
Evaluation of the OGF GridRPC Data Management

library, and study of its integration into an International

Sparse Linear Algebra Expert System

Yves Caniou, Ronan Guivarch, Gaël Le Mahec

To cite this version:

Yves Caniou, Ronan Guivarch, Gaël Le Mahec. Evaluation of the OGF GridRPC Data Man-
agement library, and study of its integration into an International Sparse Linear Algebra Expert
System. The International Symposium on Grids and Clouds - ISGC 2013, Mar 2013, Taipei,
Taiwan. pp. 1-12, 2013. <hal-01141702>

HAL Id: hal-01141702

https://hal.archives-ouvertes.fr/hal-01141702

Submitted on 13 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01141702

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12947

To cite this version : Caniou, Yves and Guivarch, Ronan and Le
Mahec, Gaël Evaluation of the OGF GridRPC Data Management
library, and study of its integration into an International Sparse Linear
Algebra Expert System. (2013) In: The International Symposium on
Grids and Clouds - ISGC 2013, 17 March 2013 - 22 March 2013
(Taipei, Taiwan, Province Of China).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12947/
http://oatao.univ-toulouse.fr/12947/
http://oatao.univ-toulouse.fr/12947/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Evaluation of the OGF GridRPC Data Management

library, and study of its integration into an

International Sparse Linear Algebra Expert System

Yves CANIOU∗†

Université de Lyon, CNRS, JFLI University of Tokyo

E-mail: Yves.Caniou@ens-lyon.fr

Ronan GUIVARCH
Université de Toulouse, INPT ENSEEIHT

E-mail: Ronan.Guivarch@enseeiht.fr

Gaël Le MAHEC
Université de Picardie Jules Verne

E-mail: Gael.Le.Mahec@u-picardie.fr

The Data Management API for the GridRPC describes an optional API that extends the GridRPC

standard. It provides a minimal subset of functions to handle a large set of data operations, among

which movement, replication, migration and stickyness. We already showed that its use leads to

1) reduced time to completion of application, since useless transfers are avoided; 2) improved

feasibility of some computations, depending on the availability of services and/or storage space

constraints; 3) complete code portability between two GridRPC middleware; and 4) seamless in-

teroperability, in our example between the French GridRPC middleware DIET and the Japanese

middleware Ninf, distributed on French and Japanese administrative domains respectively, lead-

ing to both of them contributing to the same calculus, their respective servers sharing only data

through our implementation of the GridRPC DM API.

We have extended the implementation of the library and a further integration has been made

available into DIET as a back-end of its data manager Dagda. We thus present how the library is

used in the International Sparse Linear Algebra Expert System GridTLSE which manages entire

expertises for the user, including data transfers, tasks executions, and graphical charts, to help

analysing the overall execution. GridTLSE relies on DIET to distribute computations and thus

can benefit from the persistency functionalities to provide scientists with faster results when their

expertises require the same input matrices. In addition, with the possibility for two middleware

to interact in a seamless way as long as they’re using an implementation of the GridRPC Data

Management API, new architecture of different domains can easily be integrated to the expert

system and thus helps the linear algebra community.

The International Symposium on Grids and Clouds (ISGC) 2013

17 - 22 March 2013

Academia Sinica, Taipei, Taiwan

∗Speaker.
†This work is partially founded by the Technological Development Department (D2T) at INRIA, the ANR-JST

FP3C (Framework and Programming for Post Petascale Computing) and the ANR-09-COSI-001, COOP (Multi Level

Cooperative Resource Management)

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

1. Introduction

The GridRPC API [13] was designed to define Remote Procedure Call over the Grid. It

has been widely and successfully used in middleware like DIET [8], NetSolve/GridSolve [18],

Ninf [16], OmniRPC [15] and SmartGridSolve [4]. The API concentrated on remote service ex-

ecutions: It standardized synchronous and asynchronous calls and computing tasks management.

In June 2011, the Open Grid Forum standardized the document "Data Management API within

the GridRPC" [6] which describes an API that extends the GridRPC standard [13] (GridRPC DM

API). Used in a GridRPC middleware, it provides a minimal set of structure definitions and func-

tions to handle a large set of data operations, among which movement, replication, migration, and

persistence.

