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Abstract—MultiDisciplinary Optimization (MDO) problems
represent one of the hardest and broadest domains of contin-
uous optimization. By involving both the models and criteria
of different disciplines, MDO problems are often too complex
to be tackled by classical optimization methods. We propose
an approach which takes into account this complexity using
a new representation (NDMO - Natural Domain Modeling for
Optimization) and a self-adaptive multi-agent algorithm. Our
method agentifies the different elements of the problem (such as
the variables, the models, the objectives). Each agent is in charge
of a small part of the problem and cooperates with others to
find equilibrium on conflicting values. Despite the fact that no
agent of the system has a complete view of the entire problem,
the mechanisms we provide allow the emergence of a coherent
solution. Evaluations on several academic and industrial test cases
are provided.

Keywords—Multi-Agent System, Multidisciplinary Optimization,
Integrative Design

I. INTRODUCTION

In their review about MultiDisciplinary Optimization
(MDO), Sobieszczansky-Sobieski and Haftka propose to de-
fine it as methodology for the design of systems in which
strong interaction between disciplines motivates designers to
simultaneously manipulate variables in several disciplines [1].
Designers have to simultaneously consider different disciplines
(such as, for example, aerodynamics, geometrics and acoustics
for an aircraft engine) which are often not only complex
by themselves but also strongly interdependent, causing the
classical optimization approaches to struggle handling them.

Formally, MDO problems are continuous optimization
problems where the goal is to find the values of a set of
inputs that maximize (or minimize) several objectives while
satisfying several constraints (both often regrouped under the
term optimization criteria). These problems tend to be complex
to solve as they can involve calculus-heavy, interdependent
models and contradictory criteria.

Currently, MDO problems require specific strategies to
be solved, and a major part of the research in the field has
been focusing on providing these strategies. These approaches
often involve reformulating the problem, requiring techniques
to maintain coherency among variables shared by different
disciplines and specific ordering of local optimizations on sub-
parts of the problem. Thus an important part of the burden is
still on the shoulders of the engineers.

In this paper, we propose an original approach using
a Multi-Agent System (MAS) [2] for solving this kind of
optimization problem in the most generic way while keeping
the need to reformulate the problem at a minimum. This system
is composed of autonomous agents which allow to model each
discipline independently. They interact and cooperate with
each other in order to solve discipline interdependencies. Inside
the MAS, each discipline may be easily distributed and may
evolve without impacting the global system.

As an MDO problem implies different disciplines, sev-
eral engineers (one per discipline for instance) may have to
intervene in the global optimization process of the problem.
We propose that each engineer may directly interact with the
system during the solving process in order to change, to test,
to adapt or to add elements to the parts of the problem inherent
to its discipline. This implies offering the engineers an easy
way to modify their own constraints of the problem, to set
specific values to some variables or change their definition
domains and to automatically take these changes into account.
We call this vision of MDO Integrative and Interactive Design
as stated by the ID4CS project1.

Our main focus is to design the self-adaptation capabilities
of the proposed system as a potentially infinite feedback loop
between the system and its environment, which is typical
of self-adaptive and self-organizing complex systems. As ex-
plained in [3], by using the emergence phenomena in artificial
systems, our aim is to obtain a system able to cut through
the search space of any problem far more efficiently than by
simply dividing the problem and distributing the calculus.

In the next part (section II), we begin by reviewing existing
optimization methods, both from MDO and MAS sides, and
argue that they are not adapted to solve the issues we propose
to tackle. Then, we present in section III a new generic
agent-based modeling for continuous optimization problems,
called Natural Domain Modeling for Optimization (NDMO).
Using NDMO we describe in section IV an adaptive multi-
agent algorithm to solve continuous optimization problems,
and detail in section V the mechanisms we introduced to
handle the specificities of MDO. We present in section VI the
results of our algorithm on different test cases, and finish by
perspectives about future improvements based on the current
work.

