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On the informational comparison

of qualitative fuzzy measures

Didier Dubois1 Henri Prade1 Agnès Rico2

1 IRIT, CNRS and Université de Toulouse, France, {dubois, prade}@irit.fr
2 ERIC, Université de Lyon, France, agnes.rico@univ-lyon1.fr

Abstract. Fuzzy measures or capacities are the most general represen-
tation of uncertainty functions. However, this general class has been little
explored from the point of view of its information content, when degrees
of uncertainty are not supposed to be numerical, and belong to a finite
qualitative scale, except in the case of possibility or necessity measures.
The thrust of the paper is to define an ordering relation on the set of
qualitative capacities expressing the idea that one is more informative
than another, in agreement with the possibilistic notion of relative speci-
ficity. To this aim, we show that the class of qualitative capacities can
be partitioned into equivalence classes of functions containing the same
amount of information. They only differ by the underlying epistemic atti-
tude such as pessimism or optimism. A meaningful information ordering
between capacities can be defined on the basis of the most pessimistic
(resp. optimistic) representatives of their equivalence classes. It is shown
that, while qualitative capacities bear strong similarities to belief func-
tions, such an analogy can be misleading when it comes to information
content.

Keywords: Fuzzy measures, possibility theory, qualitative reasoning,
information content

1 Introduction

Qualitative fuzzy measures (or q-capacities) are monotonic set-functions on a fi-
nite set with a range in a finite totally ordered set. They are instrumental in the
representation of uncertainty of events, or yet, of the relative weights of groups
of criteria in multicriteria evaluation, in the non-numerical environment, when
likelihood or value scales are just totally or partially ordered sets, e.g. complete
lattices [6]. An important issue to be clarified, if q-capacites are to be seriously
considered as a tool for representing uncertainty, is the one of information con-
tent, and more generally the comparison of q-capacities in terms of their relative
information content.

Important special cases of q-capacities are possibility and necessity measures
[4]. For the latter set-functions, there is an abundant literature concerning in-
formation comparison, based on the notion of relative specificity [15, 4]. Namely,
a possibility (or a necessity) measure is entirely characterized by a possibility



distribution over the elementary events, that defines a fuzzy set, and informa-
tion comparison is carried out using fuzzy set inclusion, whereby a fuzzy set
is more specific than another one, if and only if the former is a subset of the
latter. However, there is almost no literature on the informational comparison
of q-capacities in the general case. Some authors [11] have proposed notions of
entropy for discrete capacities that evaluate the diversity of the coefficients ap-
pearing in the set-function. Our aim is rather to extend the specificity ordering
to general q-capacities.

To do so, one may get inspiration from the theory of belief functions, where
several informational orderings of various strength have been defined [14, 3]. A
belief function is a ∞-monotone set-function, that can be defined by means of a
probability distribution over a power set (its Moebius transform), the degree of
belief of an event summing the probability weights of all subevents that imply it.
A belief function is then more informative than another if the former is eventwise
greater than the latter. Another stronger definition, called specialisation, is based
on the inclusion of focal sets. In the qualitative setting, it is also possible to
compare q-capacities in an eventwise way. Besides, a qualitative counterpart of
the Moebius transform can be defined, and a qualitative form of specialisation
can be defined as well [13]. However, when indistinctly applied to q-capacites
(like possibility and necessity measures), these definitions, even if formally well-
defined, seem to baffle intuition.

In this paper, we try to provide a meaningful notion of information com-
parison between capacities, noticing that q-capacities differ not only by their
information content, but also by the range of attitudes towards uncertainty they
may encode. For instance, based on a given possibility distribution, the possi-
bility measure is optimistic and the necessity measure is pessimistic [9], but one
may argue they have the same information content.

2 Framework and notations

We consider a finite set (of states, criteria, etc.) S = {s1, · · · , sn} and a finite
totally ordered scale L with top 1 and bottom 0. Let min denote the minimum,
max the maximum. Moreover L is equipped with an involutive negation ν. A
q-capacity is a mapping γ : 2S → L such that γ(∅) = 0, γ(S) = 1, and if A ⊆ B
then γ(A) ≤ γ(B). When L = {0, 1}, γ is called a Boolean capacity.