A first prototype of the API containing the basic functions offering data management through

the library has been developed, in addition to a GridRPC layer making possible to write a single

GridRPC client able to invoke DIET and Ninf services transparently. With several experiments

relying on these early developments, we showed in [7] that the GridRPC DM API already answers

most of the needs presented in [12], namely code portability (the exact GridRPC code written with

the GridRPC DM API to manage data can be used with any GridRPC middleware), computational

feasibility (because of the transparent use of remote data, a GridRPC client is not required to have

data on its own system to respect the GridRPC paradigm, hence leading to the use of light client

machines), performance (useless transfers can be avoided with the use of persistence). Moreover,

we showed that it is even possible for two Grid middleware, managing resources across different

administrative domains and using the API, to collaborate in a completely transparent manner.

Although the implementation is still in progress, we show in this paper how a sparse linear al-

gebra expert system, GridTLSE1, can benefit from the use of the data management provided by the

API: we first study the possible performance improvements that can be achieved since expertises

may use several times the same matrices; then we study how using stickyness for temporary results

can lead to spare already work made in a factorization process to perform several remote solves.

In sections 2 and 3, we first recall the need for such an API for the GridRPC and summarize

its properties. Then we present the different middleware, context of the use of the library, in

Section 4. The different experiments, experimental protocols and results, are detailed in Section 5

and we conclude in Section 6.

2. State of the Art

In the GridRPC paradigm, input and output data are arguments of grpc_call() and grpc_

call_async() and are transferred between clients and servers during steps (4) and (5) of Fig-

ure 1. Thus, each Grid middleware managing its own built-in data, code portability is impossible,

and performance can only be managed bypassing the GridRPC model, even for request sequenc-

ing [3]. Many other issues arise [5], but they can only be addressed separately: one can store data

on distributed file system like GlusterFS2 or GFarm [17] to deal with automatic replication; Om-

niRPC introduced omniStorage [14] as a Data Management layer relying on several Data Managers

1http://gridtlse.org
2http://www.gluster.org/

Registry

Client ServiceCall

Results

Handle Register

Lookup
(1)

(2)
(3)

(4)

(5)

Figure 1: GridRPC paradigm

such as GFarm and Bittorrent. It aims to provide data sharing patterns (worker to worker, broadcast

and all-exchange) to optimize communications between a set of resources, but needs knowledge

on the topology and middleware deployment to be useful; DIET also introduced its own data man-

agers (JuxMEM, DTM, and DAGDA [2, 9, 10]), which focus on both user data management and

persistence of data across the resources, with transparent migrations and replications.

Overall, in addition to only fulfilling complementary services, the lack of standard makes their

implementation and usage not interoperable nor portable through different middleware, thus the

need for the GridRPC DM API standard.

3. GridRPC Data Management API

The GridRPC Data Management standard relies on the definition of 12 functions and of the

GridRPC data, which represents a Grid data, i.e., several copies of the same data stored in different

locations, and which may store a data in addition to meta-information. Among these, one can

cite the dimension of the data (vector, matrix or more complicated structures), the data type to

be able to make the relation with the language type (double, integer, etc). A new and special

type, CONTAINER_OF_GRPC_DATA, has been introduced as a set where the user can put or get

GridRPC data, and can be used with services producing a number of parameters unknown before

execution. There is also a management mode for each data: strictly volatile (the system must erase

the data from the storage resource once it has been used or transfered), volatile (the default behavior

of the GridRPC standard), sticky (a copy of the data must be maintained on the given location),

unique sticky (in addition to being maintained on the given location, that data must stay the unique

copy in the system: some systems may indeed implement some fault tolerance mechanisms and

would otherwise replicate the data, a behavior that some users do not want), or persistent (the user

relies on the GridRPC middleware and its data manager to handle in a seamless and best possible

way data management, with possible inner coupling with scheduling decisions). Finally, URI being

a description of both the location and the protocol that must be used to access a data registered in

the system, one can thus find two lists of URIs, describing where each data can be transfered from

or has to be transfered to, and a list of management modes, each of which being applied to the

corresponding data whose URI is given in the output URI list.

