
Multi-architecture Value Analysis for Machine Code

Hugues Cassé, Florian Birée, Pascal Sainrat

To cite this version:

Hugues Cassé, Florian Birée, Pascal Sainrat. Multi-architecture Value Analysis for Machine
Code. 13th International Workshop on Worst-Case Execution Time Analysis - WCET 2013,
Jul 2013, Paris, France. pp. 42-52, 2013. <hal-01148808>

HAL Id: hal-01148808

https://hal.archives-ouvertes.fr/hal-01148808

Submitted on 5 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01148808

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12494

To link to this article : DOI: 10.4230/OASIcs.WCET.2013.42
URL : http://dx.doi.org/10.4230/OASIcs.WCET.2013.42

To cite this version : Cassé, Hugues and Birée, Florian and Sainrat,
Pascal Multi-architecture Value Analysis for Machine Code. (2013)
In: 13th International Workshop on Worst-Case Execution Time
Analysis - WCET, 2013, 9 July 2013 - 9 July 2013 (Paris, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Multi-architecture Value Analysis for Machine
Code∗

Hugues Cassé, Florian Birée, and Pascal Sainrat

surname@irit.fr
Université de Toulouse
Institut de Recherche en Informatique de Toulouse (IRIT)
118 Route de Narbonne, F–31062 TOULOUSE CEDEX 9, France

Abstract
Safety verification of critical real-time embedded systems requires Worst Case Execution Time
information (WCET). Among the existing approaches to estimate the WCET, static analysis at
the machine code level has proven to get safe results. A lot of different architectures are used in
real-time systems but no generic solution provides the ability to perform static analysis of values
handled by machine instructions. Nonetheless, results of such analyses are worth to improve the
precision of other analyzes like data cache, indirect branches, etc.

This paper proposes a semantic language aimed at expressing semantics of machine instruc-
tions whatever the underlying instruction set is. This ensures abstraction and portability of the
value analysis or any analysis based on the semantic expression of the instructions.

As a proof of concept, we adapted and refined an existing analysis representing values as
Circular-Linear Progression (CLP), that is, as a sparse integer interval effective to model pointers.
In addition, we show how our semantic instructions allow to build back conditions of loop in order
to refine the CLP values and improve the precision of the analysis.

Both contributions have been implemented in our framework, OTAWA, and experimented on
the Malärdalen benchmark to demonstrate the effectiveness of the approach.

Keywords and phrases machine code, static analysis, value analysis, semantics

Digital Object Identifier 10.4230/OASIcs.WCET.2013.42

1 Introduction

Safety of critical embedded real-time applications needs to be verified in order to avoid
catastrophic issues. This verification concerns not only functional features but also non-
functional ones like temporal properties. The Worst Case Execution Time (WCET) is an
important element of time properties. Its computation by static analysis is required at the
machine level to get confident results.

Some tools, like OTAWA [3], provide a generic framework to perform these kinds of ana-
lyses whatever the underlying architecture is, including programming and execution models.
In this article, we show how to adapt static analysis of data flow analysis to the machine
code. More precisely, we have adapted and improved the circular-linear representation of
integer values of [9][8] to any machine code using an architecture-independent language while
maintaining fast convergence for the fixpoint computation.

∗ The research leading to these results has received funding from ANR under grant ANR-12-INSE-0001.

http://dx.doi.org/10.4230/OASIcs.WCET.2013.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Such an analysis is utterly important as its results can be used in the implementation
of a lot of other analyses concerning control or data flow. For example, it can be used to
compute the targets of indirect branches (pointer call or optimized switch implementations
using indirection tables) or to identify statically code that is dynamically dead (typically in
library functions where some conditions are always false because of the call context). Data
flow uses include the analysis of data caches, of array accesses (bounding of the array range
in memory), of the stack size (very important in embedded applications with small memory
sizes) and infeasible paths by providing information on the program conditions.

This article is divided in 5 sections. In the first one, we present the abstraction of the
machine language and its application to Abstract Interpretation (AI). The second section
presents the clp representation of values and a proposed refinement based on the decoding of
branch conditions. Then, Section 3 gives the results of the experimentations and we provide
in Section 4 a comparison with existing value analyses. The last section concludes the paper.