A special case of capacity is a possibility measure defined with a possibil-
ity distribution π : S → L. The possibility measure is defined by Π(A) =
maxs∈A π(s). The value π(s) is understood as the possibility that s be the ac-
tual state of the world. Precise information corresponds to the situation where
∃s∗, π(s∗) = 1 and ∀s 6= s∗, π(s) = 0. Complete ignorance is represented by
the vacuous possibility distribution π? such that ∀s ∈ S, π?(s) = 1. A possi-
bility distribution π is more specific than another possibility distribution ρ if
∀s ∈ S, π(s) ≤ ρ(s) [15, 4]. This definition makes perfect sense since the set of
possible values represented by π is smaller, hence more precise, than the one
represented by ρ.



The q-capacity conjugate of γ, denoted by γc, is defined using the involutive
negation ν by γc(A) = ν(γ(Ac)) ∀A ⊆ S, where Ac is the complement of the set
A. In particular, the conjugate of a possibility measure is a necessity measure
which is of the form N(A) = ν(maxs6∈A π(s)).

The inner qualitative Moebius transform of γ is a mapping γ# : 2S → L
defined by γ#(E) = γ(E) if γ(E) > maxB⊂E γ(B) and 0 otherwise [10, 12]. It
contains the minimal information that is sufficient to reconstruct γ as γ(A) =
maxE⊆A γ#(E). Let Fγ = {E, γ#(E) > 0} denote the family of so-called fo-
cal sets associated to γ. Note that the inner qualitative Moebius transform of
γ is strictly monotonic with inclusion on Fγ . The inner qualitative Moebius
transforms of a possibility measure Π coincides with its possibility distribution
π (focal sets are singletons) while the focal sets of a necessity measure N are
nested (the cuts of π).

3 Can we transfer quantitative definitions of information

comparison to the qualitative setting?

When comparing capacities γ and δ, the inequality γ ≤ δ is not always expressing
something relevant about how informative γ is with respect to δ. Indeed, for
instance if γ is the vacuous possibility function Π?(A) = 1 if A 6= ∅ and δ is the
vacuous necessity function N?(A) = 0 if A 6= Ω, we have Π? > N?. However,
they have exactly the same information content since based on the vacuous
possibility distribution assigning 1 to all elements of S and they are maximally
uniformative among other possibility and necessity functions.

In the numerical setting, information comparison relations exist especially in
the setting of belief functions. A belief function on S is defined by means of a
probability distribution m over 2S \ {∅} as

Bel(A) =
∑

E,E⊆A

m(E), ∀A ⊆ S. (1)

The conjugate functions are plausibility measures defined by Pl(A) = 1 −
Bel(Ac). Bel(A) = 1 expresses full certainty of A, since then Pl(Ac) = 0 ex-
presses that the complement Ac is impossible.

There are several definitions of information comparison for belief functions. A
belief function Bel1 is said to be more informative (in the wide sense) than Bel2
if ∀A ⊆ S,Bel1(A) ≥ Bel2(A). This is due to the fact that Bel1 assigns greater
degrees of certainty to events (while Bel(A) = 0 expresses no information).
In terms of imprecise probabilities, it is equivalent to have the inclusion {P :
P ≥ Bel1} ⊆ {P : P ≥ Bel2}. And notice that for plausibility functions the
inequality is reversed (Pl1(A) ≤ Pl2(A)).

Another information comparison method is based on specialisation, that relies
on the mass assignments : m1 is a specialization of m2 (denoted by m1 ⊑s m2) if
and only if there exists a joint mass x(A,B) with marginalsm1 andm2, such that
x(A,B) = 0 whenever A * B,A ∈ F1, B ∈ F2. It expresses inclusion between



focal sets of Bel1 and Bel2, that is sets E with mi(E) > 0. It can be checked
that m1 ⊑s m2 implies that Bel1 is more informative (in the wide sense) than
Bel2, but not conversely.

There is a formal analogy between q-capacities and belief functions, since
γ(A) = maxE,E⊆A γ#(E), whereby γ# plays the role of a mass assignment,
and

∑

turns into max. This is why it is then tempting to consider γ as more
informative than δ whenever ∀A ⊆ S, γ(A) ≥ δ(A). This is all the more natural
as the following result, adapted from [13], holds:

Proposition 1. ∀A ⊆ S, γ(A) ≥ δ(A) if and only if ∀F ∈ Fδ, ∃E ∈ Fγ s.t.
E ⊆ F , γ#(E) ≥ δ#(F ).

