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Abstract—In any organizational setting, each of the 

participating actors adopts a quite steady behavior with respect 

to others. This behavior is not always in line with what might be 

expected given the role of the actor, although it is quite 

cooperative and most often contributes significantly to the proper 

operation of the organization. Within the framework of the 

SocLab approach for the modeling and analysis of organizations, 

we propose a model of the bounded rationality that social actors 

could implement in the process yielding the joint adaptation of 

their behaviors. 

Keywords— organizational behavior; cooperation; actors game; 

regulation; bounded rationality; organization; reinforcement 

learning; SocLab. 

I. WHY AND HOW TO COOPERATE? 

This article considers organizations, and more generally 

social systems of organized action, viewed as social constructs: 

• established for some purpose, and thus aimed at achieving
some goal(s), 

• including individuals and resources,
• provided with rules about the handling of the resources by

the individuals, intended to serve the achievement of the 
organization’s goals, 

where each of these elements is more or less precisely 
determined and recognized. This encompasses well-structured 
organizations (firms, institutions, ...), collaborative contexts 
(citizens associations, family, ...) as well as diffuse systems of 
collective action (public policy arena, partnered relationships, 

...). 

In such contexts, the members are found to exhibit a more 
or less steady behavior with respect to each other, and the 
occurrence of this well-established phenomenon – the 
regulation – is necessary for the existence of the organization: 
it allows each one to anticipate the behavior of others and so 
ensures the co-ordination required for the achievement of the 

organization's aims, and so preserves its raison d'être. 

According to the Sociology of Organized Action, also 
called Strategic Analysis [2], this regularity originates from the 
strategic nature of actors' behaviors: each one has some goals 
and his behavior is driven by his believes on the best way to 
achieve these goals. As the goals of an actor embeds personal 
aims into his organizational role(s), the latter do not fully 
explain his behavior, more so as the concrete application of any 

organizational rule involves a contextual interpretation, which 
is at the discretion of actors. Therefore, the behaviors of social 
actors most often deviate from the rules while being, as we 

shall see later, generally much oriented toward cooperation. 

Viewing the regulation of an organization as a phenomenon 
that emerges from interactions between individual processes, 
the concern of this article is how actors succeed in the 
stabilization of their respective behaviors and why they 
stabilize as the do. So, it proposes an algorithm intended to 
model the actors' rationality while accounting the facts that 
they must jointly adapt their behaviors to the ones of all others, 
they are greatly unaware of the objectives and means of others, 
and most social behaviors are not deliberate. From the 
organization point of view, it proposes a model of the 
regulation process as resulting from the interplay between the 

actors' rationality. 

This question is addressed within the framework of the 
SocLab approach for the analysis of social relationships within 
organizational settings, which is extensively presented in a 
companion paper [1]. This approach is supported by a software 
platform that allows the user to edit models of organizations, to 
study the properties of models with analytic tools, and to 
compute by simulation the behaviors that the members of an 
organization could adopt the ones with respect to others [24]. 
Focusing on the social dimension of organizations, the 
simulation algorithm considers rather the conduct of an actor 
vis-a-vis others, his attitude which is assessed in terms of 
cooperativity, than his substantive contribution to the 
realization of the organization's goals. As far as one agrees 
with its theoretical fundaments, the SocLab platform looks like 
a tool for organizational diagnoses and the analysis of scenarios 
regarding evolutions of organizations. It can be used also for 
the design and analysis of virtual organizations having no 
direct reference to reality, intended to the study of theoretical 
properties of organizational configurations featuring particular 

characteristics. 

The purpose of this article is to present the SocLab 
simulation algorithm. Section II outlines the SocLab modeling 
of the structure of organizations that leads to consider the 
interactions among actors as a specific game we call the social 
actors game. Two models of simple organizations are also 
presented. Section III states requirements for a simulation 
algorithm regarding the expected results (the emergence 
macro-level view) and the actors' competences (the micro-level 



view). Section IV presents the actors' bounded rationality 
algorithm while providing, as much as possible, its social 
science underpins, while section V gives an overview of 
results. The last section discusses the originality of the 

algorithm and related works.  

II. THE SOCLAB MODEL OF SOCIAL ORGANIZATIONS

The SocLab framework aims at formalizing and slightly 
extends the Sociology of Organized Action [2]. For space 
limitation we just outline the SocLab model of the structure of 
organizations, especially the elements that found the social 
actors game. The reader will find in [1] a comprehensive 
presentation and discussion of this model and how to model 

and study a concrete organization. 