1Integrated Design for Complex Systems, national french project regrouping
9 academic and industrial partners, including Airbus and Snecma (Safran
Group)
http://www.irit.fr/id4cs



II. EXISTING METHODS

A. MDO methods

As presented in the introduction, MDO problems are highly
complex continuous optimization problems. This complexity
cannot be solely explained by the sheer size of the problem,
since even ”big” continuous optimization problems can eas-
ily be solved depending of their topology, but comes from
the interactions and reciprocal dependencies of the different
disciplines. As each discipline aims at modeling a part of
the physical world, integrating them together will bring back
some inherent non-linearities which were not present in the
simplified view of each separate model. Consequently such
MDO problems can truly be qualified as ”complex”, and
finding a solution to such a problem entails necessarily to
find an equilibrium among the local constraints and objectives
expressed on the different parts of the system.

Classical MDO methods delegate the optimization in itself
to standard optimization techniques, which must be chosen
and applied by the engineer, according to his knowledge of
the problem and his skills. The functioning of these methods
can vary greatly. For example Multi-Disciplinary Feasible
Design, considered to be one of the simplest methods [4],
consists only in a central optimizer taking charge of all the
variables and constraints sequentially, but gives poor results
when the complexity of the problem increases [5]. Other
approaches, such as Collaborative Optimization [6] or Bi-
Level Integrated System Synthesis [7], are said bi-level. They
introduce different levels of optimization [8], usually a local
level where each discipline is optimized separately and a global
level where the optimizer tries to reduce discrepancies among
the disciplines. However, these methods can be difficult to
apply since they often require to profoundly reformulate the
problem [9], and can have large computation time [5].

One of the major shortcomings of these classical methods is
that they require a lot of work and expertise from the engineer
to be put in practice. To actually perform the optimization
process, one must have a deep understanding of the models
involved as well as of the chosen method itself. This is
mandatory to be able to correctly reformulate the models
according to the formalism the method requires, as well as
to work out what is the most efficient way to organize the
models in regard to the method. Since by definition MDO
involves disciplines of different natures, it is often impossible
for one person to possess all the required knowledge, needing
the involvement of a whole team in the process. Moreover,
answering all these requirements implies a lot of work before
even starting the optimization process.

B. Multi-Agent Systems for Optimization

While multi-agent systems have already been used to
solve constraint satisfaction and optimization problems [10]–
[12], the existing works mainly concern their application to
Combinatorial Optimization, notably in the context of the
DCOP (Distributed Constraint Optimization Problem) formal-
ism, which usually applies to constraint optimization problems
where the definition domains of the design variables are
discrete and finite.

In DCOP, the agents try to minimize a global cost func-
tion (or alternatively, maximize a global satisfaction) which

Fig. 1. Illustration of a Turbofan engine (CC SA-BY K. Aainsqatsi)

depends on the states of a set of design variables. Each design
variable of the optimization problem is associated with an
agent. The agent controls the value which is assigned to the
variable. The global cost function is divided into a set of
local cost functions, representing the cost associated with the
conjoint state of two specific variables. An agent is only aware
of the cost functions which involve the variable it is responsible
for.

While some works successfully used DCOP in the context
of continuous optimization [13], this formalism is not adequate
to handle the type of problems we propose to solve here.
DCOP problems are supposed to be easily decomposable into
several cost functions, where the cost values associated to
the variables states are supposed to be known. This major
assumption does not stand for MDO problem, where the
complexity of the models and their interdependencies cause
this information to be unavailable in most cases. Trying to
model such MDO problems with DCOP would result in a
system where most agents are related to every other agent,
with unknown cost functions.

Moreover, the existing agent-based optimization techniques
for DCOP often present similar shortcomings to MDO meth-
ods, in the sense that they require a strong expertise to be
efficiently applied [14].

III. PROBLEM MODELING WITH NDMO

In answer to the previous shortcomings, we propose a
generic approach called Natural Domain Modeling for Opti-
mization (NDMO) that relies on a natural or intrinsic descrip-
tion of the problem (i.e. close to the reality being described).

