
Autonimic energy-aware task scheduling

Tom Guérout, Mahdi Ben Alaya

To cite this version:

Tom Guérout, Mahdi Ben Alaya. Autonimic energy-aware task scheduling. IEEE Interna-
tional Conference on Collaboration Technologies and Infrastructures - WETICE, Jun 2013,
Hammamet, Tunisia. pp. 119-124, 2013. <hal-01148000>

HAL Id: hal-01148000

https://hal.archives-ouvertes.fr/hal-01148000

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01148000

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12787

To link to this article : DOI :10.1109/WETICE.2013.29
URL : http://dx.doi.org/10.1109/WETICE.2013.29

To cite this version : Guérout, Tom and Ben Alaya, Mahdi Autonimic
energy-aware task scheduling. (2013) In: IEEE International
Conference on Collaboration Technologies and Infrastructures -
WETICE, 17 June 2013 - 20 June 2013 (Hammemet, Tunisia).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12787/
http://oatao.univ-toulouse.fr/12787/
http://dx.doi.org/10.1109/WETICE.2013.29
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Autonomic energy-aware tasks scheduling

Tom Guérout

CNRS, LAAS, 7 avenue du Colonel Roche,

F-31400 Toulouse, France

IRIT/Toulouse University, 118 Route de Narbonne,

F-31062 TOULOUSE CEDEX 9

Univ de Toulouse, INSA, LAAS,

F-31400 Toulouse, France

Email: tguerout@laas.fr

Mahdi Ben Alaya

CNRS, LAAS, 7 avenue du Colonel Roche,

F-31400 Toulouse, France

Univ de Toulouse, INSA, LAAS,

F-31400 Toulouse, France

Email: ben.alaya@laas.fr

Abstract—The increasing processing capability of data-centers
increases considerably their energy consumption which leads to
important losses for companies. Energy-aware task scheduling
is a new challenge to optimize the use of the computation
power provided by multiple resources. In the context of Cloud
resources usage depends on users requests which are generally
unpredictable. Autonomic computing paradigm provides systems
with self-managing capabilities helping to react to unstable
situation. This article proposes an autonomic approach to provide
energy-aware scheduling tasks. The generic autonomic computing
framework FrameSelf coupled with the CloudSim energy-aware
simulator is presented. The proposed solution enables to detect
critical schedule situations and simulate new placements for tasks
on DVFS enabled hosts in order to improve the global energy
efficiency.

Index Terms—Autonomic, Framework, self-management, Sim-
ulations, Energy, Efficiency, DVFS

I. INTRODUCTION

The article is based on the use of an autonomic framework

and a simulator which allows to compute energy-aware simu-

lations. The aim is to do energy-aware scheduling of tasks. The

combination of using these two tools allow to have the benefit

of the autonomic middle-ware to detect specific events, and

the simulator to obtain informations about energy consumption

which help to take a scheduling decision.

Autonomic computing paradigm is a concept based on the

human body’s autonomic nervous system. A such system

manages the functioning of computer applications and systems

with minimum human intervention, in the same way that the

autonomic nervous system regulates body systems without

conscious human input. The goal of autonomic computing

is to create autonomous systems, capable of high-level func-

tioning by implementing self-management properties such

as self-configuration, self-optimisation, self-healing and self-

protection.

The increasing use of data-centers makes the analysis of

energy consumption increasingly important. Some metrics to

evaluate their efficiency are known (PUE, ERE) [1] and much

researches are ongoing to find new ways to reduce energy.

Real platforms can be used to lead these phases of validation,

but it involves a significant preparation time and physical

measurements are not always possible or easy to do depending

on the available equipments. That is why simulators are more

commonly used in this area. CloudSim already has some

energy-aware functionalities included in its architecture, and

has been chosen to be improved and used to conduct energy-

aware DVFS simulations in this article.