A. The Structure of Organizations 

The core of this meta-model is represented graphically as a 
UML Class Diagram in figure 1. Accordingly, the structure of 
an organization is constituted of a set of Actors and a set of 
social Relations linked by the Control and Depend 

associations.  

Figure 1. The meta-model of the structure of organizations 

A relation is the matter of the recurrent interactions 
between an actor who controls the availability of a specific 
resource and actors who need this resource to achieve their 
goals. Resources, as the media for interactions among actors, 
must be understood in a very general sense as something useful 
or necessary for actors' activities: material objects, factual, 
procedural or axiological believes and knowledge, or even 
personal attitudes. Considering the concept of role, a relation 
may also be viewed as the playing of a role, be it defined by the 

organization or caught by the actor. 

The state of a relation corresponds to the controller actor’s 
policy regarding the management of the resource; its range is 
the Space of behaviors of the relation and its value measures to 
what extent the actor is cooperative (positive values) or 
uncooperative (negative values). When an actor acts(), he 
moves() the states of the relations he controls toward more or 

less cooperation, and he is the only one to be able to do so. 

An actor depends on the relations regarding the resources 
he needs to achieve his goals. How much an actor depends on a 
relation is determined by the necessity of the resource for the 
achievement of his goals and the relative importance of these 
goals. This level of dependency is represented by the stake 
attribute of the depend association. Each actor has 10 points of 
stakes that he distributes on the relations he depends on, 
including the ones he controls. For each actor dependent on a 
relation, there is an effect() function that, depending on the 

relation's state (i.e. the controller actor behavior), determines 
how well the actor can make use of the underlying resource. 
Negative effects correspond to hampering or preventing the use 
of the resource while positive effects correspond easing its use. 
The impact of a relation upon an actor is the value of the 
effect() function applied to the state of the relation weighted by 

the actor's stake.  

The aggregation of the impacts that an actor receives from 
the relations he depends on determines his capability, or action 
capacity. The capability measures how much the actor has the 
means to achieve his goals, so that to obtain a high level of 
capability constitutes a meta-goal that drives his behavior. If 
impacts are aggregated by the sum operator, when the 
organization is in the state s = (sr1, … , srm), where R = {r1, …, 

rm} is the set of relations, the capability of actor a is defined as 

capability(a, s) = r  R stake(a, r) * effectr(a, sr) 

 = r  R impact(r, a, sr). 

The aggregation (once again by the sum operator) of the 
actors' capabilities defines the global capability of the whole 

organization as 

capability(s) = a  A capability(a, s) 

The model of an organization includes others elements such 
as constraints between relations or solidarities between actors, 

allowing to deal with essential dimensions of organizations [1]. 

B. The Actors Game 

Such an interaction setting defines an actors game where 
each actor plays against the whole of other actors of the 
organization. Let's define arbitrarily the range of the Space of 
behaviors of a relation r as SBr = [-10; 10], and the codomain 
of effect functions also as [-10; 10] (the ranges of value do not 

matter since only comparisons and proportions make sense). 

At each step of the game, every actor has the possibility to 
move the values of the states of the relations he controls, and 
this change of the game’s state modifies the capability of all 
actors. Let (sr1, … , srm) be a state of the organization and (cr1, 

…, crm) be moves such that (cr + sr) SBr and cr is chosen by

the actor who controls r. Once each actor has chosen such an 

action, the game goes to a new state defined by 

Transition: [ -10; 10] m 
× [ -10; 10] m  [ -10; 10] m 

 (sr1, … , srm), (cr1, … , crm) a (sr1 + cr1, … , srm + crm) 

The game ends when a stationary state is reached. In such a 
state, each actor no longer modifies his behavior because the 
level of capability he actually obtains satisfies him. Therefore, 

the organization is regulated and can operate in this way. 

The actors game is a game in the sense of von Neumann 
and Morgenstern [3], where the capability of each actor serves 
as utility function. However, it differs from games that are 
considered in economics. The end of an actors game is not at 
all to find how to optimize the discounted accumulation of 
rewards, i.e. the production and distribution of wealth. Its end 
is to find a state providing each actor with an acceptable 

reward, i.e. a lasting mode of operation for the organization. 



C. The Trave-Tour case 

For space limitation, we present only simple examples of 
models of organizations (models of real organizations can be 

found in [1], [4] or [5]). 

Travel-tour is a tour operator having two agencies, TRO1 
and TRO2, located at Trouville. Agnes is a secretary attached 
to TRO1 agency. She has a temporary employment and works 
part-time at TRO2, so that she has to move between the two 
agencies. These last months, the results of the TRO1 agency 
increase, while the ones of TRO2 agency stay stable, or even 
decrease. To foster TRO1 agency, the Regional Executive 
proposes to regularize the situation of Agnes with a firm 
employment and to affect her exclusively to TRO1 agency. 
Accordingly, Agnes will have a firm contract and will be 
relieved to split her work in two parts, while the TRO1 

Director will have a full-time secretary at his disposal. 