To illustrate how an optimization problem is modeled, we
use a simplified Turbofan optimization problem. In Fig. 1, an
illustration of the principle of the turbofan can be seen. In this
figure, the bypass ratio is the ratio between the air drawn in by
the fan not entering engine core (which is bypassed) and the air
effectively used for the combustion process. The pressure ratio
is the ratio between pressure produced by the compressors and
the pressure it receives from the environment.

In order to identify the elements of a generic continuous
optimization model, we worked with experts from several
related fields: numerical optimization, mechanics as well as



(Tdm0, s, fr) = Turbofan(pi c, bpr)
max Tdm0

min s
subject to
s ≤ 155
fr ≥ 4

(a) mathematical formulation.

(b) corresponding entities graph.

Fig. 2. Turbofan problem.

aeronautics and engine engineers. As a result, we identified
five classes of interacting entities: models, design variables,
output variables, constraints and objectives.

In Fig. 2a, the analytic expression of this optimization
problem is given, while in Fig. 2b, the problem is presented
as a graph of the different entities. The design variables of
this problem are pi c and bpr, which indicate respectively
the compressor pressure ratio and the bypass ratio of the
engine. The turbofan model produces three outputs: Tdm0, s
and fr, representing respectively the thrust, fuel consumption
and thrust ratio of the engine. In this problem we try to
maximize the thrust and minimizing the fuel consumption
while satisfying some feasibility constraints.

Let’s now see in more details the roles of each of these
five entities: model, variable, output, constraint and objective.

Models: In the most general case, a model can be
seen as a black box which takes input values (which can
be design variables or output variables) and produces output
values. A model represents a technical knowledge of the
relations between different parts of a problem and can be as
simple as a linear function or a much more complex algorithm
requiring several hours of calculation. Often some properties
are known (or can be deduced) about a model and specialized
optimization techniques can exploit this information. In our
Turbofan example, a model entity is the Turbofan function
which calculates the three outputs using the values of bpr and
pi c.

Design Variables: These are the inputs of the problem
and can be adjusted freely (within their defining boundaries).
The goal is to find the set(s) of values for these variables

that maximize the objectives while satisfying the constraints.
Design variables are used by models to calculate their outputs
and by constraints and objectives to calculate their current
value. A design variable can be shared by several models,
objectives and constraints. Keeping with our example, bpr and
pi c are the two design variables of our optimization problem.

Output Variables: These values are produced by a
model, and consequently cannot be changed freely. As for the
design variables, the output variables are used by models to
calculate their outputs and by constraints and objectives to
calculate their current value. In our example, Tdm0, s and fr
are output variables produced by the Turbofan model.

Constraints: These are strict restrictions on some parts
of the problem, represented as functional constraints defined by
equalities and/or inequalities. These can be the expression of a
physical constraint, or a requirement concerning the problem.
Regarding the Turbofan, the two constraints are s <= 155 and
fr >= 4.

Objectives: The goals to be optimized. In the general
case, different objectives are often contradictory. The two
objectives of the Turbofan problems are to maximize Tdm0
and to minimize s.

An interesting and important point is that both models,
constraints and objectives involve computation. Often the most
heavyweight calculus is encapsulated inside a model and the
calculi concerning criteria tend to be simple equations, but
this is neither an absolute requirement nor a discriminating
characteristic.

The NDMO modeling aims to provide the most complete
and natural representation of the problem. This modeling
preserves the relations between the domain entities and is
completely independent of the solving process. Since we now
have a way to model optimization problems as graphs of
entities, we now present the multi-agent algorithm proposed
to solve them.

IV. A MULTI-AGENT SYSTEM FOR MDO

Based on the NDMO modeling in section III, we propose
a multi-agent system where each domain entity is associated
with an agent. Thus, the multi-agent system is the repre-
sentation of the problem to be solved with the links and
communication between agents reflecting its natural structure.
It is worth emphasizing the fact that this transformation (i.e.
the agentification) can be completely automatic as it is fully
derived from the expression of the problem.
The local behavior of the agents has to be tailored in a way
leading to an equilibrium between all the constraints and
objectives expressed on the different parts of the problem.