The API is driven by 12 functions: grpc_data_init() initializes a GridRPC data with informa-

tion describing the previously mentioned characteristics. GridRPC data referencing input parame-

ters must be initialized with identified data before being used in a grpc_call().

grpc_data_getinfo() lets the user access information like transfer status, location, etc. grpc_data

_transfer() writes data to output locations (additional ones, with their corresponding management

mode, can be given) from input locations (a list of additional input URIs can also be provided).

Consequently, some broadcast/multicast mechanisms can then be implemented in the GridRPC

data middleware in order to improve performance. grpc_unbind_data() may be used when a client

does not need the handle on the GridRPC data anymore, but to explicitly erase a data on storage

resources and free the GridRPC data, a call to grpc_free_data() must be performed. In order to

communicate a Grid data between grid users, the GridRPC data management API proposes two

functions, grpc_data_load() and grpc_data_save(). The last functions of the API are related to

inner management, to be able to address in-memory data from an URI, and to get and put GridRPC

data in a container of GridRPC data, as mentioned previously.

This work relies on the implementation of the GridRPC standard, and evaluates its integration,

and its performance both in terms of possibilities and measurements. The library is freely available

to download at https://forge.mis.u-picardie.fr/projects/gridrpcdm/. Note

that studies to integrate popular data protocols like iRods3 and OwnCloud4 are in progress.

4. Integrating GridRPC Data Management into GridTLSE

4.1 GridTLSE

The expert site GridTLSE5 for linear algebra aims at providing tools and softwares for sparse

matrices (matrices with a higher ratio of zero components versus nonzero ones). The site provides

user assistance to evaluate and choose the best solver for given problems and helps to set the

appropriate values of the input parameters that control the efficiency of the selected solver (Sparse

Direct Solvers currently available in GridTLSE are MA48, MA49, MUMPS, SuperLU, UMFPack).

The GridTLSE project uses a high level component semantic description to manipulate sparse

linear algebra services (factorization, orderings, linear solves, etc.). Figure 2 presents the different

layers of the GridTLSE platform: to provide an easy access to these services, GridTLSE uses the

scenario concept which is a graphical description of the task workflow to perform (Geos). This

description relies on a semantic description of sparse linear algebra services and tools (Prune). The

expertise engine (Weaver) takes into account the user requirements, the internal expertise scenar-

ios, the constraints on the solvers to build a dynamic experience workflow that we call expertise.

Finally, each experience of this workflow corresponds to an execution of a computation service,

which is made through calls to the DIET middleware (with the help of the GridCOM grid adaptor).

4.2 DIET, a GridRPC framework

DIET [8] (Distributed Interactive Engineering Toolbox) is a lightweight GridRPC middleware,

designed for high performance. It is highly scalable, a deployment on thousands of nodes requering

only a few minutes. It integrates many features, like customizable distributed scheduling, and can

3https://www.irods.org/
4https://owncloud.org/
5http://gridtlse.org

Figure 2: GridTLSE platform

!"#$

!"#$

!"#$

!"#$

!"#$
!"#$

%&$
%&$

'&$

'&$'&$

MA : Master Agent

LA : Local Agent

SeD : ServerDeamon

()*"+,$

'&$

()*"+,$

()*"+,$

Figure 3: A DIET hierarchy

rely on dynamic workflow management, as well as LRMS and Cloud seamless management. It is

implemented in CORBA and thus benefits from the many standardized, stable services provided

by freely-available and high performance CORBA implementations. It comprises several compo-

nents: A Client uses the DIET infrastructure to solve problems using a RPC approach. A SED

(server daemon) acts as the service provider, exporting functionalities via a standardized computa-

tional service interface; a single SED can offer any number of computational services. A SED can

also serve as the interface and execution mechanism for either a stand-alone interactive machine

or a parallel supercomputer, by directly and independently dealing with its batch scheduling facil-

ity. The third component of the DIET architecture, the agent, facilitates the service location and

invocation interactions of clients and SEDs. The DIET deployment is structured hierarchically for

improved scalability, the hierarchy of agents being composed of a single Master Agent (MA) (the

entry point) and several Local Agents (LA), providing higher-level services such as scheduling

and data management. Figure 3 shows an example of a multi-hierarchy DIET architecture.