However, each one refuses the proposal and has very good 
reasons to do so. A deeper analysis reveals that TRO2 agency 
is more inventive in designing travel packages, while TRO1 
agency has an efficient commercial staff. Being aware of the 
TRO2's activity, Agnes provides information to the Director, 
enabling TRO1 to skillfully finalize the TRO2’s ideas. As for 
Agnes, for personal reasons she has not as short-time objective 
getting a steady job. Moreover, she is very cool in her working 
relations with the other employees of TRO1, and she greatly 
appreciates that none of the TRO1 and TRO2 directors has the 
possibility to exert a precise control on her work. Thus the 
change in the organization would increase the control of the 
director on Agnes's activities (what she does not wish) and the 
Director would loose his source about TRO2 (what he does not 

wish). 

Stakes Effect functions 

Director Secretary Director Secretary 

give 

information 
7.0 2.0 

. .

control the 

work 
2.0 6.0 

. . 

renew the 

contract 
1.0 2.0 

. . 

Figure 2. The stakes and the effect functions of the dependence association 

between relations (in line) and actors (in columns). The functions' x-axis 

corresponds to the relation's state (i.e. the cooperativity of its controller 

actor), the y-axis to the effect on the actor of the relation being in this 

state. 

Figure 2 shows a model of the structure of this organization 
for highlighting the reasons of refusals. It includes only the two 
actors with three relations, which would be drastically changed 
by the Regional Executive's proposal: the information given by 
the secretary (vanished), the control of the work by the Director 
(enhanced) and the contract's renewal (vanished). We only 
comment the shape of the effect functions of the 'give 

information' relation. Positive values of the state of this relation 
correspond to a high quantity and quality of information 
delivered by the Secretary, negative value to disinformation 
and null values to silence. For the Director, he would take full 
advantage of positive information and be greatly disturbed by 
false ones. For the Secretary, the best is to talk about her work 
in the TRO2 agency in casual way (state = 2). Giving more 
information makes her uncomfortable and she risks to be 
detected, and giving false information even more. Details about 

this model may be found in [6]. 

Table I shows, for some noteworthy states of the 
organization, the state of relations and the capability of actors. 
This organization shows the typical features of a Prisoners' 
Dilemma: for each one, the better is to trust the other and to 
renounce to his self-reward in order to get the more valuable 

collaboration from the other.  

TABLE I.  IN COLUMNS, THE STATES CORRESPONDING TO: THE 

MAXIMUM CAPABILITY OF THE WHOLE ORGANIZATION AND OF EACH ACTOR; 
THE WORST STATE; SIMULATION RESULTS. IN ROWS, THE STATE OF RELATIONS 

AND THE CAPABILITY OF ACTORS. 
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give information 10.0 10.0 2.0 -10.0 10.0 0.0 

control the work 7.0 0.0 10.0 -10.0 10.0 0.0 

renew contract 10.0 -10.0 10.0 -10.0 3.33 8.89 

Director 59.2 79.0 -7.0 -81.0 52.3 84.3% 4.44 

Secretary 65.1 -28.0 82.6 -97.8 56.5 85.5% 17.78 

GLOBAL 124 51.0 75.6 -178 108.8 94.9% 

D. The Free-rider case 

This artificial model consists of four actors, who control 
one relation each. A1 controls R1 and depends on the three 
relations (R2, R3, R4) controlled by the other actors 
(respectively A2, A3, A4) who, in turn, depend on R1. Figure. 
3 shows the amount of stakes and the shape of effect functions 
of this model: A1 confronts the three actors A2, A3, and A4, 
who are independent of each other. This structure leads 
naturally one of the 3 actors to take advantage of the 
cooperation of 2 others by defecting in order to maximize his 

capability. 

Table II shows the capability of actors for remarkable 
configurations of the system. Eight configurations correspond 
to Pareto optima while the last configuration (C9) corresponds 
to a Nash equilibrium (all relations in state -10) that turns out 
minimize the global capability of the system. The maximum 
capability of the system (C1) is achieved by the cooperation of 
every actor (all relations in state +10), at the expense of the 
maximum that each actor could pretend (C8, C2, C3, C4 
respectively). Note that the maximum of A1’s capability (C8) 
requires the cooperation of the three other actors without being 
rewarded by A1. The configurations C5, C6 and C7 correspond 



to states that maximize the capability of two actors and 

strongly penalize A1. 

