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Abstract—In order to interactively render large virtual
worlds, the amount of 3D geometry passed to the graphics
hardware must be kept to a minimum. Typical solutions to this
problem include the use of potentially visible sets and occlusion
culling, however, these solutions do not scale well, in time nor
in memory, with the size of a virtual world. We propose a fast
and inexpensive variant of occlusion culling tailored to a simple
tiling scheme that improves scalability while maintaining very
high performance. Tile visibilities are evaluated with hardware-
accelerated occlusion queries, and in-tile rendering is rapidly
computed using BVH instantiation and any visibility method;
we use the CHC++ occlusion culling method for its good general
performance. Tiles are instantiated only when tested locally for
visibility, thus avoiding the need for a preconstructed global
structure for the complete world. Our approach can render
large-scale, diversified virtual worlds with complex geometry,
such as cities or forests, all at high performance and with a
modest memory footprint.

Keywords-occlusion culling, visibility, procedural modeling,
tiling, PVS, CHC++, BVH

I. INTRODUCTION

Many of today’s interactive media outlets, such as video

games, immerse users in large virtual worlds. These worlds

tend to be diversified, complex, and very extensive. Procedu-

ral modeling and tiling sets can be used to create such large

virtual worlds at reasonable costs, alleviating the tedious task

of modeling them by hand (Figure 2).

Procedural modeling encompasses several kinds of au-

tomatic generation methods in order to model synthetic

scenes. Some of these methods allow designers to create

procedural geometry or textures. Tiling methods can serve

as an alternative or supplemental solution to this design,

where well-designed portions of a world (enclosed in 3D

tiling volumes, as illustrated in Figure 1) are randomly,

deterministically, or a combination of both, laid out to give

the impression of variations and near-infinite extent.

Procedural generation of such extended scenes is often

used as a preprocess with respect to the rendering or interac-

tive walkthrough. By integrating rendering constraints, such

as visibility computation, in a tiling-based scene generation

process, we can ensure that the generation of only the

information necessary for rendering the scene is provided,

given a fixed performance budget.

3D objects

Figure 1: Using a tiling set of two predesigned tiles (top)

in a 3D world tiling process (bottom). Objects are placed

into these tiles forming the tiling set. These are randomly or

deterministically instantiated in 3D space to form the final

world geometry.

Despite the fact that we cannot guarantee that all visible

polygons will be displayed within a fixed time limit (for

instance, in extreme cases, everything could be visible

at once), we intend to accelerate visibility determination

and minimize the number of occluded polygons sent to

the graphics pipeline. Two common solutions consist of

performing a real-time occlusion culling or precomputing

potentially visible sets (PVS) of scene geometry for bounded

view regions in order to reduce the costly on-the-fly deter-

mination of visible objects.

Our contribution is a tiling creation process that propa-

gates the visibility information across tiles from the view-

point. Local visibility is computed within each 3D tile using

CHC++, while global visibility is propagated with extra

queries onto neighboring tiles, in order to integrate visibility

in the construction of tileable grid-based 3D worlds. The

proposed method allows complete freedom in scene design

and gives high performance when rendering extended, and

potentially infinite, virtual worlds. Because potentially visi-

ble tiles are processed in front-to-back visibility order from

the viewpoint, fully occluded tiles do not need to be visited,



(a) City (b) Hybrid scene (c) Forest

Figure 2: Three tiled scenes generated from three different tiling sets. Our tiling creation process integrates visibility

propagation in the construction of tileable 3D worlds allowing for much more interactive rendering. Mountains in the

background come from the skybox.

nor even generated. Moreover, no precomputed global data

structures for the entire scene are necessary, thus avoiding

extreme memory and processing requirements.