To describe the solving process – constituted by the col-
lective behavior of the agents – we must describe the behavior
of each type of agents.

But before that, let us explain the resulting emergent
behavior of the system. It basically relies on two continuous
simultaneous flow of information: downward (from design
variables to criteria) with new values computed by models,
and upward (from criteria to design variables) with change-
value requests that drive the movements of the design variable



in the search space. Intuitively, by emitting requests, criteria
agents are ”pulling” the different design variables, through
the intermediary agents, in multiple direction in order to
be satisfied. The system thus converges to an equilibrium
between all these ”forces”, especially in the case of multiple
contradicting criteria, which corresponds to the optimum to be
found.

Methodologically, by studying how the system handles
specific problems with specific characteristics, we defined
different cooperation mechanisms that enable the system to
work for all problems with these characteristics. Some of these
mechanisms are presented in section V.

We now detail the general behaviors of our five agent types:
model, variable, output, constraint and objective agents. A
summary of the basic principles of each agent type is given in
Algorithm 1.

Model Agent: A model agent takes charge of a model
of the problem. It interacts with the agents handling its inputs
(which can be variable or output agents) and the output agents
handling its outputs. Its individual goal is to maintain the
consistency between its inputs and its outputs. To this end,
when it receives a message from one of its inputs informing
it of a value change, a model agent recalculates the outputs
values of its model and informs its output agents of their
new value. On the other part, when a model agent receives
a message from one of its output agents it translates and
transmits the request to its inputs.
This translation done by the model agent consists in finding
the input values corresponding to a specific desired output
value, the model agent can use external optimization tech-
niques provided by the engineer based on expert domain-
dependent knowledge regarding the structure of the model
itself. Alternatively, a general basic mechanism based on linear
interpolations is provided. It is important to emphasize that the
optimizer is used only to solve the local problem of the model
agent, and is not used to solve the problem globally.

Variable Agent: This agent represents a design variable
of the problem. Its individual goal is to find a value which is
the best equilibrium among all the requests it can receive (from
models and criteria for which it is an input). The agents using
the variable as input can send to it request asking to change
its value. When changing value, the agent informs all agents
linked to it of its new value.
To find its new value, the variable agent uses an exploration
strategy based on Adaptive Value Trackers (AVT) [15]. The
AVT can be seen as an adaptation of dichotomous search for
dynamic values. The main idea is to change value according
to the direction which is requested and the direction of the
past requests. While the value varies in the same direction, the
variation delta is increased so the value varies more and more.
As soon as the requested variation changes, it means that the
variable went past the good value, so the variation delta is
reduced.
This capability to take into account a changing solution allows
the variable agent to continuously search for an unknown
dynamic target value. This capability is also a requirement
for the system to be able to adapt to changes made by the
engineer during the solving process.

Algorithm 1 Agents Behaviors

procedure MODEL AGENT BEHAVIOR

loop
analyze received messages
if received new information messages then

recalculate outputs
inform depending agents

end if
if received new requests then

use optimizer to find adequate inputs
propagate requests to input agents

end if
end loop

end procedure

procedure VARIABLE AGENT BEHAVIOR

loop
analyze received messages
if received new requests then

select most important
adjust value
inform depending agents

end if
end loop

end procedure

procedure OUTPUT AGENT BEHAVIOR

loop
analyze received messages
if received new information messages then

update its value
inform depending agents

end if
if received new requests then

select most important
transmit selected request to model agent

end if
end loop

end procedure

procedure CONSTRAINT/ OBJECTIVE AGENT BEHAV-
IOR

loop
analyze received messages
if received new information messages then

update its value
use optimizer to find adequate inputs
send new requests to variable/output agents

end if
end loop

end procedure



Output Agent: The output agent takes charge of an
output of a model. Output agent and variable agents have
similar roles, except output agents cannot directly change their
value. Instead they send a request to the model agent they
depend on. In this regard, the output agent act as a filter for
the model agent it depends on, selecting among the different
requests the ones it then transmits.
As we will see in the next section, the output agent is distinct
from the variable agent in the way that it can be involved in
cycles. A cycle is a situation of interdependent models (that is,
models which depend on each other to calculate their outputs).