This article is organized as follows. First, section II presents

a state of the art on energy-aware tools and autonomic

frameworks. Section III describes the CloudSim simulator, the

new implementation of DVFS added and how it is able to

do energy-aware simulations. Then, Section IV presents the

autonomic framework called FrameSelf. In section V, first

results obtained using both FrameSelf and CloudSim are given.

Finally, section VI concludes and presents ideas for future

work.

II. STATE OF THE ART

A. Autonomic tools

Autonomic Computing is a paradigm proposed by IBM in

2001 [2]. It aims at developing distributed system capable of

self-management to hide intrinsic complexity to administrators

and users. An autonomic manager is organized into four main

modules, which are Monitor, Analyzer, Planer and Executor.

These modules share the same knowledge (managed resources

details, policies, symptoms, request for change, plans, etc.),

exploit policies based on goal and environment awareness and

constitute together the MAPE-K control loop.

Recent works on autonomic computing addressed some

of the self-management capabilities applied in specific do-

mains such as DeployWare [3] for dynamic software deploy-

ment, OceanStore [4] for resource allocation reconfiguration,

Gryphon [5] for communication patterns adaptation, and As-

trolabe [6] for autonomic query processing. Cited autonomic

solutions are designed to handle problems in specific domains,

and are in most cases highly dependent on the type of managed

resources. These framework are not modular and do not

support multi-model representations in their knowledge bases

for advanced management.

B. Energy-aware tools

Energy-aware tools are solutions, that can be used at differ-

ent levels, which allow to minimize the power consumption

of hosts in a data-centers. In this section, only the host level

is addressed and the three common energy-aware tools are

presented, considering that all used hosts enable virtualization.

The first solution, called “ON/OFF” method turns off hosts

not enough used (compared to a CPU load threshold), and

switched on them again if necessary. In this case any all

processes running in this host have to be moved to other

host(s), and thus, the host previously underutilized can be

turned off. Conversely, when all hosts are over-used and the

demand is too high, one or more host are started.

As described just above, it is sometimes necessary to

move processes from host to host. This mechanism is called

migration [7]. It allows to move a virtual machine (and all its

environment) from a host to another. These migrations are not

free in terms of energy because every movement requires time

and it is also important to take into account the total cost of

such action. This technique frees the hosts and then turn them

off, in order to try to use operating hosts at their maximum

potential (consolidation). Two kinds of consolidations works

can be defined on virtual machines placement and virtual

machines migration, as it detailed in [8].

Finally, the DVFS (Dynamic Voltage and Frequency Scal-

ing) [9] allows to dynamically change the voltage and the

frequency of a host in relation to their CPU load. In the

Linux kernel, the DVFS can be activated in five different

modes: Performance, PowerSave, UserSpace, Conservative

and OnDemand. Each mode has a governor to decides whether

the frequency must be changed (increased or decreased) or not.

Three of these five modes use fixed frequency : Performance

uses the CPU at its highest frequency, PowerSave uses the

CPU at its lowest frequency and the UserSpace mode allows

the user to choose one of all available frequencies.

The two last DVFS modes, Conservative and OnDemand

have a dynamical behaviour. It means that the CPU frequency

can vary over time regarding the CPU load.

The governors of these two modes work with thresholds

(one or two) and periodically check whether the CPU load

is lower (or higher) than these thresholds before taking their

decision to change the current frequency. The Conservative

governor works with an up threshold and a down threshold,

when the CPU load is higher than the up threshold the

frequency is increased, when the CPU load is under the

down threshold the CPU frequency is decrease. This mode is

very progressive, and each CPU frequency is done step by step

through all available frequencies. The OnDemand mode uses

only one threshold and favours the performance by directly

set the fastest CPU frequency when the CPU load exceeds the

threshold. A decreasing CPU frequency happens if the CPU

load stays below the threshold for a while.

A lower frequency reduced the CPU power consumption, it

slows down an application consuming a lot of calculation, but

without affect the time spent in I/O or communication.