R \ A A1 A2 A3 A4 

R1 1 9 9 9 

R2 3 1 0 0 

R3 3 0 1 0 S
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k
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R4 3 0 0 1 

R1 

R2 

R3 

E
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t 

fu
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n
s 

R4 

Figure 3. The stakes and effect functions of the dependence association 

between relations (in rows) and actors (in columns). The functions' x-

axis corresponds to the relation's state and the y-axis to the effect on the 
actor of the relation being in this state. 

TABLE II.  ACTORS' ACPABILITIES (IN COLUMNS) FOR NINE STATES (IN 

ROWS) OF THE FREE-RIDER ORGANIZATION: THE STATE THAT MAXIMIZES THE 

GLOBAL CAPABILITY (C1); THE FOUR STATES THAT MAXIMIZE THE 

CAPABILITY OF EACH ACTOR: A1 (C8), A2 (C2), A3 (C3), AND A4 (C4); THREE 

STATES WHERE TWO ACTORS DO NOT COOPERATE: A2 AND A3 (C5), A2 AND 

A4 (C6), A3 AND A4 (C7); THE NASH EQUILIBRIUM (C9). 

Actors’ Capability 

A1 A2 A3 A4 Global 

Occurrence 
percentage in 

simulation 
results 

C1 80 80 80 80 320 8 % 

C2 20 100 80 80 280 30 % 

C3 20 80 100 80 280 25.3 % 

C4 20 80 80 100 280 34 % 

C5 -40 100 100 80 240 0.3 % 

C6 -40 100 80 100 240 1.7 % 

C7 -40 80 100 100 240 0.7 % 

C8 100 -100 -100 -100 -200 0 % 

C
o

n
fi

g
u

ra
ti

o
n

s 

C9 -80 -80 -80 -80 -320 0 % 

III. WHAT A RATIONALITY FOR ACTORS GAME PLAYERS?

To compute how the actors of an organization are likely to 
behave in respect with others, we just have to provide them 
with a rationality allowing to play the social actors game. We 
seek a model of the way a social actor determines his behavior 
within an organizational setting that is funded in social 
sciences. It is required on the one hand to yield the observed 
facts when all the actors of an organization jointly behave in 
this way (macro level) and, on the other hand, to be plausible 
regarding the point of view of individuals (micro level). The 

intended emergent outcomes of a simulation process where all 

actors apply this process are the following: 

• The simulation ends in a stationary state after a reasonable
number of steps. However, simulations may last long if it 
is difficult for the actors to find how to cooperate – e.g. 
consider a circular organization with 5 actors where each 
one depends on his predecessor –, or if no cooperation is 
beneficial – e.g. a null-sum game (but real organizations 
are not constant-sum games). Terminal states are 
equilibria, not in the Nash sense where no one has 
advantage to change his behavior, but in the social control 
sense where a change is quickly sanctioned by others. As 
the difficulty to find a state that features a given property 
we mean a low frequency of this property in the space of 

all the states of the organization. 

• At the final state, every actor has a quite high level of
capability. This "high level" should be considered in 
proportion (i.e. as (value - minimumValue) / ( 
maximumValue - minimumValue)) rather than in value, 
because actors have disparate ranges of capability. 
Moreover, most organizations include structural conflicts 
so that there is no state providing every actor with a high 
level of capability, a fortiori his maximum level of 
capability. The settlement of conflicts depends on the 
power of the resources of every actor to defend and put 
forward his own situation. Globally, we expect to obtain 
states near of Pareto optima while being equitable without 

excessive gaps between the capabilities of the actors.  

• At the final state, the organization's global capability (the
sum of all actors' capabilities) is quite high. However, if 
the discovery of such a state is very difficult, actors can be 
discouraged and satisfy with a low level of capability. 
Notice that almost all real organizations include conflicts 
among actors, so that the maximum global capability 
seldom coincides with the maximum capability of one of 

the actors. Any stationary state results from a compromise. 

We do not know the mind process that drives the behavior 
adopted by a social actor. However, we intend to propose a 
model that is plausible regarding the cognitive and psycho-
social points of view and thus features the following 

characteristics. 