Visibility computation, procedural generation of scenes,

and tiling methods are well-studied topics in computer

graphics (Section II). Building on these, our tiling creation

process first computes a per-tile local visibility information

using a fast instantiation of a bounding volume hierarchy

(BVH; Section III-A) to bootstrap to the CHC++ algo-

rithm. Global visibility computation relies on per-neighbor

tile queries using view-frustum culling and GPU occlusion

queries, effectively reducing some limitations of CHC++

and adding frame-to-frame temporal coherence to speed up

the entire process (Section III-B). Popping artifacts resulting

from variation over time and space of the occlusion queries,

are efficiently avoided by our method (Section III-C). We

analyze our performance on a set of typical procedurally

generated scenes (Section IV) and discuss the benefits and

limitations of our approach (Section V). Finally, we conclude

and offer future perspectives (Section VI).

II. RELATED WORK

A. Visibility

Visibility determination remains one of the most challeng-

ing problems in computer graphics, particularly with respect

to efficient rendering. For this reason, the literature on this

topic is very extensive and we refer readers to surveys [1],

[2] for a comprehensive review. We instead restrict ourselves

to discussions on visibility (pre)computation methods for

interactive rendering.

The two general families of methods used to efficiently

display large and complex scenes are PVS and occlusion

culling. By neglecting completely occluded objects, these

methods can reduce the rendering load on both CPU and

GPU.

The concept of PVS, introduced by Airey et al. [3], con-

sists of determining all the polygons that can be potentially

visible from a given convex region, called a view cell.

In order to increase PVS construction efficiency, an im-

portant step consists of computing the fusion of occluders

and the aggregation of regions farther away from a view

cell. Schaufler et al. [4] use an octree to store opaque

volumetric interiors (of city buildings in their application).

By conservatively projecting the occluded regions through

the octree, they efficiently classify regions as occluded for

given view cells. Durand et al. [5] also use the concept

of occluder fusion and region aggregation in general 3D

scenes, but reproject occluders on successive parallel planes

instead. Both methods compute conservative PVS, but their

respective preprocessing remains very compute-intensive,

and their resulting PVS require large amounts of storage.

Several outdoor 3D worlds can be represented by height-

fields. By limiting the maximal displacement speed of an

observer in a 2.5D heightfield scene, Koltun et al. [6]

achieve interactive rendering with a PVS computed on the

fly. Wonka et al. [7] propose a conservative approach also

limited to 2.5D, but instead supported by raycasting. Their

method is very efficient compared to other geometrical

approaches because of the discretization of the scene. It can

compute a PVS in only a few seconds. Bittner et al. [8]

use sample rays across the scene to simultaneously compute

the PVS for an entire set of view cells. Unfortunately this

method requires large amounts of storage and cannot be used

in a traditional rendering engine.

Occlusion culling consists of quickly testing if an object

is occluded by another one, visible from the viewpoint.

Occlusion queries and early-z rejection are commonly used

for real-time occlusion culling methods.

Greene et al. [9] traverse an octree in a hierarchi-

cal Z-buffer software rasterizer for fast polygon visibility

determination with both spatial and temporal coherence.

Zhang et al. [10] introduce a similar approach for visi-

bility culling but instead with hierarchical occlusion maps,

thus allowing image occluder fusion resulting in significant

speedups for interactive walkthroughs.

Staneker et al. [11] use occupancy maps to allow scene

graph rendering systems to perform efficient occlusion



culling. They organize multiple occlusion queries by priority,

even though a scene graph hierarchy is not as efficient as

BVHs to perform front-to-back node traversal. They also

use temporal coherence to fix a budget on the number

of individual occupancy maps tests before GPU occlusion

multi-queries. This allows for good spatial and temporal

culling coherence if the scene graph remains unmodified.