Proof: γ(A) ≥ δ(A) writes maxE,E⊆A γ#(E) ≥ maxF,F⊆A δ#(F ). Suppose
A = F is a focal set of δ. Then the latter is equivalent to maxE,E⊆F γ#(E) ≥
δ#(F ), hence to ∀F ∈ Fδ, ∃E ∈ Fγ s.t. E ⊆ F and γ#(E) ≥ δ#(F ).
Conversely, suppose the latter holds. If δ(A) = 0 then the result is obvious. If
δ(A) 6= 0 hence let us consider F the focal element included in A such that
δ(A) = δ#(F ). There exists E a focal element of γ included in F such that
γ#(E) ≥ δ(A). We have E ⊆ F ⊆ A so γ(A) ≥ γ#(E) ≥ δ(A). �

The condition ∀F ∈ Fδ, ∃E ∈ Fγ s.t. E ⊆ F , γ#(E) ≥ δ#(F ) is clearly a
qualitative rendering of the specialisation relation. It formally means that for
any focal set F of δ there is a more important and more precise focal subset
of γ, that explains the domination of γ over δ. Here, the two definitions of
informational comparison are equivalent, which departs from the quantitative
case.

However, this result is misleading. Neither the values of their lower Moebius
transforms γ# and δ#, nor the size of focal sets A,B with γ#(A) > 0 and
δ#(B) > 0 tell us much on their information content. For instance, focal sets of
the vacuous possibility measure Π? are all singletons, and the unique focal set
of N? is the whole set S. Viewing γ as a counterpart to belief functions w.r.t.
γ# is thus not appropriate.

In such a context this article focuses on a basic question: When does a q-
capacity represent the idea of certainty like belief functions, when does it repre-
sent plausibility (the conjugate of a belief functions)? In other words, when it is
uncertainty-averse or pessimistic ? When it is uncertainty-prone or optimistic ?

4 Optimistic and pessimistic q-capacities

Given a possibility distribution π the corresponding Π is optimistic in the sense
that Π({s}) = 1 as soon as s is fully possible (among other states); and its
corresponding conjugate N = Πc is pessimistic, in particular N({s}) = 0, ∀s ∈ S
as soon as two distinct elements in S are fully possible. More generally, N(A) ≤
Π(A), ∀A ⊆ S and more specifically N(A) > 0 implies Π(A) = 1. Finally,
N(A) = 1 expresses full certainty while Π(A) = 1 just expresses a lack of
surprise for the occurrence of A. Likewise, belief functions are pessimistic while



their conjugate plausibility functions, which rely on the same mass function, are
optimistic.

The above considerations motivate the following definition.

Definition 1. A q-capacity γ is said to be pessimistic (resp. optimistic) if γ ≤
γc (resp. if γ ≥ γc).

This definition first appears in [6] where a pessimistic (resp. optimistic) capacity
is called uncertainty-averse (resp: uncertainty-prone). It is easy to see that:

– a q-capacity may be neither pessimistic nor optimistic. There may exist A,B
such that γ(A) < γc(A) (pessimistic for A), and γ(B) > γc(B) (optimistic
for B).

– a q-capacity may be both : γ = γc is possible. For instance with Boolean
q-capacities (L = {0, 1}) on a space with 2n + 1 elements, γn(A) = 1 if
|A| > n and 0 otherwise.

To check if a capacity is pessimistic, it is enough to check the property γ(A) ≤
γc(A) for focal sets. For if A is not focal, then there is a focal set E contained
in A such that γ(A) = γ(E), and it is clear that if γ(E) ≤ γc(E) then γ(A) ≤
γc(E) ≤ γc(A), since A ⊆ E. This remark helps checking the pessimism of γ.

Proposition 2. The following properties hold:

– If γ is pessimistic then γ(A) = 1 implies γ(Ac) = 0. For Boolean capacities,
γ is pessimistic if and only if min(γ(A), γ(Ac)) = 0.

– If γ is optimistic then γ(A) = 0 implies γ(Ac) = 1. For Boolean capacities,
γ is optimistic if and only if max(γ(A), γ(Ac)) = 1.