Social actors have goals (that are not necessarily limited to 
own selfish interests) and to be rational is to pursue the 
achievement of these goals. To get a high level of capability is 
obviously the first goal, in fact a meta-goal whose achievement 
provide the means needed to achieve concrete goals. This may 
be qualified as his individual goal. We assume that, when an 
actor takes part in an organization, he has some reasons to 
prefer to belong to that organization than the converse. 
Therefore, he is interested in the persistence of this 
organization that requires that it operates somehow well, and 
this may be qualified as his social goal. It is well known that an 
organization cannot operate when people just "work to rule". 
The proper operating of an organization requires that people 
implement positively the rules, that is to say they cooperate 
with each other. Thus, in most organizational settings, it is 
beneficial for actors to cooperate, and they do to the extent this 
is beneficial, both for their individual goal – in order to get the 



reciprocal cooperation of others – and for their social goal – to 

ensure the continuation of the organization. 

The rationality of the actor's decision process does not 
imply it is a conscious deliberative process, since even young 
babies adapt their behaviors to expectations of their entourage 
[7]. This search is also not an optimization process. It would be 
illusory since, as already noted, real social actors games have 
no socially feasible optimal state. Rationality must not be 
confused with optimization [8] and, from the cognitive point of 
view, there are many evidences that the Bayesian maximization 
of the subjective expected utility of Homo Economicus is not a 
realistic description of human decision-making, see among 

many others [9], [10], [11] and [12]. 

The sociology of organized action is in harmony with the 
Simon's paradigm of bounded rationality [13] that fully 
satisfies the organizational context we are considering: in 
addition to their cognitive limitations and the accounting of the 
cost of decision-making, actors have very few information 
about the actual state of affairs (due to the opacity that prevails 
in social relationships, we consider that actors are aware just of 
their own situation); the alternatives of the choice, i.e. the 
possible behaviors, are not given and their discovering is a part 
of the decision process; they are uncertain of the effect of their 
actions, because there are many incertitudes about the reactions 
of other actors. According to Simon's bounded rationality, an 
actor does not search for an optimal solution but just a 
satisfactory, or "satisfycing", alternative. To this end, his 
decision process driven by an aspiration level and he "searches 
until an alternative is found that is satisfactory by the 
aspiration level criterion". The value of this aspiration level is 
proper to each one and determined by his believes about the 
society within which he lives, his past individual experiences: 
"the existence of a satisfactory alternative is made likely by 
dynamic mechanisms that adjust the aspiration level to reality 

on the basis of information about the environment" [13]. 

Thus, our model of a boundedly rational social actor 
includes an ambition variable

1
 that serves as a threshold for the

actor to decide whether he is satisfied by the current state of the 
organization: an actor will be satisfied if and only if his 
capability exceeds his ambition. The ambition of an actor is 
initialized at his maximum capability and evolve according to 
the context; it is gradually reduced when the actual capability is 
below and upgraded when it is above. At the level of the whole 
game, ambition provides us with the convergence criterion for 
simulation of an actors game: a stationary state is reached when 

the capability of every actor exceeds his ambition. 

At each step of the game, each actor perceives the new 
value of his capability and compares it with the value at the 
previous step. He can know whether it has increased or 
decreased and relate this change with his previous action. This 

is the only information that he gets at each step of the game.  

As a more global assessment of his position, we assume 
that an actor is able to evaluate the gap between his ambition 

1
According to Durkheim for example, human beings are really able to 

evaluate their ambition: "Chacun, dans sa sphère, se rend vaguement compte 

du point extrême jusqu’où peuvent aller ses ambitions et n’aspire à rien au-

delà" [14, p. 23]. 

and his capability. We will see in the following section that the 
gap is an important driver of the actor's decision process. It is 
accounted in proportion, i.e. as (ambition - capability) / 
(ambition - minCapability), where minCapability is the 
absolute minimum capability of the actor. In this way, each 
actor reasons within his own scale of values. This will erase the 
disparities between the amplitudes (in value) of actors' ranges 
of capability and favor a smoother convergence of simulation 

processes. 

In the following section, we detail our algorithm of the 
rationality of social actors outlined in tables III and IV. A 

preliminary version of this algorithm is presented in [5]. 

IV. A MODEL FOR THE RATIONALITY OF ACTORS GAME PLAYERS

The knowledge about the most suitable behavior to adopt in 
an organizational setting is acquired by the participants, as 
shown by the way a newcomer in a group progressively adjusts 
his behavior. Most usual knowledge are acquired by experience 
and the paradigm of self-learning by trial and error [15], which 
is supported by very firm neurobiological foundations [16], fits 
our requirements. The learning can produce the necessary 
knowledge for case-based reasoning [17], by the construction 

of a base of rules of the kind (situation, action, strength) where:  

• situation is the list of the impacts got by the actor from the
relations he depends on, as they were at the step of the 

creation of the rule; 

• action is a list of changes in the states of the relations
controlled by the actor, chosen at random at the creation of

the rule;

• strength is a numerical evaluation of the suitability of the
rule; it is initialized at 0 and reinforced at each application 
of the rule depending on the resulting increase or decrease 

of the actor's capability. 