III. ENERGY-AWARE SIMULATIONS

This section presents the features developed and incorpo-

rated in the CloudSim simulator in order to support energy-

aware simulations using DVFS. CloudSim has been chosen for

this work because it is composed of many energy-aware tools

needed to run reliable simulations. Some other powerful simu-

lators like SimGrid [10], GSSIM [11] [12] or GreenCloud [13]

have been analysed and taken into account, but they do not

collect enough energy-aware tools needed for this work.

A. CloudSim overview

CloudSim [14] is a Cloud simulator based on GridSim [15].

CloudSim is a toolkit for modeling and simulation of Infras-

tructure as a Service (IaaS) cloud computing environments.

The data-centers architecture is well modeled and can be

easily modified by the user according to its needs. It allows

users to define the characteristics of data-centers, including

number and characteristics of hosts, available storage, network

topology, and patterns of data-centers usage. CloudSim allows

the virtualization, development of scheduling policies, network

simulation between data-centers as well as compute the cost

of a IaaS cloud computing service. Energy functionalities of

CloudSim allow to turn off hosts, migrate virtual machines and

the integration of energy models.

In order to have all energy tools needed in this simulator,

the DVFS has been implemented and added in the core of the

simulator.

B. DVFS integration

��������	
����������

���������������

�������������������

�����������������

�����������������

�
�
�
	��

�
	�
�
�
�
��
�
�

Fig. 1. Classes of the new DVFS package added in the CloudSim simulator

Governors of the five DVFS modes, as they are present

in the Linux kernel have been implemented. Their role is to

determine whether the CPU frequency must be modified, and

their decision is directly related to their intrinsic decision rule.

A frequency change directly impacts the CPUs capacity in

MIPS (Millions Instructions Per Second) and inexorably the

total capacity of the host. Indeed, the new DVFS package

(Figure 1) is composed of one abstract class which contains all

common parameters of the different modes, and each specific

mode’s behaviour is described in the five other distinct classes.

This package is closely linked with CPU and Host classes of

CloudSim, so as to allow the analysis and the control of their

load, frequencies and capacity states.

It also involves how the simulator has to manage the virtual

machines capacities. For example, if the system decides to

reduce the frequency, the sum of the capacities of all virtual

machines can temporarily exceed the maximum capacity of

the host. In this case, the size of each virtual machine must

be decrease in proportion to the new host capacity to fit them

in this host. The same situation occurs when one or more new

virtual machines are created and need to be hosted. If the sum

of capacities of all virtual machines running and those of the

new virtual machines created exceeds the maximum capacity

of the host the same process of reducing the capacity of virtual

machines is applied.

Also, when part of the capacity of a host is freed, the

capacity of virtual machines still running can be increased.

This event occurs when a virtual machine finishes its execution

or when the CPU frequency is increased, all virtual machines

sizes are increased in proportion to the free capacity of the

host, while taking care to not exceed their maximum available

capacity.

These different situations that imply to dynamically modify

virtual machines capacities regarding the frequency changes

also mean that the DVFS package has been implemented so

as to be closely linked to the virtualization layer and the main

core classes of CloudSim.

Finally, an input XML configuration DVFS file has been

added to allow the user to specify:

• the available frequencies of the CPU

• which DVFS mode has to be activated

• thresholds’ values to be used (for dynamic modes)

C. Simulations using dynamic DVFS policy

For these simulations the dynamicOnDemandmode is used.

Its intrinsic behaviour allows to reduce the CPU frequency

during an Idle CPU phase, and set it to its maximum when a

CPU burn phase comes. These frequency changes are managed

by the OnDemand governor and give low power consumption

when the host is under-used. This governor also favours the

performance of the host when the full CPU computation power

is needed. Indeed, it sets the CPU frequency at the maximum

available value as soon as the CPU load overstep a threshold

(95% of CPU load). Conversely, when the CPU load stay

under this threshold, the CPU frequency is decreased step by

step using all frequencies available in the host. If a host is

temporally under-used, but not for long enough to decide to

move its tasks, this dynamic mode allows to reduce the energy

consumption while keeping this host switched on.