2 Value Analysis at Machine Code Level

In this section, we first present the abstraction of the machine instructions and how to use it
to build an AI.

2.1 Independent Machine Language

As critical embedded real-time systems are running on very different architectures, OTAWA
provides an abstraction of the machine instruction semantics. This avoids (a) to tie the
analysis to a particular instruction set and (b) to focus only on the more useful part of the
instruction behaviour to analyze the computation of integer values and addresses.

Table 1 Semantic Instructions.

Instruction (I) Semantics (updateI)
add d, a, b d← a+ b

sub d, a, b d← a− b
shl d, a, b d← a� b

shr d, a, b d← a� b

asr d, a, b d← a�+ b

set d, a d← a

seti d, i d← i

scratch d d← >
cmp d, a, b d← a ∼ b
store d, a, t Mt[a]← d

load d, a, t d←Mt[a]
if c, a, i if a 6= c then ic← ic+ i

branch d pc← d

cont stop interpretation

d, a, b ∈ Registers ∪ Temporaries
i, s ∈ Z
�, �: logicial shift left, right
�+: arithmetical shift right,
∼: comparison,
c ∈ {=, 6=, <,≤, >,≥, <+,≤+, >+,≥+}
that is, signed and unsigned comparators
pc: processor program counter,
ic: counter of semantic instrucions,
Ms[a]: memory cell of address a of type t
t ∈ {Z8,Z16,Z32,Z64,N8,N16,N32,N64}
where k in Zk, Nk is the number of bits
>: undefined value

Unlikely to an RTL (Register Transfer Language) language, it is designed to make the
static analyses easier and faster. Especially, it avoids actions internal to the microprocessor
that are neither relevant, nor supported by the value analysis. This language, presented
in Table 1, is composed of very simple a-la RISC instructions working either on machine

registers, or on temporaries. As some instructions may be very complex, one machine
instruction may match a block of semantic instructions.

The semantic instructions set have been designed to be minimal and canonical and,
therefore, to make their support in analysis easier: there is only one instruction performing
a semantic function. Consequently, there are only addition, subtraction, shift and move
operations. As our goal is only to support arithmetics on integer and particularly on address
computation, we have included neither multiplication, nor division. These operations, often
on powers of 2, are implemented more efficiently as shifts. In the same way, we have no
equivalent of bit-to-bit operations like NOT, AND or OR as they do not produce precise
results on interval analysis. The special instruction scratch(r) is needed to cope with these
limitations: it means that the variable r is modified in a way that cannot be described by the
semantic language. Indeed, there are always machine operations too atypical to be supported
but a sound static analysis requires to mark r as modified even if the exact value cannot be
expressed.

As a machine instruction is usually translated into a semantic instruction block, temporary
variables are needed to pass computation intermediate results all along the block. They may
take place of machine register in the semantic instructions but their life is bounded to the
machine instruction block.

Another important concept to support is the conditional execution of some semantic
instructions. In a machine instruction set, this is performed by using a comparison instruction
followed by a branch instruction to modify the control flow accordingly. This scheme is
currently supported by the semantic instructions but with some limitations.

First, there is a comparison instruction cmp that compares two values and stores the
result in a target register (usually the status register of the underlying architecture). Then
the comparison result is used by an if instruction. If the comparison from register a is equal
to the c condition argument, the semantic instruction execution continues. Otherwise, the i
following instructions are skipped and the execution continues just after them. An important
outcome of such a structure is that the instruction block can exhibit several execution paths
but no loop. This is an important property because the fixpoint computation induced by
loops needs expensive computation time: several analyses are performed on the loop body.

cont is the second and last instruction handling the semantics control flow: it stops the
execution of the current path. It must be noticed that a cont is implicitely assumed at
the end of a block. The if and cont handle the control flow of the semantic instructions
but there are also an instruction to represent control at the machine instruction level. The
branch instruction informs that the machine control will change according to the address
found in its arguments An important point to keep in mind is that this instruction does not
modify the execution flow of the semantic instructions in the block: this one continues until
the end of the block. It just denotes control flow changes in the machine instructions, i.e.
modification of the PC.