There is a single rule base for all the relations controlled by 
the actor, instead of a base for each relation, because the 
behavior of an actor is a coherent whole. His behavior vis-à-vis 
any of the relations he controls is not independent of his 

behavior towards others. 

At any step of a simulation, a rule is applicable if it has a 
positive strength and its situation is close, according to an 
Euclidean distance, to the current situation of the actor. The 
closeness of two situations is defined by an individual 
parameter, called the discriminality, that allows to account for 
a cognitive trait of each actor and determines his ability to 
discriminate between situations. It ranges from 1 to 5: 1 makes 
rules to be applicable in any situation; 5 allows the actor to 
distinguish between very bad/bad/neutral/good/very good 
situations. If there is no applicable rule, a new one is generated; 
else one of the three rules having the higher strength is 

selected. Rules having a negative strength are forgotten. 

The application of a rule consists in shifting the state of 
each relation of the value registered for that relation in the 
rule's action. If the actor controls relations r1, …, rk being in 
states sr1, … srk and the rule's action is (cr1, .., crk), the relation 
will become in states sr1 + cr1, … srk + crk. This definition of 
actors' actions assumes that a new behavior always results of a 



motion relative to the previous behavior that is chosen with 
regard for (the evolution of) the current situation. The state 
change of a relation may be positive (toward a more 
cooperative behavior), negative (toward less cooperativity) or 
neutral. The size of a change is selected at random within a 0-

centered interval of bounds +/- action_range discussed below. 

The spaces of behaviors of relations are bounded because 

whatever behavior is not feasible so that the ranges of actors' 

behaviors are limited. As any natural process, the actors game 

includes initial and limit conditions. Instead of an intricate and 

pointless management of rules' actions, we may distinguish 

between the performance of an action (the action component in 

the selected rule) and its actual effect (the change in the 

relations' states). If a rule has been positively reinforced 

enough so that its application leads the state of a relation to 

cross one of its bound, one may just set the state at the bound:  
 sr' = sr + cr; 

 if(10<sr') then sr'=10;if(sr'<-10) then sr'=-10. 

This amounts to keep the rule because it has been beneficial –

and possibly continues to do so on other relations – but to 

consider only its direction, not its intensity. 

When an actor applies a rule r at time t, the variation of 
his capability at time t+1 records the effect of the rule on the 

relations he controls. On the relations controlled by other 
actors, the effect of the rule on the variation of the actor's 
capability appears only at time t+2, once others have reacted 

to the effect of r on their own capability. Thus the actor's 

capability variation at time t must be assigned in proportion of 
the actor's autonomy at the strength of the rule applied at time 
t-1 and the remaining part at the strength of the rule applied at 

time t-2. The autonomy of an actor corresponds to the 
proportion of his (potential) capability that depends on himself. 
It may be defined as the proportion of his stakes on the 
relations he controls. So, in the Travel-tour case, the autonomy 

of the Director is 0.3 and the one of the Secretary is 0.2. 

An essential parameter of any learning is the tradeoff 
between the exploration of the environment and the 
exploitation of already acquired knowledge [18]. If the 
exploration is excessive, the process difficultly reaches a stable 
state because still another alternative is tested; if the 
exploitation is excessive, the process retains the first acceptable 
solution and possibly ignores better solutions. So, each actor 
manages an ExpR variable whose value 1 corresponds to full 

exploration and value 0 to full exploitation.  

ExpR decreases (from its initial value 0.9 to 0.1) according 
to the gap between the actor's ambition and capability, so that 
more the actor's capability is far below his ambition, more 
ExpR is high and he searches for something else. The gap 
being evaluated in proportion, as explained above, actors 
having a wider range of capabilities do not necessarily need 
more time steps for making their ambition to join their 
capability. This improves the possibility that actors have 
similar values for their respective ExpR variables, which favors 
a smooth convergence of simulations, since an intemperate 
exploration by an actor can destabilize the learning dynamics 

of other actors. 

TABLE III.  THE GLOBAL LOOP OF THE REGULATION PROCESS. 

// Initialization 
foreach relation r: 
 sr = 0  // or any other value 
foreach actor a: 

// compute structural constants 

autonomy = ( r  R / controls (r) = =a stake (a,r)) / ( r  R stake (a,r)) 

minCapability = mins  S (capability (a, s))  

closenessThreshold, slope, … 
// initialize learning variables 

capability0 = r  R impact(r, a, sr) 

ambition0 = maxCapability = maxs  S (capability (a, s)) 

ExpR0 = 0.9 

repeat // The Simulation Loop 
foreach actor a: //all actors see the same world 

a.action = a.selectAction ( ) 
foreach actor a: //they don't act in turn 

performAction (a.action) 
Until (foreach actor a: a.ambitiont  a.capabilityt) 

TABLE IV.  THE SELECTACTION() FUNCTION OF THE ACTORS’ LEARNING 

ALGORITHM. 

