO and

EVOLVA.

EVOLVA [44] contributes in an original way to the evolu-

tion of ontologies from text within the NEON platform. As

in our approach, the inputs of EVOLVA are the results of text

analysis, i.e., a filtered list of candidate terms (single words)

extracted from text. The main contribution of EVOLVA con-

cerns the enrichment step that consists in finding a relation

between new terms and concepts that already belong to the

ontology. For this, EVOLVA uses ontologies already avail-

able on the Web, within which the system seeks a relation

(direct or indirect) between a term to be added to the ontology

and a node of the found ontology. To select the most relevant

ontologies, one of the EVOLVA modules relies on patterns

that look for common subgraphs between the ontology to be

reused and the existing one. The terms for which relations

have been found are added as new concepts in the ontology,

and connected to existing concepts with the found relations.

EVOLVA is effective for the English language (language for

which some relevant terms extractors exist). Furthermore,

the English language is used in the majority of the ontolo-

gies available on the Web. Concerning the French language,

too few ontologies exist and semantic relations between new

concepts and the ontology are hardly found. So EVOLVA is

much less relevant to enrich ontologies in French.

In order to compare DYNAMO-MAS and EVOLVA, we

have carried out an experiment with an English corpus [45]

dealing with software bugs. EVOLVA has not been able to

discover new concepts in this very specific domain and would

have similar limitations in any very specific domain. The

term extractor can identify new nouns, but no ontology can

be reused to connect the new terms with the nodes in the

ontology. Moreover, EVOLVA is not relevant for French cor-

pora because there are too few French ontologies available

on the Web. One main distinction between EVOLVA and

DYNAMO-MAS is the way terms and concepts are managed.

In EVOLVA, all extracted terms are suggested as concepts.

In DYNAMO, terms and concepts are two distinct classes

and all the extracted terms will not give birth to a concept.

DYNAMO-MAS is able to work both with French and Eng-

lish corpus. It is also able to suggest new concepts and new

terms when the ontology is very specific. To filter out the

candidate terms, EVOLVA relies on relations extracted from

Web ontologies, whereas DYNAMO-MAS uses linguistic

and statistical criteria.

In the first DYNAMO prototype, agents implement a dis-

tributed clustering algorithm to organize terms into classes

(concepts) and to structure these classes in a hierarchy

[31,32]. DYNAMO-MAS is not an evolution of this first

prototype. This prototype uses the results of the Syntex [7]

syntactic parser that provides lists of terms and syntactic rela-

tions that have been found in the corpus. A hierarchical clus-

tering algorithm, distributed in the agents, enables to move

closer similar terms according to the principles of the distrib-

utional analysis, then to create and to position concepts. Two

term agents are similar if they play a similar role (subject,

verb, head or expansion) of a same set of terms. This MAS

evolves until all agents are hierarchically related. The final

state of the MAS corresponds to the ontology. The ontologist

can validate it, refine it, or modify it. These actions are consid-

ered as perturbations by the MAS; as a feed-back, it reorga-

nizes the agents and produces another ontology proposition.

This interactive process is repeated until a satisfactory state of

the ontology is obtained. Experimentations conducted with

this prototype confirmed that statistical approaches are not

effective when the volume of data in the corpus is small [27].

In the DYNAMO-MAS project, lexico-syntactic patterns are

used for extracting lexical relations between terms and for

establishing conceptual relations between concepts.

Using a MAS to represent an ontology is an original-

ity of the DYNAMO project. Indeed, to our knowledge, no

work exists (apart from the first DYNAMO prototype) that

proposes a MAS to build and modify ontologies. In prac-

tice, ontologies are used to enable MAS to communicate

[15,22,40]. Sometimes, to communicate, an agent uses its

own ontology; it is able to modify it (for instance by replac-



ing a concept) according to its interactions with other agents

[22]. Finally, some MAS have been used to align ontologies

[43].

5.2 NLP Software Tools to Evolve Ontologies from Text

Although the evolution of an ontology deals with some spe-

cific and distinct problems from those related to ontology

building, we relied on several works about building ontolo-

gies from text. Indeed, these approaches have allowed us to

select some relevant techniques for texts analysis. Whether

to build or to modify an ontology, we assumed that the doc-

uments of a given field contain the linguistic clues of rela-

tions and of concepts that need to be defined. More impor-

tantly, these studies provide criteria and methods to organize

linguistic elements and to lead to the definition of classes

or conceptual relations. We tried to identify among these

criteria and techniques those that could be implemented in

DYNAMO-MAS agents.

We do not propose here a new state of the art on exist-

ing tools in natural language processing (NLP) that can be

used to modify ontologies from texts. Recent papers present

such an overview [8], [29], or [11]. These tools can be useful

to the “information extraction” process, although it is dif-

ficult to characterize the nature of the sought information.

They often use lexical or semantic resources such as the-

sauri or lexical databases. Linguistic traces of concepts are

generally assumed to be noun phrases, identified thanks to

term extractors as well as on named entity extractors. Term

classification techniques gather them into classes that define

concepts from synonyms or similar terms. The selection of

relevant terms among all extracted candidates is a heavy task.

It can rely on several numerical criteria such as frequency,

term productivity (its ability to be part of other phrases), its

representativeness with regard to the corpus (with Tf.Idf), or

by comparing its frequency in the corpus with its frequency

in a reference domain independent corpus.