Finally, load and store allow to load from, or store to, the memory. The first argument
is the handled value while the second contains the address. The last one is the size of handled
data in bytes.

This language makes easy and straight-forward the translation of most machine instruc-
tions but it may require more work when processing instructions as complex as multiple
load-store to memory. An intermediate special computation phase is required but benefits
from the instruction arguments, constant in the instruction code at the generation time. For
example, a particular multiple-load instruction in memory gives the precise list of loaded
registers and we can generate as many load semantic instructions as required. This genera-

Algorithm 1 lmw rd, k(ra)
b← [seti(t1, k); add(t1, ta, t1);

seti(t2, 4)]
for i← d to 31 do
b← b :: [load(ri, t1, 4); add(t1, t1, t2)]

end for

seti(t1 , 0)
add(t1 , r1 , t1)
seti(t2 , 4)
load(r29 , t1 , 4); add(t1 , t1 , t2)
load(r30 , t1 , 4); add(t1 , t1 , t2)
load(r31 , t1 , 4); add(t1 , t1 , t2)

Listing 1 lmw r29, 0(r1).

tion is performed only once per instruction and makes the static analysis faster: semantic
instruction blocks are simpler than the full translation inducing loops. This is illustrated by
Algorithm 1 that shows the generation of semantics instructions list (between ’[’ and ’]’) for
the PowerPC lmw instructions: starting from address ra + k, it loads registers from rd to r31.
As d, a and k are constant at the translation time, a particular instantiation, as shown at
the right, just gives a sequence of loads.

2.2 AI with Semantic Instructions
The semantic instructions have been designed to promote static analyses and more particularly
AI. AI [5] analyzes a program by abstracting the state S along the different execution paths.
With machine code, AI is often performed on the Control Flow Graph (CFG), G = V × E,
where the vertices V represent Basic Blocks (BB), a block of consecutive instructions executed
together, and edges, E = V × V , the control flow between BB.

Algorithm 2 CFG Interpretation
wl← {v0}
while wl 6= [] do
vi, wl← wl

s← update(vi,
join({sj/(vj , vi) ∈ E}))

if s 6= si then
si ← s

wl = wl ∪ {vj/(vi, vj) ∈ E}
end if

end while

Algorithm 3 update([I0, I1, ..., In−1], s0)
sr ← ⊥; wl← {(0, s0)}
while wl 6= [] do

(i, s), wl← wl

if i ≥ n then
sr ← sr ∪ s

else if Ii = Jif(c, a, d)K then
wl← wl ∪ {(i+ 1, s), (i+ d, s)}

else
wl← wl ∪ {(i+ 1, updateI(Ii))}

end if
end while

Algorithm 2 is a common implementation of the AI on the CFG. v0 ∈ V is the entry
vertex of the CFG and the si ∈ S# are the abstractions of the real state at the different
program points. S# is often a lattice with a smallest element, ⊥, and greatest element, >.
⊥ is the initial value of si except for v0 whose initial value is >, that is, the more inaccurate
value taking into account any possible state before the program execution. Algorithm 2 just
ensures that the computation converges to a fixpoint, that is, the maximum of all possible
values. This property is ensured by the existence of the lattice and the monotonicity property
of any function handling the state.

This computation requires two analysis-specific functions. update(v, s) emulates the
effect of a basic block v on a state s while join(s1, s2, ...) allows to combine different states
coming from different paths. The semantic instructions are only used in the update(v, s0)

function. For each machine instruction, the block of semantic instructions B is interpreted
according to Algorithm 3. The different execution paths are supported with a working
list wl containing pairs composed of the index of the current instruction and the current
state. updateI implements the computation effect on a state as shown in Table 1. Different
execution paths are created when a if instruction is found: two pairs are pushed in wl for
each possibility. When all execution paths have been computed, the resulting states are
joined in sr. As one may observe from Algorithm 3, the semantic instruction analysis is
simple and straight-forward and re-uses directly the operators defined by the AI.