Constraint Agent: The constraint agent has the respon-
sibility for handling a constraint of the problem. When receiv-
ing a message from one of its inputs, the agent recalculates its
constraint and checks its satisfaction. If the constraint is not
satisfied, the agent sends change value requests to its inputs.
It should be noted that, to estimate the input values required
to satisfy the constraint on its computed value, this agent
employs the same technique as the model agent (i.e. an external
optimizer).

Objective Agent: The objective agent is in charge of an
objective of the problem. This agent sends requests to its inputs
aiming to improve its objective, and recalculates the objective
when receiving value changed messages from its inputs.
This agent uses an external optimizer to estimate input values
which would improve the objective, as the model and con-
straint agents.

The most important point is that each agent only has a local
strategy. No agent is in charge of the optimization of the system
as a whole, or even of a subset of the other agents. Contrary
to the classical MDO methods presented earlier, the solving
of the problem is not directed by a predefined methodology,
but by the structure of the problem itself. The emerging global
strategy is unique and adapted to the problem.

V. COOPERATION MECHANISMS

In order to reach a correct equilibrium state despite the
potentially complex non-linearities of the problem, we en-
dowed the agents with three main mechanisms. They handle
specific challenges related to MDO: Criticality, Simultaneous
Cooperative Multi-Request Satisfaction and Cycle Handling.
Two other lesser mechanisms that support the behavior of the
agents are not described here (managing hidden dependencies
and waiting for delayed information).

A. Criticality: A Heuristic for Local Cooperation

The design of the agents’ behavior is based on cooperation.
The main idea of cooperation is for agents to try to help other
agents which are less satisfied than themselves, that is, which
are in a more critical state than themselves. The purpose of this
mechanism is to provide the agents with synthetic information
regarding the parts of the system it is not able to directly
perceive because of its local perception, by propagating the
information in the system from agent to agent.

To evaluate this critical state of an agent as a single,
comparable numerical value, a measure called criticality is
used [16]. This indicator can then be transmitted to the
other agents or the engineer. Facing contradictory requests,

an agent can choose which request to satisfy by observing
and comparing the criticalities of the senders. For example,
the variable agent uses the criticality to discriminate between
contradictory change requests, choosing the request from the
agent which is the most critical (that is, the agent whose
criticality is the highest). The strengths of this approach are its
flexibility and ease of interpretation by a human. This notion
of criticality as a heuristic for local cooperation was defined
in the Adaptive Multi-Agent System theory [17].

In the proposed system, criticality is computed by criteria
agents and is propagated in the system through their requests.
We illustrate this with a constraint of the type g(X) ≤ t, with
X input of the constraint, g(X) the constraint equation and t
the threshold under which the constraint is satisfied. The basic
requirements regarding the criticality of this agent is to be low
when the constraint is satisfied and high when the constraint
is violated. Thus, the criticality of this agent is a function of
its current value and of the threshold.

To compute it, we use the function defined in Fig. 3. It
takes as input x, the current value of the constraint. It is
parameterized by t, the threshold, and by η and ǫ that both
regulate the shape of the function as seen in Fig. 4. Its value
always varies between 0 and 1. The ǫ can be adjusted by
a domain expert, if needed: the higher it is, the faster the
constraint increases in criticality. In our experiments, we used
ǫ = 0.1 and η was set to roughly a third of ǫ, i.e. 0.03.
This function allows a smooth transition between two states
and provides several interesting properties: it is continuous,
differentiable, requires few parameters, is computed quickly
and is relatively easy to grasp.

The criticality of the other agents is determined as follow:

• For objective agents: the criticality is set to an arbitrary
constant value which must be lower than 1. In our
experiments we settled for a value of 0.5. This translates
the fact that, in the general case, an objective could
theoretically always be improved, but is less important
to satisfy than a constraint.