D. How are simulations used

In the autonomic context, two types of events can be

defined. The first one concerns the arrival of a new task that

need to be schedule in one host. The other event happens when

a host is under-used regarding a CPU load threshold (15% for

example). These two cases lead to trigger an autonomic event,

in the first case the aim is to find the best host in term of

energy consumption to execute the task, in the second one it

is necessary to freeing the host (stop and move all processes)

by migrating all tasks to other hosts. Of course, these moves

are not free in term of time, due to the time need to stop

processes, copy data from one host to another(s) and then

continue the execution on new chosen hosts. In term of energy

consumption this lead to switch off one host, indeed saving

energy, and consolidate the others that already have enough

running processes to keep them switched on.

In these two described cases, simulations are dynamically

used in order to find the best energy efficiency scheduling of

tasks.

The next section introduces the autonomic framework,

Frameself.

IV. FRAMESELF AUTONOMIC FRAMEWORK

The Frameself [16] framework is a generic autonomic

manager based on the IBM autonomic architecture

reference [17]. The monitor, analyzer, planer, and executer

operate as expert systems to emulate the decision-making

ability of human experts. These modules are independent

from managed resources and are designed to solve complex

problems by reasoning about knowledge, like an expert. Each

module is divided into two parts, one fixed, independent

of the system: the inference engine, and one variable: the

knowledge base model. The Frameself global architecture is

described in Figure 2.

Fig. 2. Frameself architecture overview

A. Main components overview

The monitor collects events from different sensors and

transforms, extends and formats them in a standardized format

to make them consistent for processing. It discards events that

are deemed to be irrelevant for the management platform and

ignores events pertaining to systems that are downstream of

a failed resource. Masking is different from filtering because

it allows to dynamically hide unfiltered events according to

the environment changes. The monitor also merges duplicates

of the same event that may be caused by network instability.

It infers symptoms based on received events using knowledge

models then publish generated symptoms on the message bus

to make them available to the analyzer. The monitor acts as

a proxy to connect specific event collectors that depends on

existing sensors. Depending on the targeted system, a specific

event collector can be an asynchronous event subscriber, a

synchronous event requester, or an even log file parser.

The analyzer subscribes to the message bus and receives

published symptoms. It infers Requests For Change (RFCs)

based on received symptoms and knowledge models, then

publishes them on the message bus in order to make them

available to the planner. The analyzer can also check and

validate a policy entered by the administrator and can resolve

conflicts between policies.

The planner subscribes to the message bus and receives

published Plans. It reads information related to policies and

available effectors from the knowledge base, generates action

plans leading to received RFCs, then publishes generated plans

on the message bus to make them available to the Executer.

The planner can also convert high-level policies into low-level

ones and employ them to guide the decisions.

The executer subscribes to the message bus and receives

published plans. It interprets received actions and checks

whether it has the rights and means to execute them. It

schedules and orchestrates the execution process by describing

the automated arrangement and coordination of actions in time,

then executes them on distributed destinations. The executer

acts as a proxy to connect specific action dispatchers that

depend on existing effectors. Based on the targeted system,

a specific action dispatcher can be a web-service client able

to request web-services or a deployment manager able to send

and execute script files into distributed machine.

The Knowledge Base allows to maintain all essential in-

formations to execute self-management operations on the

managed system. Knowledges can be divided in different

categories :

- Topology of the system architecture.

- Descriptions of sensors and effectors.

- Data about symptoms, RFCs, actions and used policies.

Other domain specific models such as ontology or graphs,

and reasoning rules can be instantiated, within the knowledge

base, independently for each control loop component. Thus,

each model can be handled in a decoupled way which enables

to manage a multi-model knowledge base.

B. Functioning description

The monitor subscribes to available sensors and re-

ceives events such as a managed resource “CPU usage”, or

“New task arrival”. Collected events are normalized, filtered,

aggregated, and then inserted in the knowledge base monitor-

ing session.