3 Proof of Concept: CLP analysis

For experimentation purpose, the semantic language has been used to implement a Circular-
Linear Progression (clp) analysis [9]. To push our semantics model even further, an analysis
of conditions has been 0developed and applied to the clp to tighten the precision.

3.1 Circular-Linear Progression Analysis
The clp is an abstraction of integer values represented by a tuple (l, δ,m) denoting the set
{n ∈ Z s.t. n = l + δi ∧ 0 ≤ i ≤ m}, where l ∈ Z(n), (δ,m) ∈ N(n)2. l is the base of the
set, δ the increment, and m the count of increments on l to get the last point l +n δ ×m.
The addition is performed on n bits (modulo 2n), inducing a circularity on clp and mimics
the integer behaviour on the real hardware. The abstraction of a value k is easily obtained
by the singleton (k, 0, 0). while the top element > (a clp that contains all possible values) is
(l, 1, 2n − 1).

Performing clp analysis on the machine code requires to abstract the semantics instruc-
tions on the clp domain. For sake of brievity, only the add is given below but details on
other operations can be found in [9]:
{l1}+ {l2} = (l1 +n l2, 0, 0)
(l1, δ1,m1) + (l2, δ2,m2) = (l1 +n l2, g,m1

δ1
g +m2

δ2
g) where g = gcd(δ1, δ2).

The clp allows to define the abstract states of the machine as a map from registers R
and memory addresses A to clp values, that is, S : (R ∪ A) → clp. AI operators are now
defined by US : V × S → S (update) and JS : S × S → S (join). JS is naturally derived
from the join function on the clp , applied on the values assigned to registers and addresses.

The update function, US , is implemented as presented in the previous section. The
abstract state S is applied to each machine instruction and, therefore, to each execution
path of the semantics instructions. clp values of the registers and of the memory are read or
written by getting or setting them in the machine abstract state S.

3.2 Widening Function
To converge faster to a fixpoint, a widening function, ∇ : S × S → S, is useful. The example
in Listing 2, a simple loop computing the sum of the elements of an array, allows to illustrate
this. Listing 3 shows the translation of machine code of the loop header into semantic
instructions.

At the first iteration of the loop, p0 = @t, @t being the actual address of array t in
memory. At the second iteration of the loop, p1 = p0 +4 = @t+4. The widening ∇ is applied
to these two clp: (@t, 0, 0)∇(@t+ 4, 0, 0) = (@t, 4, 2n/4− 1). The resulting clp is sound (it
contains all possible values) and fast to obtain, but not very precise: next paragraph help to
fix this.

int t[10];
int *p,int *q;
int s = 0;
q = t;
p = q;
while (p - 10 <= q)
{

s += *p;
p++;

}

Listing 2 Example of a simple C loop.

; r0 = 0x7fc4 (variable q)
seti t2 ,0 x10
add t1 ,r31 ,t2 ; t1 = 0x7fc0
load r9 ,t1 ,0x4 ; r9 is p
seti t1 ,-0 x28
add r9 ,r9 ,t1 ; r9 <- r9 - 40
cmp r71 ,r9 ,r0
if gt ,r71 ,0x1
cont
seti t1 ,0 x9c
branch t1

Listing 3 Translated Loop header.

3.3 Condition Filtering

In the example of Listing 2, we get the state p = (@t, 4, 2n/4− 1), and a condition equivalent
to p − 40 > q (10 × sizeof(int) for a 32-bit machine). The edge remaining in the loop,
taken if the condition is false, should provide as input state p = (@t, 4, 2n−2 − 1) filtered by
p− 40 ≤ q (inversed condition), i.e. p = (@t, 4, 10). This would give an accurate state for the
values inside the loop if we are able to build such a filter.