Because of our use of CHC++, we describe it in more

details here. Mattausch et al. [12] present CHC++ using

occlusion multi-queries on a BVH representation of the

scene. Their algorithm handles millions of polygons while

maintaining very high rendering framerates. The CHC++

algorithm recursively queries the BVH nodes to determine

whether they are visible from the viewpoint. If a node

is visible, CHC++ either displays its geometry if it is a

leaf, or recursively traverses its children. If the node is

not visible, the node and its subtree are culled. According

to the node’s polygon count and its spatial extent, it is

sometimes preferable to render the entire subtree geometry

rather than to determine which children nodes are visible

or not. Moreover, the traversal cost, also related to the

depth of a subtree, must be limited in order to get CHC++

to work efficiently without too much overhead. CHC++

efficiently exploits temporal coherence, and a node might

be marked as visible for a bounded random number of

frames. This alleviates the GPU load: the occlusion queries

on the BVH nodes are thus spread out across several frames.

Nevertheless, as in previous approaches, the scene must

remain unmodified to benefit from temporal coherence. In

this paper, we name CHC++ context the set of resources

(query queues, BVH, etc.) used by CHC++ to compute

occlusion culling.

Both PVS and occlusion culling methods significantly

improve performance. However, for very large worlds, the

preprocessing time for building the required data struc-

tures is often too long, and the scene must remain static.

Moreover, the memory requirements for storing the PVS or

the BVH become a limiting factor in real-world rendering

engines. Finally, when dealing with interactively and proce-

durally generated very extended worlds, neither method is

convenient due to their precomputation times and memory

costs.

B. Procedural Modeling and Tiling

Tiling is often used in procedural modeling to en-

sure a virtual world’s variability over large distances and

scales [13]. One compelling example was provided by

Peytavie et al. [14] with their aperiodic tiling set of corner

cubes to generate piles of rocks structures for landscapes,

stone huts, walls, etc.

Despite many existing procedural methods for objects

and landscape generation, only a few consider positioning

constraints on objects in the scene, and none consider

guiding the scene generation with visibility, except for two
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Figure 3: Time and memory measured for the naive building

of the BVH of a tiled world. Our method avoids these costs

with a low preconstruction time on each tile BVH.

methods. The first method, from Greuter et al. [15], uses the

view frustum to generate a procedural city, but without any

other form of culling. The second, from Gomez et al. [16],

uses 2.5D visibility to precompute occluding tiles, ensuring

a fixed PVS size. However this latter method is limited

as scene designers cannot authorize long avenues, where

visibility extends far away. In addition, the algorithmic

complexity of the method does not scale well to fully 3D

scenes.

III. VISIBILITY TILING

Tiling can efficiently generate large 3D worlds based

on a set of predefined tiles. However, building a BVH

for efficient occlusion culling on such an entire generated

scene is impractical as the scene’s size increases. Indeed,

Figure 3 shows time and memory consumptions for BVH

construction using all the objects of a tile-based world. Our

method improves the performance of such world generation

independently from the tile placement procedure. As such,

we do not require the location of each tile to be explicitly

stored, e.g., in a tile-instantiation map or by storing neigh-

borhood information.

Our tiling scheme takes a predesigned set of tiles as input

(Figure 1 top). These tiles are considered as axis-aligned

boxes for simplicity, without loss of generality. In fact,

these tiles have no restrictions on their shape. The geometry

associated with each tile is defined inside a local scene

graph of 3D objects instances freely arranged in the tile. To

generate the 3D world, the tiles are instantiated in 3D space,

on a 2D surface for our test scenes, to form the final world

geometry (Figure 1 bottom), depending on whether they

may be visible from the viewpoint according to a two-level

occlusion culling algorithm. The first level applies hardware

occlusion queries on the tiles’ common bounding box, i.e.,

the union of each individual tile’s bounding box (Figure 4)

to allow for long-range visibility determination. The second

level uses Mattausch et al.’s CHC++ algorithm [12] to

determine the local occlusion within each visible tile.