Proof: Let us suppose γ pessimistic and γ(A) = 1. Then γc(A) = 1, hence
γ(Ac) = 0. Conversely in the binary case, either γ(A) = 0 and then γ(A) ≤
γc(A), or γ(Ac) = 0 then γc(A) = 1 and γ(A) ≤ γc(A).

The proof for the optimistic case is similar. �

Note that we find a result proved in [2]. In that paper, a preference relation
between acts represented by functions is called strongly pessimistic (resp. opti-
mistic) if and only if it is represented by a Sugeno integral with respect to a neces-
sity measure (resp. possibility measure). In that paper, contrary to ours, a pref-
erence relation is called pessimistic (resp. optimistic ) the relation is represented
with a Sugeno integral with respect to capacity γ such that min(γ(A), γ(Ac)) = 0
(resp. max(γ(A), γ(Ac)) = 1) 3. Here we shall respectively call such capacities
strictly pessimistic (resp. optimistic). Strictly pessimistic capacities are indeed
special cases of pessimistic ones:

Proposition 3. If a capacity is such that for all subsets A, min(γ(A), γ(Ac)) =
0 then it is pessimistic.

Proof: Suppose γ is not pessimistic. Then ∃A, γ(A) > ν(γ(Ac)). Hence
γ(A) > 0, but then by assumption, γ(Ac) = 0, hence γ(A) > 1, which is impos-
sible. �.
3 In the case of Boolean functions, Sugeno integral reduces to a capacity.



Considering a capacity γ, for each α > 0 ∈ L we can define a Boolean capacity
γα called its α-cut, as follows: for all A ⊆ S, γα(A) is equal to 1 if γ(A) ≥ α
and 0 otherwise. Then, γ = maxα∈L min(α, γα), Fγ = ∪α∈LF

(γα), and we can
show:

Proposition 4. A capacity is strictly pessimistic if and only if ∀α > 0 ∈ L, γα

is pessimistic.
Proof: : If ∃A,α > 0 : min(γ(A), γ(Ac)) = α, then γα(A) = γα(Ac) = 1

hence by Proposition 2, γα is not pessimistic. The converse is obvious. �

We can moreover describe the topological features of families of focal sets of
pessimistic q-capacities:

Proposition 5. γ is a pessimistic q-capacity if and only if any two focal sets E
and F that have empty intersection satisfy γ#(E) ≤ ν(γ#(F )).

Proof: γ ≤ γc if and only if ∀E ∈ Fγ , γ#(E) ≤ ν(γ(Ec)). But γ(Ec) =
maxF :F∩E=∅ γ#(F ). So γ#(E) ≤ minF :F∩E=∅ ν(γ#(F )). �

The condition γ#(F ) > ν(γ#(E)) that prevents disjoint focal sets means that
weights γ#(F ), γ#(E) are both high enough. In particular, the focal sets E of
a pessimistic γ such that γ#(E) > ν(γ#(E)) (i.e., weights of focal sets in the
upper part of the value scale) intersect pairwisely. All focal sets intersect the focal
set with weight 1. And if the focal sets of a q-capacity all pairwisely intersect,
then the q-capacity is pessimistic. This property is characteristic for Boolean
capacities: γ is a pessimistic Boolean capacity if and only if the intersection of
two focal sets is not empty.

In the non-Boolean case, one may have disjoint focal sets with small enough
weights inside or overlapping focal sets with high weights.

Example 1. Consider a q-capacity with 4 focal sets, E,F,G1, G2 such that F ⊆
E, Gi ∩E 6= ∅ for i = 1, 2, and F,G1, G2 are disjoint (Fig. 1). Assume γ#(E) =
1, γ#(F ) = α > ν(α), and γ#(Gi) = βi < ν(α). Then it is easy to check that γ is
pessimistic, since γc(E) = 1, γc(F ) = ν(max(β1, β2)) > α, γc(Gi) = ν(α) > βi.

Fig. 1. Focal sets of a pessimistic q-capacity

For optimistic capacities one gets dual results:

Proposition 6. Let γ be an optimistic q-capacity. If A is a focal set such that
γ(A) 6= 1 then Ac contains a focal set of γ.

Proof: Let A be a focal set of γ. γ(A) = α entails γ(Ac) ≥ ν(α) > 0. �

So for each A such that γ#(A) 6= 1 we can find another focal set B such that
A∩B = ∅. It means that the focal sets of optimistic capacities tend to be disjoint
while those of pessimistic capacities tend to overlap. The precise description of
focal sets of optimistic capacities can benefit from the knowledge of the focal
sets of pessimistic ones, as explained in [8].