Unlike a condition written in a high-level programming language, the machine code
does not provide a well-identified single expression for the loop condition. Instead, we must
rebuild the link between variables (either registers or values in the memory) involved in
the condition. In addition, one may remark that the same variable can be stored in many
places, as registers or memory locations at the same time during the execution. Therefore,
building the condition only on the register used in the comparison would make our approach
very ineffective because it would ignore the aliasing existing between registers and memory.
This is illustrated in Listing 3: the variable p is stored at the memory address 0x7fc0, then
loaded in r9. r9 is used again to carry out the result of p− 40. So the condition analysis
must return two filters: @0x7fc0 > q + 40 and r9 > q.

The algorithm proposed here tries to cope with both issues: the backward traversal of
the semantics execution paths allows to collect the conditions of the if semantic instruction
and to build back the aliases existing between registers and memories. Applied to the branch
instruction of the loop header, the execution paths are sorted in two categories: the branching
paths ending with a branch instruction and the continuing paths. The execution paths are
then extended with other instructions of the loop header to completely form the computed
condition. Each category applies a filter to the output state s of the loop header edge it
matches (taken for the branch set, untaken for continuing set). As a category may contain
several paths, the filters are applied on s separately and the result is joined by JS .

Taking a path p (either branching or not), the filters are built by recording the condition
induced by the if instructions and by rewritting the conditions when a computation instruc-
tion is found. To represent a condition, we use a simple parenthesed tree-based language
where nodes are either constants c, registers r, memory places @a or binary operators ω(e1, e2)
where ω ∈ {add, sub, ..., eq, ne, lt, ...}. As shown in Algorithm 4, the rewritting is performed
backward (denoted by p−1) from an empty set of conditions. set and load instructions are
considered as creating an alias with their destination register and the filter is duplicated
to generate condition for both places. The expression f [x/y] means that the register x is
replaced all over the filter f by y. Notice that, if a register computation is not involved in
the condition building, the replacement have no effect on the filter f .

Algorithm 4 Building symbolic expressions

f ← {}
for all sj ∈ p−1 do
f ← filter[sj]f

end for

With filter defined by:

filter[if(r, c,_)]f = f ∧ c(r, r)
filter[cmp(c, a, b)]f = f [a/r][b/r]
filter[set(c, a)]f = f ∧ f [a/c]

filter[load(c, a,_)]f = f ∧ f [@a/c]
filter[ω(c, a, b)]f = f [ω(a, b)/c] (1)

The application of the obtained filter f to an abstract state S is quite forward on a state
s. For each clp value stored in s whose reference, register or memory, is i, each reference
i′ ∈ f , i′ 6= i, is replaced by its values in s, f [s[i′]/i′] that allows, after simplification, to get
a condition of the form ω(i, c) where ω ∈ {ne, eq, lt, le, gt, ge} and c ∈ clp. According to the
actual operator ω, a clp cω is obtained and intersected with the value of i: s[i] ∩ cω. For
example, in Listing 3, the continuing path gives the filter le(sub(r9, 0x28), r0). Replacing
the values of r31 and r0 by the matching clp in s and simplifying gets le(r9, 0x7FC4 + 0x28
and refines the value of r9 by s[r9] ∩ (−231, 1, 231 + 0x7FC4 + 0x28) = (0x7FC4, 4, 10).

The application of the clp to our semantic instructions has shown that (1) it is feasible
to support such type of static analysis, and (2) there are different ways to use the semantic
instructions as in condition filtering. We can hope that the semantic instruction is a valuable
abstraction of the machine code instructions. In the next section, we try to evaluate the
performances of this representation.

4 Experimentation

The value analysis presented in this paper has been implemented in the OTAWA framework [3]
using its own internal AI engine. The evaluation has been performed with a 3-GHz, 2GB
memory Linux machine on the classic Mälardalen benchmark [1] that contains a collection of
programs covering different embedded real-time domains .

4.1 Analysis Precision
This first evaluation criterium concerns the precision of the performed analysis. We are not
able to estimate the actual precision of the obtained measurements in terms of difference
between the real values and the analyzed ones: (a) we have no other analysis that can be
taken as a reference and (b) it is impossible to have precise values as soon as a program is
using external inputs. The more visible trace of imprecision is the apparition of > values in
the computation. Yet, it is hard to qualify the actual source of this imprecision as being
naturally produced by the AI or an outcome of the intrinsic inefficiency of our analysis. In
turn, the last issue may be decomposed in two causes: the lack of expressivity of semantics
instructions or the limits of the abstraction of the clp analysis.