To define relations between concepts, two types of

approaches exist. The first one is statistical. It is based on the

information amount criterion in text. Relations between con-

cepts are identified according to the co-occurrence8 of terms

or thanks to the shared context between words. However, sta-

tistical approaches are not able to provide an interpretation

of these relations [19]. The second type of approach, more

linguistic, involves the definition of lexico-syntactic patterns

[20]. This approach has been implemented in [4,5,28].

5.3 Integrated Approaches to Evolve Ontologies from Text

Language analysis techniques enable to obtain linguistic

clues on different kinds of knowledge that need to be fil-

8 Simultaneous presence of two or more terms in a window of words.

tered out and structured. Moreover, as a text collection does

not cover all the knowledge of a domain, we obtain fragments

of that do not always share concepts and that are complex to

connect together. To overcome these two limitations, auto-

mated processing chains have been a priori defined, from

text analysis to the production of a hierarchy of concepts.

Statistical criteria enable to filter out and select the most

relevant information. In addition, to connect the fragments

between them, they are attached to a generic ontology. The

most advanced tools are presented bellow:

– In Text Onto Miner (TOM) [16], the corpus is analyzed

at different levels of granularity (document, paragraph,

sentence), essentially according to statistical measures,

to extract terms and lexical relations. Classification tech-

niques are then used to propose a hierarchy of concepts.

– OntoLearn [42] uses a statistical approach to extract and

to aggregate the terms of a corpus, and thus to build an

ontology that specializes a generic ontology or WordNet.

Extracted domain terms are gathered and linked to con-

cepts from a generic ontology using similarity measures.

– similarly, Text-To-Onto [12] proposes to iteratively spe-

cialize a generic ontology or WordNet. Concepts and rela-

tions sort of between concepts are discovered by auto-

matic learning from examples of patterns and association

rules. Finally, the ontology is pruned according to statis-

tical measures and presented to the expert for evaluation.

– DOGMA [34] uses an approach similar to that of

ASIUM, but more automated. Candidate terms are gath-

ered according to their syntactic similarity, based primar-

ily on the verbs encountered in text. The system builds a

taxonomy of terms using a statistical approach that orga-

nizes classes of candidate terms.

– CIAULA [6] enables to build a hierarchy of verbs whose

clusters are semantically close. Verbs are clustered thanks

to a classification algorithm. The use of WordNet enables

then to select, for each cluster, the best label among the

names of WordNet synsets.

These platforms are only effective for large corpora and

are not suitable for small-volume corpora such as those of

DYNAMO. Moreover, the user of TextOntoMiner has to

be strongly qualified in NLP techniques to organize the

processes of text analysis and ontology building. Another dif-

ference is the attention given to the ontologist. In DYNAMO,

we emphasize the notion of interactive ontology “joint-

development”, i.e., the ontologist can accept, reject, or mod-

ify the proposals made by the MAS; the MAS has then to

integrate the ontologist decisions to provide new proposals

that the ontologist has then to check again, and so on.

In previous approaches, the tools are a bit less interactive

or not interactive at all; only the final ontology is proposed to



the ontologist. This postpones the validation. Furthermore,

an existing generic ontology provides the missing knowl-

edge. Finally, these works manage in a different way ontol-

ogy building and ontology evolution, whereas we want to

handle them uniformly.

6 Conclusion and Perspectives

The DYNAMO-MAS system contributes to assess the gains

brought by the MAS paradigm for building and evolving

ontologies from text. It differs from other tools by the fol-

lowing features:

1. It enables to make ontologies evolve: it supports an incre-

mental evolution by taking into account new data (new

text documents and interactions with the ontologist), and

it avoids to restart the building process from scratch;

2. It is based on the MAS paradigm to make an ontology

evolve: the originality comes from the fact that a part of

the MAS is a bijective implementation of the ontology;

3. It makes an ontology evolve at runtime with the help of

the ontologist. The ontologist can make corrections on

the ontology that will be taken into account at runtime by

the system;

4. The ontologies that are managed by DYNAMO-MAS

are defined in OWL format, a standard that makes them

easily reusable.

The experiments made with DYNAMO-MAS confirmed

that linguistic clues are not sufficient to decide the content

of an ontology and that the intervention of an ontologist is

fundamental. Thus, some concepts proposed by the MAS are

set under the DomainThing concept (ontology TOP concept).

In fact, the knowledge of the involved agents is limited and

does not allow them to be correctly set in the hierarchy of the

ontology. In addition, to reduce the task of the ontologist, we

are currently studying how to use other knowledge sources

(including other ontologies, semantic dictionaries, etc.) that

would enrich the knowledge of each agent and improve the

DYNAMO-MAS results.

Two improvements are currently on-going: (i) the defini-

tion of behaviors enabling the agents to decrease the number

of useless and wrong proposals; each agent is given the abil-

ity to detect its uselessness and (ii) the detection of more

lexical relations using external dictionaries (such as WOLF

and Wordnet) to improve each agent knowledge. The first

results are very promising; they show that 56 % of the con-

cepts and 67% of the terms proposed by the MAS were valid

according to the ontologist.

In order to test DYNAMO-MAS in context, we will pro-

vide the system to the project partners so that they can use it

for a long time period. We also want to experiment the qual-

ity of DYNAMO proposals when several ontologists modify

various ontologies.
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