5 Entailment between capacities

Based on the above considerations, it makes sense to consider the following
definition:

Definition 2. If γ1 and γ2 are two pessimistic capacities then γ1 is more infor-
mative than γ2 if and only if γ1 ≥ γ2 (eventwise).

Indeed, if a pessimistic q-capacity γ1 assigns a high value to event A, then it
will assign a very small value to its complement. In particular γ1(A) = 1 implies
γ1(A

c) = 0 (since ν(γ1(A
c)) = 1), so that this kind of capacity expresses the

idea of certainty, while its conjugate expresses the notion of plausibility [5] and
satisfies the opposite statement. Hence if γ1 systematically assigns a certainty
value higher than or equal to the one assigned by γ2 to events, the former provides
more information than the latter.

Note that by construction, γ1 ≥ γ2 is equivalent to

[γ1(A), γ
c
1(A)] ⊆ [γ2(A), γ

c
2(A)], ∀A ⊆ S.

In fact γ1 and its conjugate contain the same amount of information but
differ by the attitude toward uncertainty. As pointed out in [5], the width of
the interval [γ1(A), γ

c
1(A)] reflects the quantity of ignorance regarding event A,

namely, for any pessimistic capacity

– γ1(A) = 1(= γc
1(A)) expresses the certainty of A.

– γc
1(A) = 0(= γ1(A)) expresses the impossibility of A.

– γc
1(A) = 1 and γ1(A) = 0 expresses total ignorance regarding A.

Note that if the optimistic capacities are two possibility measures, this notion
of relative information content reduces to the specificity ordering: Π1 is more
informative than Π2 if and only if Π1 ≤ Π2 if and only if π1 is more specific
than π2, i.e. π1 ≤ π2.

Given a capacity γ one can derive its pessimistic and optimistic versions
(respectively called assurance and opportunity functions by Yager [16]):

Definition 3. The pessimistic version of a q-capacity γ is γ∗(A) = min(γ(A), γc(A))
and its optimistic version is γ∗(A) = max(γ(A), γc(A)).

Note that γ∗ and γ∗ are both q-capacities (monotonic increasing with inclusion),
and, by construction, γ∗ is the ν-conjugate of γ∗ (i.e. γ∗ = γc

∗) So each has the
same information content as the other.

In such a context we can introduce a relation ≈ between q-capacities express-
ing the idea of containing the same amount of information :

Definition 4. γ and δ contain the same amount of information, denoted by
γ ≈ δ if and only if γ∗ = δ∗ and γ∗ = δ∗.

This is an equivalence relation on the set of L-valued q-capacities on S. Note
that we have γ∗ = δ∗ if and only if γ∗ = δ∗; so we just need to consider one



equality. If γ∗ = δ∗ it means that for all subsets A of S, the sets of values
{γ(A), γ(Ac)} and {δ(A), δ(Ac)} are equal. So for each event A we must decide
the attitude in front of uncertainty : pessimistic if we assign the least value,
optimistic if we assign the greatest one (while respecting monotonicity).

Proposition 7. The equivalence class C≈(γ) of γ is upper bounded by γ∗ and
lower-bounded by γ∗.

Proof: min(γ∗, γ
c
∗) = γ∗ so γ∗ ∈ C≈(γ) and γ∗ ≥ minδ∈C≈(γ) δ. Moreover for

all δ ∈ C≈(γ) we have δ ≥ min(δ, δc) = δ∗ = γ∗ which entails minδ∈C≈(γ) δ ≥ γ∗.
So minδ∈C≈(γ) δ = γ∗. Similarly, we can prove that maxδ∈C≈(γ) δ = γ∗. �

If δ ∈ C≈(γ) is a pessimistic q-capacity, then min(δ, δc) = δ = γ∗ so γ∗
is the unique pessimistic q-capacity in C≈(γ). Similarly one obtains that γ∗ is
the unique optimistic q-capacity in C≈(γ). As a consequence, we must com-
pare q-capacities in terms of their information content via a comparison of their
equivalence classes, which justifies the following definition :

Definition 5. A q-capacity γ is said to be to be more informative than a q-
capacity δ in the wide sense if and only if γ∗ ≥ δ∗.