DIET relies on DAGDA [10] to perform its data management. DAGDA can make implicit and

explicit replication, can optimize transfers by selection the most convenient source. For this work,

we implemented a "glue" for DAGDA to use the GridRPC data management library.

5. Experimentations and results

5.1 Platform of experimentation

Depicted in Figure 4, the testbed is composed of the machine running the GridTLSE web site

(and its matrix collection) in Toulouse, and a cluster in Lyon, with the MA and the client launched

on the frontal, and two SEDs running on two of its computing resources.

5.2 Validation of the integration of data management in GridTLSE

5.2.1 Methodology

Each expertise uses one of the 5 matrices given in Table 1, with their respective raw and

compressed sizes. For each expertise, we consider 3 test cases, each containing two calls to a

��������

���	

Figure 4: A geographically distributed platform of experimentation

Aster_ f eti009a_2.1 Aster_per f 001a NICE20MC QIMONDA07 FLUX −2M

Size Time Size Time Size Time Size Time Size Time

raw 1 563 - 534 224 - 895 087 - 2 195 699 - 16 007 994 -

gziped 353 0 131 813 13 205 756 20 214 549 34 3 000 860 325

Table 1: Matrices characteristics and time to decompress (sizes in KBytes, and times in seconds)

solver requesting the use of the same matrix. In the following, we give the overall duration of the

transfers of each test case, using M and Mc to name the same raw and compressed matrix, TM the

duration of the transfer of matrix M, d the duration of the decompression process, B1 bandwidth

between the machines in Lyon and the GridTLSE website, B2 between the machines in the cluster.

Test case 0 Do not use DAGDA. Transfers are explicitly made: when a service is executed on a SED, it

downloads the gzipped matrix from the GridTLSE website. Hence, two transfers occur and

D0 = (TMc/B1 +d)∗2

Test case 1 Use DAGDA. The client downloads the gzipped matrix from the GridTLSE site, uncom-

presses and registers it into DAGDA by sending the uncompressed matrix to the MA. Then

the SED downloads the matrix from the MA. When the second call is performed on the same

SED, there is still a copy of the matrix on the SED, so the data is immediately available and

D1 = (TMc/B1 +d)+TM/B2

Test case 2 Use DAGDA. The expertise is the same than for Test cases 0 and 1, but the second execution

is conducted on a different computing resource, thus an additional transfer from the MA

(but more generally DAGDA is able to choose the best location from where to download data

depending on internal statistics and monitoring). Hence we have D2 = (TMc/B1 + d)+ 2 ∗

TM/B2

Figure 5: Results for each expertise on all the test cases

5.2.2 Results

Apart from Aster_feti009a_2.1 whose timings are too small to be really meaningful,

results depicted in Figure 5 are really interesting. Similar experiments were conducted in [11],

but results are slightly different here, because of a network bandwidth whose performance has

increased and DAGDA which relies on the GridRPC data management library. Indeed, apart from

the expertise using FLUX-2M, for which DAGDA shows a real improvement as long as a matrix

is used at least twice in an expertise, we can see that the cost to register a matrix in the data

management layer is higher than expected: for Aster_perf001a and NICE20MC the expertise

(2 GridRPC calls) finishes in the same range of time for TC0, TC1 and TC2, but actually the two

calls for TC1 finish nearly at the same time. Of course, TC2 involving an additional local transfer,

it conducts to a slightly worse time to complete the expertise. For QIMONDA07, as long as fewer

expertises use a matrix less than 3 times, direct download from the GridTLSE website gives a

smaller expertise duration.