• For variable, output and model agents: the criticality is
set to the highest criticality among the received requests.

When the system converges to a solution, it stabilizes at a
point where the maximum of the criticalities of the agents is
minimized.

B. Simultaneous Cooperative Multi-Request Satisfaction

Another very common difficulty in MDO problems is
the presence of multiple objectives and constraints, often
contradictory. Consequently a model agent often receives con-
tradictory requests from its output originating from different
criteria. To ensure the convergence of the system towards a
good solution, it is important to handle these requests in the
most cooperative way.

As we presented earlier, objectives and constraints try to
improve their local goals independently, without taking each
other in account. During the solving, a model agent can receive
contradictory requests originating from these criteria agents. In
this case, the normal behavior of the model agent is to select
the most critical request, disregarding the others. However in
some cases, this behavior could be inefficient, as it is possible
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0 if x < t− ǫ ,

−γ(t− x− η)2

2(ǫ− η))
+ γ(t− x− η) + δ if t− ǫ ≤ x ≤ t− η,

γ(−t− x− η)2

2η
+ γ(−t− x− η) + δ if t− η ≤ x ≤ t,

1 if x > t

where

γ = −2/ǫ,
δ = −γ(ǫ− η)/2,

and 0 < η < ǫ.

Fig. 3. Analytical formulation of the criticality function.

0 0.5 1

0

0.5

1

input value

cr
it
ic
a
li
ty

η = 1− ǫ/10

η = 1− ǫ/3

η = ǫ/2

η = ǫ/3

η = ǫ/10

Fig. 4. Shapes of criticality function of threshold t = 1 for ǫ = 1 and different
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to find a set of actions (or ”direction” in the search space)
which would satisfy several criteria at the same time. Indeed,
the outputs of a model can actually be sensitive only to a subset
of its input.

The model agent is given a mechanism to estimate the
correlation between each outputs and inputs, i.e. how much an
output changes when a given input changes. Such a measure
is only valid at a given time and is constantly revised when
the model recomputes its outputs.

When sending its requests, the model agent can then for
each input base its demand on the request of the most impacted
output. By satisfying the requests in the most cooperative way,
the model agent improves the efficiency of the system.

C. Cycle Handling

Another common situation in complex systems is the
presence of interdependency cycles (i.e. models which depend
of each other to calculate their outputs). The solution (if it
exists) when such a cycle is stabilized is called the fixed point.
To be able to converge towards such a point, we must introduce
specific mechanisms to:

• Detect the existence of a cycle.
• Determine if the fixed point is attractive or repulsive.
• In the case of a repulsive fixed point, develop a strategy

to ensure convergence towards it.

To address the first point, each message is uniquely signed to
register its origin. When a variable agent sends a message, it
signs the message with its unique agent ”ID” and a unique
sender-relative (i.e. order is only valid for a given origin)
message number. The association of these two elements is

the origin signature. This signature is preserved from message
to message when forwarding messages and can be used to
pinpoint the origin of an action in the system.

The output agents are in charge of detecting and handling
cycles, as they are in the best position for being at the junction
between criteria and models (or between different models).

To detect a cycle, the output agent creates a correspondence
table associating to each origin the last signature it received
from it. Every time a message is received, before updating this
table with the new signatures, the agents checks if the signature
matches with one that was already seen. If it is the case, then
it means it saw twice a message pertaining to a given action
in the system and that there is a cycle.

As in the general case all models are black boxes, the
output agent needs to observe the evolution of its value when
a cycle is detected to determine whether it is diverging or con-
verging towards the fixed point. Because the system converges
by oscillating around the solution, if the difference between
successive values is decreasing, the cycle is converging towards
the fixed point, else the cycle is diverging. In the case of
a diverging cycle, instead of taking the new value from the
model, the agent counteracts it by inverting the tendency by
applying the inverse variation to its value instead of just
propagating it.

VI. EXPERIMENTS

In this section we present three test cases, Alexandrov
Problem, Turbofan Problem and Viennet1, on which our
system has been applied, and the experimental results we
obtained. In each test case, the MAS consistently converges
towards the best (or one of the best) solution.