Likewise we can compare two q-capacities in terms of their relative pessimism
in front of uncertainty by means of another relation:

Definition 6. A q-capacity γ is said to be to be less pessimistic than a q-capacity
δ in the wide sense if and only if {A : γ(A) = γ∗(A)} ⊆ {A : δ(A) = δ∗(A)}.

These definitions completely disentangle the two aspects carried by q-capacities:
namely the attitude in front of uncertainty and the information content, in agree-
ment with possibilistic specificity.

6 Particular cases

We consider in fact extreme cases of q-capacities.

Complete ignorance We consider the q-capacity defined by γ(S) = 1 and
γ(A) = 0 otherwise. This is nothing but the vacuous necessity measure N?

whose conjugate is Π?. Clearly, N? is pessimistic and and it is less informative
than any capacity, since [N?(A), Π?(A)] = [0, 1] for A 6= S, ∅.

Precise information For each element si in S we define the following q-

capacity σi(A) =

{

1 if si ∈ A
0 otherwise

. It represents the precise information x = si.

Note that σi = σc
i is self-conjugate, so we have σi∗ = σ∗

i = σi. Some obvious
remarks concerning this familly of q-capacities:

– If we consider two q-capacities σi and σj with si 6= sj then neither of the
two is more informative than the other.



– σi and σj contain the same information if and only if si = sj .
– C≈(σi) = {σi}, which is obvious since it is self-conjugate.
– There is no pessimistic q-capacity γ 6= σi such that γ ≥ σi. Indeed σi is self-

conjugate and [σi∗(A), σ
∗
i (A)] reduces to 0 or 1, i.e., cannot contain the non-

trivial intervals [γ∗(A), γ
∗(A)]. For each capacity γ, either the information

content of γ and σi are incomparable or γ is less informative than σi.

Self-conjugate q-capacities In the numerical setting the most well-known
self-conjugate capacities are probability measures that cannot be defined here,
but for the precise q-capacities σi. Self-conjugate capacities σ are such that
∀A ⊆ S, σ(A) = ν(σ(Ac)) = σc(A). They are at the same time pessimistic and
optimistic. It is then obvious that they are maximally specific: there is no ca-
pacity that is more informative than any σ since the intervals [σ∗(A), σ

∗(A)] are
reduced to points, hence cannot contain [γ∗(A), γ

∗(A)] for any γ 6= σ. A remark-
able subclass of self-conjugate capacities are symmetric ones, where γ(A) = α|A|

only depend on the cardinality of A, α|A| = ν(α|S\A|) ≥ α|S\A| if |A| ≥ |S|/2.
They are completely defined by a strictly increasing sequence of n = |S| co-
efficients αi such that αi = ν(αn−i+1). Of course, the precise q-capacities are
a subclass of self-conjugate ones since if σ#({si}) = 1 then Fσ = {{si}}, i.e.
σ = σi.

7 Conclusion

This paper has tried to define the information content of a capacity when the
value scale is purely ordinal. We have exploited the fact that a qualitative ca-
pacity accounts for both uncertainty and attitude in front of it, as pointed out in
[6, 16]. We propose a mathematical definition of information content comparison
irrespective of the attitude toward uncertainty, and a comparison of capacities
in terms of pessimism, irrespective of how much uncertainty they express.

Some issues remain open, and especially the structure of the set of focal sets
of optimistic capacities. Informally, the focal sets of a pessimistic capacity tend
to overlap each other, while the focal sets of an optimistic capacity tend to be
disjoint. And the larger the focal sets, the less informative the pessimistic capac-
ity. A strict form of pessimism is when all focal sets intersect pairwisely; maximal
pessimism is obtained for nested focal sets (necessity measures). Alternatively,
maximal pessimism is obtained for disjoint focal sets (possibility measures); then
the smaller the focal sets the less informative the optimistic capacity. It would
also be interesting to deepen the analogy and the differences between the qual-
itative and the quantitative settings for the modeling of uncertainty aversion.
These results may be useful to clarify the potential use of qualitative capacities
in various areas where aggregation functions are useful, especially in multicrite-
ria analysis and information fusion. For instance, in a multiple source problem,
q-capacities can be useful to merge possibility distributions [1]; focal sets of the
q-capacity can then be understood as possibly antagonistic points of view on
information.
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