5.2.3 Remarks

Overall the results presented in the previous section can be considered as the minimum gain

that can be achieved for an expertise. Indeed 1) our cases do not consider the fact that several

expertises can be performed in parallel, and thus transfers are made in parallel, sharing the network

resource and taking more time; 2) if expertises are executed on the same parallel machine, and use

the same matrix (or matrices), there is only one transfer using DAGDA, improving by far the time

to completion of the study; 3) DAGDA smartly manages storage memory (in a Least Recently Used

– LRU – or Least Frequently Used manner – LFU –), so that matrices are still available locally

as long as the platform is deployed and there is still memory available; 4) in this study, a matrix

is only used twice: in a complex expertise analysis, where a scientist wants to study the effect of

some scheduling parameters, gains are cumulative. Hence negative results such as for the expertise

using QIMONDA07 would rarely happen and could be easily avoided, by storing both compressed

and non-compressed data; 5) finally, the issue for QIMONDA07 being known, we will improve the

solution with additional work in order to avoid the transfers from and to the MA.

Moreover, as shown in [7], more GridRPC-driven architectures may be available in a seamless

way with all the benefits of the implemented solution. This leads to good expectations on a wider

platform (French-Japanese for example) since using DAGDA leads to automatic, yet transparent of

use, replicates on components of the DAGDA hierarchy.

5.3 Improving GridTLSE expertises with the use of factor files

We consider now a second example that manipulates another kind of data: the factor files

resulting from the factorization of a matrix.

5.3.1 Methodology

Numerical context

A typical direct solver for solving sparse linear system Ax = b consists of 3 different steps:

1. a symbolic factorization that determines the nonzeros structures of the factors L and U

2. a numerical factorization that computes the factors L and U such that L.U = A

3. a solve step

One can see that it is interesting to separate steps 1 and 2 from step 3: for an unique factoriza-

tion, we can perform multiple solves with different values of the right hand side (RHS) b.

This situation arises in many scientific fields when there are multiple systems to solve with the

same matrix either in a simultaneous (parallel) or sequential way. For instance, different systems

are solved to evaluated a solution field, function of a wave frequency: for each selected frequency,

there is a different RHS. Alternatively, in an evolution problem where, at each time step k, there is

a system Axk = bk to solve.

Therefore if we are able to save the factors after the factorization steps, we can have two

separate pieces of software: one that performs the factorization and dumps the factor on disk; one

that loads the factor and performs a solve.

Not all direct solvers offer the dump/load functionalities that are able to manage big matrices.

The forthcoming version 5.0 of MUMPS [1] enables us to write such pieces of software.

Implementation in GridTLSE

We can describe the computation to perform a complete direct solve as a workflow. Figure 6

shows the workflow implemented in GridTLSE.

Facto

opExec
opTrans

A

in.txt out.txt in.txt

Solve

opExec

FactorFiles

out.txt

x

b

Figure 6: A direct solve as a workflow in GridTLSE

In the previous version (called http version), the factor files are uploaded to the GridTLSE

website by the DIET SeD that performs the factorization. The SeD that computes the solution

downloads these files at the beginning of its work.

twotone Bmw3_2 human_gene1

Size Time Size Time Size Time

raw 26509 - 132765 - 378890 -

gziped 5434 0.4 35113 3 135785 10

Table 2: Matrices characteristics and time to decompress (sizes in KBytes, and times in seconds)

The new version (called dagda version) uses DAGDA. The factor files are registered into

DAGDA at the end of the factorization step with no upload to the website. If the solve is performed

on the same cluster or even better, on the same machine, it can rapidly retrieve the factor files.

5.3.2 Results

We perform different experiments with the selection of matrices detailed in Table 2; the size of

the resulting factors is the main parameter to show the gain of time when we avoid the communica-

tion of the factor files between the cluster and the GridTLSE website. Table 3 presents the obtained

results with or without compression and with or without advanced data management features. For

these experiments, we used the test cases TC0, TC1 and TC2 of Section 5.2.1. We can clearly

notice the benefit of using the GridRPC Data Management library through DAGDA when we look

at the total time6.

Concerning the different compressions, when we are using the http version, we can say that

gzip compression gives the best results: the smaller time in transfer due the reduced size with lzma

does not compensate the larger time spent in the compression and decompression steps.

6the time of all steps are not given

Compression / Up./Down.

Matrix Matrix Factor Decompression SuppFiles Facto. Solve Total

Size Size Times Times Time Time Time

twotone

TC0

5.56MB

394MB - / - 37 / 204 s. 38.46 s. 1.45 s. 305 s.