The monitor applies business rules using the Drools in-

ference engine [18] to generate relative symptoms such as

“Low CPU” or “NonScheduled task” and sends them to the

analyzer. This latter provides the mechanisms that correlate

and model complex situations. These mechanisms allow the

autonomic manager to learn about the environment and help

to predict environment changes. It receives symptoms as input,

generates new knowledge about required requests for change

(RFCs) such as “deploy task” or “migrate task” and sends

them for planning.

The planner acts as a decision module for selecting the

appropriate hosts to execute tasks. It saves received RFCs

as goal states, reads models of possible actions and facts

from the knowledge base and applies an energy efficiency

policy to guide its work. The planner generates actions such

as “1 install task” then “2 starting task” for task deploy-

ing, or “1 stop task”, “2 delete task”, “3 install task”, then

“4 start task” for task migration. The executor performs the

received plan using effectors and controls the actions execution

with consideration for dynamic updates.

The next section presents first results obtained both on

autonomic management and energy-aware scheduling.

V. FIRST RESULTS

Performance results are experimented to calculate the

overload that FrameSelf generates to handle an increasing

number of events. Obtained time values include monitoring

and analysing processes based on the Drools inference engine,

as well as the planning process based on the CloudSim

energy-aware simulator. Figure 3 shows the FrameSelf self-

management capacity calculated after receiving and handling

new task arrival events from a number of 10 to 1000 events.

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

T
im

e
(m

il
li

se
co

n
d

)

Number of received events (Tasks arrival)

Managing Time

Fig. 3. FrameSelf self-managing capacity using 20 hosts.

Scheduling results obtained with CloudSim have been done

using a metric that allow to classify hosts by their power

consumption characteristic related to their free capacity.

The metric considered to be minimized, called

Watt Per Mips (WPM), is defined as follow:

Lets denote the considered set of hosts by Hj =
{H1, ..., Hn} with a maximum of NbH elements, then for

each host each set of CPUs can be defined as H
cpus
j =

{cpu
Hj

1
, ..., cpu

Hj

n } with a maximum of NbCPU elements.

Finally, the set of virtual machines running on these hosts

are defined by VMk = {VM1, ..., V Mn} with a maximum of
NbVM elements.

Then, power and capacity of hosts and CPUs are defined as:

P
Hj

min and P
Hj

max : the powers deliver by an host Hj at Idle

(0%) and Full (100%) states.

P
cpui

min and P cpui
max : the powers deliver by a CPU cpui of a

host Hj (cpui ∈ H
cpus
j) at Idle (0%) and Full (100%) states.

Each capacity of Host, CPU and virtual machines are

defined as:

M
Hj

curr : the current capacity of the host Hj (in MIPS).

M
Hj
max : the maximum capacity of the host Hj (in MIPS).

M cpui
curr : the current capacity of the CPU cpui (in MIPS).

MVMk
max : the maximum capacity of virtual machine VMk

(in MIPS).

Lets define minimum and maximum powers (at Idle and

Full states) given by the CPUs as:

P
cpui

min =
P

hostj

min
×M

cpui
curr

M
Hj
curr

and P cpui
max = P

hostj
max ×M

cpui
curr

M
Hj
curr

Finally, the WPM metric computed for each hostHj is equal

to:

WPM =

nbCPU
∑

i=1

(P cpui

max − P
cpui

min)×

NbV M∑

k=1

M
V Mk
max

M
Hj
max

NbCPU

(1)

This metric allows to find the best green host at a given time

t, by taking into account each current CPU frequency (defined

in MIPS in equations), the potential of a host to accommodate

new tasks (free capacity), and the powers values of the host

using these current CPUs frequencies.

The scheduling time depends on how many hosts are taken

into account and how many tasks have to be scheduled.

Results using this metric (eq 1) have been done with 20 hosts

and is depicted on Figure 4. Results on this figure have been

obtained with CloudSim by simulating a tasks scheduling,

from a number of 10 to 1000 tasks, with the same arrival time.

VI. CONCLUSION

This article presents first ideas and first results of using

both autonomic framework and an energy-aware simulator.