// Perception of capability and updating gap 

capabilityt = r  R impact(r, a, sr) 

deltaCapability = capabilityt - capabilityt-1 

gap = (ambitiont-1 - capabilityt) / (ambitiont-1 - minCapability) 
// Updating ambition 

if (ambitiont-1 > capabilityt) 
if ((gap < (11 – tenacity) / 10) && (deltaCapability = = 0)) 

ambitiont = ambitiont-1 – ((1 – ExpRt–1) *  
 (ambitiont-1 – capabilityt + 1)) / 100 

else  ambitiont = ambitiont-1 – ((1 – ExpRt-1) * gap / 50 
else  //a is already satisfied 

ambitiont = ambitiont-1 + ((capabilityt – ambitiont-1) / 100) 
// Updating exploration rate 

ExpRIns = 0.1 + (0.8 / (1 + e
slope * (gap - abscissa)

)) 
ExpRt = ExpRt-1 * ExpRt-1 + (1 – ExpRt-1) * ExpRIns

// Updating action_range 
action_range = 2 * ExpRt 

// Updating strength of last and penultimate selected rules 
// SRt stands for the Rule Selected at time t 

SRt-1.strengtht = (1 - ExpRt) * SRt-1.strengtht-1  
 + ExpRt * autonomy *deltaCapability 

SRt-2.strengtht = SRt-2.strengtht-1  
 + ExpRt * (1 - autonomy) * deltaCapability 

// Forgetting bad rules 
if (SRt-2.strengtht < 0) RuleBase.remove(SRt-2) 

// Selecting the set M of rules applicable at time t 
M.clear ( ) 
foreach rule R in RuleBase 
 if (distance(R.situation, CurrentSituation < closenessThreshold)  

M.add(R) 
// Selecting an action 

if (M.isEmpty()) 
SRt = (CurrentSituation(), (atRandom( )*action_range), 0) 
RuleBase.add (SRt) 

else 
 SRt = ChooseOneOfThreeRulesWithMaximumStrength (M) 
return (SRt.action) 



ExpR also varies depending of an actor's individual 
parameter, his tenacity, that determines to what extent he is 
prone to explore or to exploit. This parameter enables to 
account for a psychological trait of individuals. It also enables 
to account for the involvement level of the actor into the 
organization. More his participation to the organization is 
important for him, more his tenacity should be high. The value 
of ExpR follows the curves given in Figure 4, with the 

application of a learning-rate to regularize the variation.  

The learning-rate of a learning process, usually denoted , 

determines how much new information is integrated in the 
already acquired knowledge. If V is a learned variable which is 
updated at each time step according to information I acquired 

at this step, we have Vt+1:=(1 - ).Vt + .It+1. A high

learning-rate corresponds to an important acquisition of 
information that just is sought by a high level of exploration. 
Hence, our algorithm attributes the following effects to high 

values of the ExpR variable: 

• The action_range variable, that determines the size of the
relations' shifts in the action of new rules, is larger so that 

the changes in the actor's behavior are greater. 

• A high learning-rate for the strength of rules and the ExpR

variable itself. 

• The diminution of the ambition variable is smaller, so that
the actor does not renounce to explore the potentialities of 
the game. However, if the gap is very small and the 
capability does not vary, one assumes that the actor is near 

to become satisfied and a limit condition is applied. 

Figure 4. For each value of the tenacity from 0 to 10, the curve for the 

update of ExpR depending on the actor's gap (see the equations in 

TABLE IV). With tenacity = 10, the actor explores (ExpR > 0.5) until he 

his satisfied (gap  0); with tenacity  3, the actor exploits as soon as his
gap is below 0.3. 

V. SIMULATION RESULTS 

The reliability of such a simulation algorithm relies first on 
its foundation in social science and secondly on the correctness 
of the results when it is applied to organizations which are 
simple enough for exhibiting a well-understood functioning. 
Then, one may trust the knowledge brought by the simulation 
results for poorly understood organizations. For space 
limitation we cannot show to what extent simulations results 
comply with the requirements stated in section III. We just 

briefly comment results about the simple models presented in 

section II. 