TC0 (gzip) 160MB 27 / 5 s. 17 / 82 s. 38.28 s. 1.44 s. 200 s.

TC0 (lzma) 147MB 492 / 39 s. 16 / 76 s. 38.34 s. 1.42 s. 689 s.

TC1 394MB - / - 0 / 0 s. 38.24 s. 1.44 s. 60 s.

TC2 394MB - / - 0 / 22 s. 38.24 s. 1.44 s. 105 s.

BMW3 2

TC0

36MB

695MB - / - 63 / 356 s. 44.15 s. 3.05 s. 555 s.

TC0 (gzip) 485MB 63 / 12 s. 45 / 242 s. 45.13 s. 3.05 s. 507 s.

TC0 (lzma) 462MB 811 / 117 s. 43 / 232 s. 44.15 s. 3.06 s. 1355 s.

TC1 485MB - / - 0 / 0 s. 44.39 s. 3.05 s. 124 s.

TC2 485MB - / - 0 / 39 s. 44.39 s. 3.05 s. 185 s.

human gene1

TC0

139MB

1689MB - / - 151 / 761 s. 638 s. 10 s. 2203 s.

TC0 (gzip) 1412MB 183 / 50 s. 126 / 729 s. 630 s. 10 s. 2442 s.

TC0 (lzma) 1356MB 2195 / 345 s. 121 / 613 s. 645 s. 9 s. 4711 s.

TC1 1689MB - / - 0 / 0 s. 639 s. 11 s. 1361 s.

TC2 1689MB - / - 0 / 96 s. 639 s. 11 s. 1480 s.

Table 3: Experiments results for three matrices, three test cases and two compression algorithms

6. Conclusion and future work

We have presented the first evaluation of the benefits obtained by the extension of the GridRPC

API OGF standard concerning data management, i.e., the GridRPC Data Management GFD-R-

P.186 OGF standard, in the context of real computations required for a sparse linear algebra expert

system, GridTLSE.

We have conducted several experiments. The experiments for validation showed us that the

proposed solution is interesting if the same matrix is used more than a couple of times in an exper-

tise. Of course, in a production environment, some gains would rapidly be obtained since different

expertises are generated by GridTLSE, and they may use the same input matrices. But some addi-

tional work on the architecture of the solution, i.e., the integration of GridTLSE and DIET, together

with the use of the data management, can improve the solution by overlapping given operations and

thus reducing the time spent to register a new data in the system.

We also studied the possibility of using the factor files produced by direct solver MUMPS, in

order to split the factorization step and the solve step. The experiments clearly demonstrated that

the new pieces of software developed for this study perform much better than the basic approach.

They should be integrated in the production expert site soon.

Future work will go towards the development of the full API (some functions are still miss-

ing), also taking into account other protocols such as GridFTP, iRods and OwnCloud if possible.

We will continue our work in the Open Grid Forum GridRPC working group: recommendations

and possible extensions to the API are possible, but it will depend on the final users’/developers’

remarks. We are eager to get different use-cases and users’ feedback.

On the numerical side, future work will focus on the two following directions: 1) When a

full direct solve expertise is launched, there may be no need to perform the factorization step if

it has already been processed before, for the need of another expertise for example. Mechanisms

have thus to be deployed inside the expertise engine to detect this situation. For instance, we could

verify if the factor files corresponding to the matrix are already registered in the data manager (to

avoid the factorization step). This could actually be done at the middleware level or in Weaver, the

expertise engine of GridTLSE in connection with the DAGDA data manager. 2) Extend our work

to the parallel version of the direct solvers. That will induce a more complicated data management

than with the sequential version, in addition to automatic job management with regard to LRMS

systems.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver

using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications,

23(1):15–41, 2001.

[2] G. Antoniu, M. Bertier, L. Bougé, E. Caron, F. Desprez, Mathieu Jan, S. Monnet, and P. Sens. GDS:

An architecture proposal for a grid data-sharing service. In V. Getov, D. Laforenza, and A. Reinefeld,

editors, Future Generation Grids, volume XVIII, CoreGrid Series of Proceedings of the Workshop on

Future Generation Grids November 1-5, 2004, Dagstuhl, Germany. Springer Verlag, 2006.