The aim is to use the decision rules bases of the autonomic

manager to schedule and migrate tasks. Two critical situations

are detected such a new task arrival, so needs to be schedule

and an under-used host needed to be freeing. The autonomic

framework is used for energy efficiency self-optimization and

the simulator is used to be able to have estimations of the

power consumption using different scheduling policies in order

to take an energy efficient scheduling decision.

Proposed perspectives include new experiments using more

complex scenario, by multiplying the number of type of events

and using a real platform architecture model to involve a

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

T
im

e
(m

il
li

se
co

n
d

)

Number of Tasks to schedule

Sceduling Time

Fig. 4. CloudSim scheduling time using 20 hosts.

higher number of hosts in order to validate the scalability of

this approach. Another perspective is to adapt this approach

to a real scheduler, as OAR [19], in Grid and Cloud infras-

tructures.

REFERENCES

[1] M. Patterson, B. Tschudi, O. Vangeet, J. Cooley, and D. Azevedo, “ERE:
A metric for measuring the benefit of reuse energy from a data center,”
The Green Grid, Tech. Rep. White Paper 29, 2010.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the grid with
deployware,” in Cluster Computing and the Grid, 2008. CCGRID’08.
8th IEEE International Symposium on. IEEE, 2008, pp. 177–184.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer et al., “Oceanstore:
An architecture for global-scale persistent storage,” ACM Sigplan No-
tices, vol. 35, no. 11, pp. 190–201, 2000.

[5] P. R. Pietzuch and S. Bhola, “Congestion control in a reli-
able scalable message-oriented middleware,” in Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on Middleware.
Springer-Verlag New York, Inc., 2003, pp. 202–221.

[6] K. P. Birman, R. Van Renesse, and W. Vogels, “Scalable data fusion
using astrolabe,” in Information Fusion, 2002. Proceedings of the Fifth
International Conference on, vol. 2. IEEE, 2002, pp. 1434–1441.

[7] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in In
Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2005, pp. 273–286.

[8] E. Feller, “Autonomic and energy-efficient management of large-scale
virtualized data centers,” Ph.D. dissertation, Université Rennes 1, 2012.

[9] T. Kolpe, A. Zhai, and S. Sapatnekar, “Enabling improved power
management in multicore processors through clustered dvfs,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, march
2011, pp. 1 –6.

[10] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: A generic frame-
work for large-scale distributed experiments,” in Computer Modeling
and Simulation, 2008. UKSIM 2008. Tenth International Conference on,
april 2008, pp. 126–131.

[11] S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, and
J. Waglarz, “Gssim-a tool for distributed computing experiments.”
Scientific Programming, vol. 19, no. 4, pp. 231–251, 2011.

[12] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz, “Grid schedul-
ing simulations with gssim,” in Parallel and Distributed Systems, 2007
International Conference on, vol. 2, dec. 2007, pp. 1–8.

[13] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. Khan, “Greencloud: A
packet-level simulator of energy-aware cloud computing data centers,”
in GLOBECOM 2010, IEEE Global Telecommunications Conference,
2010, pp. 1–5.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

[15] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for
grid computing,” concurrency and computation: practice and experiene
(ccpe), vol. 14, no. 13, pp. 1175–1220, 2002.

[16] M. Ben Alaya and T. Monteil, “Frameself: A generic context-aware
autonomic framework for self-management of distributed systems,”
in Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2012 IEEE 21st International Workshop on. IEEE, 2012,
pp. 60–65.

[17] M. Parashar and S. Hariri, Autonomic computing: concepts, infrastruc-
ture, and applications. CRC, 2006.

[18] M. Proctor, “Relational declarative programming with jboss drools,”
in Symbolic and Numeric Algorithms for Scientific Computing, 2007.
SYNASC. International Symposium on. IEEE, 2007, pp. 5–5.

[19] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie,
P. Neyron, and O. Richard, “A batch scheduler with high level compo-
nents,” in Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE
International Symposium on, vol. 2, may 2005, pp. 776 – 783 Vol. 2.