A. Alexandrov Problem

Our first test case is inspired from an academic example
taken in literature by Alexandrov et al [8]. This simple example
presents some of the common characteristics of MDO prob-
lems, such as interdependent disciplines and multiple criteria.
In the original article, the example was used to illustrate some
properties of Collaborative Optimization, which we presented
earlier, in terms of reformulation. While the paper only gave
the structure of the problem, we adapted it with meaningful
values and equations. The formulation of the problem is:
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Fig. 5. Alexandrov agents behavior
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Fig. 6. Convergence of the Alexandrov objective for 100 random starting
points

a1 = (l1 − a2)/2
a2 = (l2 − a1)/2

Minimize 1
2 (a

2
1 + 10a22 + 5(s− 3)2)

subject to
s+ l1 ≤ 1

−s+ l2 ≤ −2

In Fig. 5, the behavior of the design variables agents l1, l2
and s, as well the evolution of the objective, can be observed
on one instance of the problem with random starting points, as
well as the stabilization of the system on the optimum solution.

In Fig. 6, we show the evolution of the objective over
100 iterations with starting points for each design variable
randomly drawn over the interval [-100; 100]. We can see
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Fig. 7. Convergence of the Turbofan objectives for 100 random starting
points

how the system converges towards the same optimum despite
the wildly different initial conditions. We can see how the
system converges towards the same optimum despite the wildly
different initial conditions, showing the low sensibility of the
system to initial conditions.

B. Turbofan Problem

The turbofan problem we introduced in Fig. 2 is based
on a real-world optimization problem, albeit simplified for
demonstration purposes, concerning the conception of a tur-
bofan engine.

As stated before, the problem involves two design variables
pi c and bpr. pi c is defined inside the interval [20-40] and
bpr inside [2-10]. The model produces three variables Tdm0,
s and fr. The problem has two objectives, maximizing Tdm0
and minimizing s, under the constraint s ≤ 155 and fr ≥ 4.
The main interest and difficulty of this problem is the existence
of two contradictory objectives.

In Fig. 7, we can see that the system consistently con-
verges toward the same optimal solution, again without being
disturbed by the different initial conditions.

C. Viennet1

The Viennet1 test case is part of a series of problems
proposed in [18] to evaluate multi-criteria optimization tech-
niques. This problem involves three objectives. Its analytical
formulation is:

Minimize o1 = x2 + (y − 1)2

o2 = x2 + (y + 1)2

o3 = (x− 1)2 + y2 + 2

where x, y ∈ [−4; 4]

Fig. 8 illustrates again the convergence of the system
towards a, identical correct optimum despite the different
starting conditions.

VII. CONCLUSION

We presented a generic model of numerical optimization
problem and an agent-based optimization algorithm. While
classical methods often have difficulties to handle complex
MDO problems and require the use of specific methodologies,
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Fig. 8. Convergence of Viennet1 objectives for 100 random starting points

we distribute the problem among the agents in order to keep
a low local complexity.

One of our concerns has been to facilitate the work of
the engineer and allow him to express his problem in a
way which is the most natural to him, instead of restricting
him to a specific formulation. By analyzing the different
concepts involved in the expression of an MDO problem,
we extracted several atomic roles upon which we based the
relations between the entities of our system. With these low-
level entities, we are able to propose a new formalism we name
NDMO. This new formalism can reconstruct a great variety of
problems while mirroring their original formulation. Using this
formalism, we proposed an agent-based optimization algorithm
integrating MDO-specific mechanisms.

We exposed here the results of several experiments using
representative problems in order to validate the soundness of
our approach. We continue to work with our industrial partners
in order to show the scalability of our approach on more
complex real world based problems.

Our goal is to make a system that grows not only with
the complexity of the problem but also with the needs of the
engineer. This is why our approach can, by design, easily be
interfaced with any local optimization method. In the same
idea, one of our next goals is to integrate into our system the
capability to handle and propagate uncertainties among the
different parts of the problem.
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