[3] D.C. Arnold, D. Bachmann, and J. Dongarra. Request sequencing: Optimizing communication for the

Grid. In EUROPAR: Parallel Processing, 6th International EURO-PAR Conference. LNCS, 2000.

[4] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve: Achieving higher

performance by improving the GridRPC model. In The 9th IEEE/ACM ICGC, 2008.

[5] Y. Caniou, E. Caron, G. Le Mahec, and H. Nakada. Standardized data management in GridRPC

environments. In 6th International Conference on Computer Sciences and Convergence Information

Technology, ICCIT’11, Jeju Island, Korea, Nov. 29 - Dec. 1 2011. IEEE.

[6] Y. Caniou, E. Caron, G. Le Mahec, and H. Nakada. Data management API within the GridRPC. In

GFD-R-P.186, June 2011.

[7] Yves Caniou, Eddy Caron, Gaël Le Mahec, and Hidemoto Nakada. Transparent Collaboration of

GridRPC Middleware using the OGF Standardized GridRPC Data Management API. In The

International Symposium on Grids and Clouds (ISGC), page 12p. Proceedings of Science, February

26 - March 2 2012.

[8] E. Caron and F. Desprez. DIET: A scalable toolbox to build network enabled servers on the grid. In

International Journal of High Performance Computing Applications, volume 20(3), pages 335–352,

2006.

[9] B. Del-Fabbro, D. Laiymani, J.M. Nicod, and L. Philippe. DTM: a service for managing data

persistency and data replication in network-enabled server environments. Concurrency and

Computation: Practice and Experience, 19(16):2125–2140, 2007.

[10] F. Desprez, E. Caron, and G. Le Mahec. DAGDA: Data Arrangement for the Grid and Distributed

Applications. In AHEMA 2008. International Workshop on Advances in High-Performance

E-Science Middleware and Applications. In conjunction with eScience 2008, pages 680–687,

Indianapolis, Indiana, USA, December 2008.

[11] Frédéric Camillo, Yves Caniou, Benjamin Depardon, Ronan Guivarch, and Gaël Le Mahec. Design

of an international sparse linear algebra expert system relying on an OGF GridRPC Data Management

GridRPC system. In 7th International Conference on Computer Sciences and Convergence

Information Technology, ICCIT’12, pages 176–181, Seoul, Korea, dec 2012. IEEE.

[12] Frédéric Camillo, Yves Caniou, Benjamin Depardon, Ronan Guivarch, and Gaël Le Mahec.

Improvement of the data management in gridtlse, a sparse linear algebra expert system. JCIT: Journal

of Convergence Information Technology, 8(6):562–571, 2013.

[13] H. Nakada, S. Matsuoka, K. Seymour, J.J. Dongarra, C. Lee, and H. Casanova. A GridRPC model

and API for end-user applications. In GFD-R.052, GridRPC Working Group, June 2007.

[14] Y. Nakajima, Y. Aida, M. Sato, and O. Tatebe. Performance evaluation of data management layer by

data sharing patterns for GridRPC applications. In LNCS Euro-Par 2008 - Parallel Processing,

volume 5168, pages 554–564, 2008.

[15] M Sato, M Hirano, Y Tanaka, and S Sekiguchi. OmniRPC: a GridRPC facility for cluster and global

computing in OpenMP. OpenMP Shared Memory Parallel Programming, 2104:130–136, 2001.

[16] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A reference

implementation of RPC-based programming middleware for grid computing. Journal of Grid

Computing, 1(1):41–51, 2003.

[17] O. Tatebe, K. Hiraga, and N. Soda. Gfarm grid file system. New Generation Computing, 28:257–275,

2010.

[18] A. YarKhan, J. Dongarra, and K. Seymour. GridSolve: The evolution of network enabled solver. In

James C. T. Pool Patrick Gaffney, editor, Grid-Based Problem Solving Environments: IFIP TC2/WG

2.5 Working Conference on Grid-Based Problem Solving Environments (Prescott, AZ, July 2006),

pages 215–226. Springer, 2007.