When the extent of the scene is very large, for instance

for an entire virtual world, even with instantiated BVHs, the

time and memory necessary to build a hierarchical structure,

as well as the increased cost of traversing this hierarchy
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Figure 4: A 2D tiling set consisting of three tiles: their

bounding boxes (green, red, orange) are computed with

respect to all the tile’s objects. Their union, the common

bounding box (purple), is the one used for tile occlusion

queries.
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Figure 5: Left : The structure of a scene graph used

for instantiation. The numbered nodes correspond to scene

graph instances. Right : The BVH structure built for a tile

(in red). Each node keeps references to the corresponding

instantiation scene graph nodes it belongs to.

for occlusion queries, can become major bottlenecks. Our

grid-based front-to-back tile visibility algorithm avoids such

difficulties by expanding locally the number of queried tiles

without the need to store them in any hierarchical structure.

We first construct a per-tile bounding box and a BVH

from the local scene graph associated with the distribution of

objects in the tile. The bounding boxes of all tiles in a tiling

set are then combined to define the common bounding box

of the tiling set (Section III-A). This common bounding box

is used to avoid popping artifacts (Section III-C). Using this

information, the tiling is generated on the fly, by propagating

the visibility from the viewpoint over the tiling until each

line of sight is blocked, using our two-level occlusion culling

algorithm (Section III-B).

A. Tiling Set Representation

In order to limit memory usage for a large 3D world our

method employs object instantiation, represented efficiently

with a scene graph. Each tile has its own scene graph

and may share objects with other tiles. From this per-tile

scene graph (Figure 5 left), we build a per-tile BVH in

view frustum

Figure 6: 2D tiling process within the view frustum. Visibil-

ity is propagated from the nearest visible tile (yellow). Tiles

are shown in light blue if query result is positive, in dark

blue if it is negative.

order to compute efficient occlusion queries. Each BVH

node contains references to the corresponding scene graph

instantiation nodes, but not to the geometry itself. Each

BVH is built using the binned SAH heuristic [17], [18].

The recursive BVH construction stops when there is only

one object referenced in a leaf node, or when either a

maximum depth or a minimum number of triangles per leaf

is reached (Figure 5 right). Having a BVH for each tile is

important for interactivity and computational efficiency. If a

tile contains animated geometries, only its tile’s BVH must

be recomputed at each frame, which can be done quickly.

Animated geometries could also be handled in a separate

per-tile BVH, or in a global BVH for the entire world as in

traditional implementations.

The BVH’s root node defines the tile’s bounding box.

From each tile bounding box, we compute the tiling set

common bounding box, which is unique for the entire tiling

set. This bounding box, computed as the union of every tile’s

bounding box as shown in Figure 4, allows for conservative

occlusion determination, independently of the tile, during

the tiling process.

B. Visibility Propagation with Tile Queries

For each frame, visibility is computed from the viewpoint

and the tiling process propagates visibility from the nearest

visible tile to adjacent tiles, and so on, in front-to-back

order. The nearest visible tile is found with a search in the

tiling domain. The tiling process uses the tiling common

bounding box to determine if a tile instance must be rendered

or if visibility propagation should stop (Figure 6). We call

this step the “tile query”. If the tile has to be instantiated,

the tiling process selects the associated tile from the set

of predesigned tiles. For this selection, we use a function

that returns the selected tile from its world position, thus

avoiding explicit storage of every instantiated tile position;

this is particularly important for scalability to large worlds.



1 Q ← ∅ // pending query queue

2 P ← ∅ // postponed query queue

// retrieve the first tile to render

3 T ← closestVisibleTileInFrustum(camera)

// propagate visibility

4 while T 6= ∅ do

5 renderWithCHC++(fetchBVHInstance(T ))
6 queryNeighbors(T ,Q)

// retrieve next tile to render

7 T ← getNextPositiveQuery(Q,P)
8 end

9 updatePostponedQueryQueue(P)

Algorithm 1: Tile Query Main Algorithm

Input: • current tile T
• pending query queue Q

Output: • pending query queue Q
// query neighbor tiles of T

1 foreach neighbor n of T do

2 if ¬ queriedForThisFrame(n) then

3 if intersectsViewFrustum(n) then

// asynchronous query launch

4 q ← query(commonBboxAtOffset(n))

5 append(Q,(q,n))
6 end

7 setQueriedForThisFrame(n)

8 end

9 end

Algorithm 2: queryNeighbors(T ,Q)

In the remainder of this section, we describe the algo-

rithms used by our visibility propagation algorithm. The

instructions written in blue are related to temporal visibility

prediction. They could be neglected if temporal coherence

is not exploited.