Regarding the Travel-Tour case, the three right hand 
columns in Table I give the averaged result of 300 simulations, 
with tenacity 4 for the Director and 6 for the Secretary (she is a 
bit more involved in the game), and discriminality 1 for both. 
All simulations have converged after 2140 steps in average 
(minimum 412 and maximum 18184). The deviation of the 
state of “renew the contract”, which causes the deviation of the 
capability of both actors (specially the secretary), is high 
because the feedback is small so the director difficultly 
evaluates the impact of his actions: his stake and the effect 
function’s amplitude are low. The global capacity is fulfilled at 
94% of its maximum value, say about 85% of both actors' 
maximum capabilities. More details about the results are given 

in [6]. 

Regarding the Free-Rider case, the results concern 300 
simulations where the tenacity is 5 and the discriminality is 1 
for all actors and the number of steps 3680 in average. All 
simulations have exactly converged toward one of the C1 to C7 
configurations in the proportion given in the right hand column 
of Table II. Regarding concrete social organizations, the 
convergence of simulations toward distinct modes is not 
uncommon: it indicates that the organization could operate in 

different ways, even if only one of them actually occurs. 

 Figure 5 shows a sensitivity analysis of the actors’ 
capabilities depending on the tenacity of A1. To the detriment 
of longer simulations up to 50000 steps, A1 succeeds in 
constraining other actors to cooperate, so that all simulations 
converge toward the C1 configuration. However, in some 
organizations, a too high level of the tenacity of one (or 
several) actor prevents the convergence because there is no 
means for the tenacious actor to satisfy his steadily high 
ambition level. In most models, discriminality is not a sensitive 

parameter. 

Figure 5. The variation of actors’ capabilities depending on the A1's 

tenacity. 

VI. DISCUSSION

When people are engaged in a system of collective action, 
their normal behavior is to cooperate: working to rule and 
hindering are commonly assessed as reprehensible behaviors. 
This article reproduces this empirical observation and shows, 
by a plausible model of how human beings adapt their 
behaviors the one another within organizational settings, that 
cooperation occurs even among actors who are essentially self-
interested, have few information and use limited cognitive 
resources. However, the structure of the organizational 



relationships and the individual traits make that they are more 
or less inclined to cooperate and that finding how to cooperate 
can be difficult. The basic condition is to take the risk to 
cooperate and assume that others will reciprocally cooperate, 
and to have a realistic ambition. Then, actors will cooperate 
more so as the structure of the organization makes it beneficial 
– i.e. the gap between the maximum and the minimum global 
capability is large – and quite easy – i.e. states supplying high 

capabilities are not too sparse. 

Many variants of this algorithm may be studied. For 
example, one may consider that the actor's goals are 
incommensurable. Then, the actor seeks to improve every 
component of his situation, more or less independently from 
others, instead of their aggregation in a mere sum. We have 
found no significant enhancement of the results by this way. 
The same holds for a more sophisticated management of the 
rule base, for instance the aging of rules to forget those which 
have not been activated since a long time, or the recording of 
bad rules to not generate them again. On the other side, 
providing actors with more information such as the possibility 
to compare their capability with the one of others or worrying 
about the global capability of the organization opens new 
perspectives for dealing with the feelings and emotions of 

actors. 

At first glance, playing the actors game seems to fall in the 
domain of Multi-Agent Reinforcement Learning (MARL): the 
actors have to jointly find a best solution for the game (see e.g. 
[19, 20] for comprehensive surveys). However, the actors game 
differs from the games that are considered in this field of 
research. The agents of an actors game do not have to build a 
strategy, i.e. what to do in each case, they have to find a state 
of the game. In other words, they do not try to maximize the 
discounted sum of their rewards, but to find a behavior, i.e. the 
state of the relations they control, that will ensure them a 
satisfying reward. With a null discount factor, the Bellman's 
equation becomes trivial and the assumptions of the Q-
Learning approach, which is the underpinning of most MARL 

algorithms, are not fulfilled. 

In most algorithms for distributed problem solving, the 
agents either exchange information on their respective state or 
action in the course of the search or they have in advance 
knowledge about properties of the environment. Here, we only 
assume that an actor knows his level of autonomy and his 
maximum and minimum levels of capability, so that he has no 
means to build a model of another actor or of the whole game. 
As for algorithm related to bounded rationality [11], they are 
mainly heuristics to supplement the lack of information or of 
cognitive capacity or they address very different questions such 
as classification or form recognition, see e.g. [21, 22, 23]. The 
aspiration adaptation theory of Selten [9] copes with the 
Simon's aspiration level of boundedly rational agents, but they 
are assumed to be endowed with much more cognitive capaci-

ties and information about the consequences of their choices. 
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