The main rendering steps are detailed in Algorithm 1.

Starting from the nearest visible tile, the corresponding BVH

is instantiated if it has not yet been. The BVH instance

is created such that each node can determine its own

visibility status (like with CHC++) when rendered with local

occlusion culling. When a BVH node is marked as visible,

we add the corresponding scene graph nodes instances to

the rendering, if they were not already added for the current

frame (Figure 5). When the current tile geometry has been

rendered with local occlusion culling using CHC++, farther

neighboring tiles are queried for visibility (Algorithm 2)

using the same common bounding box that is offset at

the queried tile position. To benefit from the front-to-back

generation of the world and increase the efficiency of our

occlusion culling method, tile queries are stored in a queue

Q because hardware query specifications guarantee that

occlusion queries results are returned in order.

In Algorithm 3, we send visible tiles to the renderer and

predict their visibility for the next frame. If the result of a

query is not readily available, we use temporal coherence

(line 3): if it was visible in the previous frame, we postpone

the query result processing until the end of the current frame

(postponed query queue P) and send the tile for rendering.

As most of these query results will be available at the end

of the frame, the correct visibility status will be determined

before the next frame.

Input: • pending query queue Q
• postponed query queue P

Output: • pending query queue Q
• postponed query queue P
• neighbor to render n

// retrieve first available AND positive query result

1 while ¬ empty(Q) do

2 (q,n) ← pop(Q)
3 if ¬ isResultAvailable(q) ∧

wasVisibleAtPreviousFrame(n) then

// postpone query result retrieval

4 append(P,(q,n))
5 return n // send to rendering

6 else

7 waitQueryResult(q)

8 // next frame visibility prediction

9 if isResultPositive(q) then

10 setVisible(n)

11 return n // send to rendering

12 else

13 setNotVisible(n)

14 end

15 end

16 end

17 return ∅ // no neighbor to render

Algorithm 3: getNextPositiveQuery(Q,P)

Input: • postponed query queue P
1 // get visibility result for next frame

2 while ¬ empty(P) do

3 (q,n) ← pop(P)
// next frame visibility prediction

4 if isResultAvailable(q) ∧ isResultPositive(q)
then

5 setVisible(n)

6 else

7 setNotVisible(n)

8 end

9 end

Algorithm 4: updatePostponedQueryQueue(P)

Due to our front-to-back tiling traversal, the first queries

in the query queue Q, that correspond to tiles close to the

viewer, are more likely to be predicted as visible, and thus,

have their result postponed. Most of the following query

results from the query queue will then be available, as

queries are launched according to increasing distance from

the viewer using a neighborhood relationship. Line 7 of

Algorithm 3 is executed when a tile becomes newly visible.

This affects the framerate when the number of such tiles

is large but the time spent to wait could be used to pre-

instantiate the remaining tiles in the pending query queue.

At the end of the main algorithm, we check if the results

of all the postponed queries have become available, and

update prediction for the next frame (Algorithm 4). At line 4

of Algorithm 4, tile query results that are not available at

this moment are those from tiles that are far away from

the viewpoint. Predicting these tiles as not visible will force

Algorithm 3 to wait at line 7 for the query result retrieval

but, as they are far and have a small footprint on screen-

space, this cost should be small. We also noticed that the

number of such tiles is small: as shown experimentally in

our test scenes, the number of queries failing in temporal

prediction are only 0.02% (City), 0.04% (Hybrid scene), and

0.14% (Forest) of the total number of queries.
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Figure 7: The common bounding box, rather than the tile’s

bounding box, ensures the correctness during visibility prop-

agation. The query of Tile 2 will return visible, and therefore

Tile 3 will be queried for visibility and will not suddenly

appear when passing through Tile 1 or when the observer’s

height increases.

Temporal coherence results in a significant speed-up in

terms of framerate. Since queries are performed in a front-to-

back order, most of the queries for which results are not yet

available are those from tiles that are closer to the viewpoint.

As such, most of these tiles were already visible in the

previous frame and were therefore predicted to be visible

at the current frame.

When a tile instance is marked as visible for the first

time, the corresponding BVH instance is kept in a cache to

manage its own CHC++ context. Tile query temporal coher-

ence is independent and complementary to CHC++’s own

temporal coherence. We keep instantiated tiles in the cache

for the subsequent frames, so that we preserve the CHC++

temporal coherence and avoid instantiation overheads from

one frame to another. When a tile is not visible for a

specified duration, we remove it from the cache, reducing

memory usage.

C. Avoiding Popping Artifacts

Using simply tiles’ bounding boxes and direct neighbor-

hood to propagate visibility across the tiling is not sufficient

to ensure that a closer tile completely occludes a farther

one. Figure 7 shows an example in which such a simple

algorithm would fail in determining potentially visible ge-

ometry located farther away from the maximal extent of

the instantiated tiling. Using the common bounding box for

the tile queries overcomes this problem. As every queried

bounding box has the same size, as soon as a query result

is negative, we know that farther tiles will not be visible

from any viewpoint, i.e., inside or outside of the tiling.

Therefore, querying farther neighbor tiles for occlusion will

not be necessary and visibility propagation can stop.

IV. RESULTS AND PERFORMANCE ANALYSIS

We tested our algorithm on different tiling sets composed

of houses and trees, as shown in Figure 2. The geometries

come from turbosquid [19]. Each tile holds between 16K

and 2.5M polygons divided among all the 3D objects in

the tile. No levels of detail (LODs) are used on these

objects, such that the entire geometries are rendered when

declared visible. Computations are performed on an In-

tel Core i7 with a GeForce GTX 680. The BVH of each

tile is constructed with the embree parallel implementation

of BVH builder [20], using a spatial split heuristic. The BVH

construction times, depths, and memory for the tiling sets

precomputations are given in Table I.

In the accompanying video, we show three walkthroughs

within three tilings, each one set up with a different tiling set.

We compare four culling algorithms: tile query + CHC++,

tile query alone, per-tile CHC++, and view frustum only.

The tile query algorithm alone systematically renders the

entire geometry of each visible tile instead of rendering

it with CHC++. A direct comparison between our method

and the CHC++ algorithm cannot be done since, as said in

Section III, building the entire BVH of our very extended

scenes is impractical. But in order to show the benefits of

our method in a fairer way, we compare it with a per-tile

CHC++ algorithm in which we consider, for each frame,

each tile BVH within the conservative bounding box of the

tiles instantiated using the tile query propagation method

(preserving CHC++ temporal coherence). We use the same

a priori information for the view frustum culling algorithm

alone. In fact, per-tile CHC++ and view frustum culling

alone are favored in our implementation in regard to a

possible naive implementation. Figures 8 and 9 show the

framerates and the numbers of rendered triangles for these

walkthroughs.

As we previously mentioned, it is sometimes preferable

to render the entire geometry contained in a tile rather than

determining its occlusion status. As well, we can see that

using the tile query algorithm alone performs sometimes

slightly better than using it in conjunction with CHC++ in

the City and the Hybrid scenes, where the scenes are not very

complex and produce much occlusion (Figures 8a and 8b).

Occasionally, the tile query algorithm even performs twice as

better, as shown between frames 2100 and 2200 of the City.

But tile query alone induces more variance in the framerate.

We can see that for most viewpoints, our algorithm in

conjunction with CHC++ keeps better framerates than per-

tile CHC++ (Figure 8). This is easily explained by the fact

that CHC++ does not handle visibility information or tem-

poral coherence on neighboring tiles, and thus more tiles are

instantiated in the tiling, and more time is spent to resolve

individual tile queries. The Forest walkthrough is the one for

which our hybrid algorithm performs the best in aggregating

the occlusion of several tiles (Figure 8c). In each of the three

scene walkthroughs, the framerates decrease a lot when the

observer’s location is high above the ground, looking at the

tiling at grazing angles, resulting in many visible tiles thus

being instantiated. This slowdown could be reduced using

coarser geometry for distant instantiated tiles (LODs), but

we decided to leave this for future investigations.

In terms of rendered triangles (Figure 9), our algorithm

performs as well as per-tile CHC++, i.e., tile query associ-



ated with CHC++ is as much conservative as per-tile CHC++

is in terms of occlusion.

V. DISCUSSION

As explained in Section III-C, using a common bounding

box ensures that no popping artifacts occur. But this can

affect the framerate in the cases of an overestimation of the

visibility of a tile. If the bounding box of a particular tile

is small with respect to the common bounding box, this tile

will be often marked as visible even if it is not the case.

Then, the instantiation and the rendering of the tile using

CHC++ will introduce unnecessary computational costs.

As with every occlusion culling method, the efficiency of

our algorithm greatly depends on the occlusion in the scene.

In our case, as occlusion culling is performed on the tiles,

the efficiency depends on the occlusion of each tile. If the

tiles do not contain enough occluding geometry, the tiling

process will propagate the visibility to many tiles.

As with CHC++, temporal coherence can be increased so

that when a tile is marked as visible, we can set it as visible

for a random number of subsequent frames, resulting in

fewer queries spread over time. We can also use the front-to-

back order to decrease the frequency of closer tiles’ queries.

In our test scenes this did not result in significant speed-up,

because our tiles generate enough occlusion.

In our algorithm, the geometry of an instantiated object

is completely rendered once determined visible. If this

geometry is complex, an efficient LOD system would allow

to decrease the number of rendered polygons for farther tiles

and improve overall performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we associate visibility and tiling. Within

this context, we propose a solution for occlusion culling in

3D worlds generated on the fly. This allows for real-time

occlusion culling and low memory BVH instantiation for

extended worlds. In our method, tiles are instantiated on

a 2D surface but could also be instantiated in 3D. Simply

put, only the neighborhood relationship would have to be

extended to 3D.

Although BVH computation might not always be achieved

on the fly, it is still feasible for reasonable numbers of

polygons per tile and depths of the computed BVH. In a mul-

tithreaded implementation, a tile BVH could be prefetched

in a separate thread, when a neighboring tile is queried, so

that such a tiling process could even create the geometry in

the tile itself, while instantiating it. Thus, the tiling set would

not need to contain predesigned tiles if they do not exceed

a given number of polygons, depending of the rendering

performance.

Repositioning of procedural geometry according to visi-

bility analysis could also emerge from our structures in order

to limit visibility propagation. As a result, level designers

could exploit such tools for the fast creation of huge worlds.

Moreover, using this method could alleviate the whole PVS

construction cost induced by the number of polygons, by

dividing it into small computation steps. Finally, we decided

to use the CHC++ algorithm, but in fact, this local occlusion

culling step could be replaced by any other conservative,

exact, or sampling visibility determination method.

For even better occlusion culling, and therefore better

rendering framerates, our method can be used in conjunction

with hierarchical Z-buffer [9] or occupancy maps [11]. The

latter one would use directly the BVH nodes instead of the

scene graph nodes to test and update the occupancy map.

We also would like to develop a hierarchical version of

this method : visibility would be propagated very quickly

over large distances at the top level of the hierarchy.
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