Whatever, the last three columns of Figure 2 show the number of non-> values obtained
for different items: each column represents the ratio of non-> values on the total of values of
the measured items, the bigger is the better. The values column displays the number of set
values generated by set and store semantic instructions with an average of 42.30% of non->
values. In the absolute, the result is a bit disappointing but (1) to our knowledge, no such
statistics have been published to compare with and (2) the large variation between benches
(from 2.47% to 99.98%) shows that the effectiveness has a big dependency on the type of

Table 2 Analysis Execution Time.

Dynamic Static Value Precision
Program Time mach sem mach sem values addrs filters

(µs) (i/s) (i/s) (i/s) (i/s) (%) (%) (%)
adpcm 31530 219600 495908 39861 204598 2.47 15.39 72.34
bs 1190 103361 228571 97560 141176 53.85 89.09 33.33
bsort100 2680 117537 269029 63492 110074 20.75 17.31 33.33
cnt 2590 214285 462548 50450 188030 36.17 46.51 100.00
compress 25610 85591 196134 48813 88481 8.68 27.42 49.30
cover 50040 59492 159852 156533 81434 8.66 52.94 100.00
crc 5160 230232 446511 47979 207751 10.04 79.25 86.52
duff 1100 97272 233636 271028 441818 38.46 58.70 60.87
expint 3290 115805 272644 70866 132218 47.37 71.43 80.00
fac 30 1400000 3233333 1000000 4533333 77.78 95.00 100.00
fdct 1330 958646 2051127 8627 1057142 20.98 99.42 100.00
fft1 42220 247418 485243 17231 87162 24.77 61.90 16.03
fibcall 910 98901 252747 100000 142857 74.19 100.00 100.00
fir 3330 104504 268168 45977 97897 34.48 90.50 16.00
insertsort 1070 241121 481308 34883 202803 47.37 72.22 33.33
janne_c 2360 72457 188559 93567 74576 59.52 87.21 77.78
jfdctint 1940 718556 1690721 10043 598453 6.72 91.57 100.00
lcdnum 4040 73267 177970 162162 92574 30.99 50.45 100.00
lms 14590 202604 385263 33491 125222 49.47 91.25 81.94
ludcmp 12660 138151 280489 29731 77725 33.16 82.85 29.65
matmult 4140 238647 503864 38461 145893 23.33 29.44 100.00
minver 16320 145220 306250 32911 87438 13.49 67.93 29.00
ndes 27550 167622 369546 33347 111724 52.28 74.46 74.39
nsichneu 205180 98450 209182 37425 104664 11.98 89.68 29.80
ns 8060 99503 206203 24937 29528 83.58 89.40 61.29
prime 2500 162800 362000 100737 237200 70.75 100.00 50.00
qsort-exam 5860 139761 289419 41514 150170 13.46 63.50 16.85
qurt 6320 154113 305537 61601 233386 44.81 100.00 100.00
recursion 30 800000 2033333 1714285 4066666 69.23 100.00 100.00
select 5150 136893 283300 51063 149708 19.75 66.42 36.17
sqrt 1610 91304 182608 74829 88198 50.00 100.00 100.00
statemate 48770 157227 307709 40688 109883 3.81 90.85 89.02
st 7680 213411 430989 58572 245833 10.12 19.33 100.00
ud 7630 144429 300262 37205 114285 33.59 81.25 26.72
average 242593 539705 139114 428232 34.88 72.14 67.17

the program. Some benchmarks like crc or adpcm give particularly bad results because they
are performing a lot of operations unsupported by our semantics instructions, respectively,
bit-to-bit and floating-point operations.

However, our analysis works better with address computation (74% on a mean, column
addrs) and condition filtering (68% on a mean, column filters). The Addresses column
evaluates the non-> addresses used in load and store instructions while the filters column

evaluates the number of non-> filtered conditions. The obtained results are not perfect but
they meet the needs of accuracy required by subsequent analyses like data cache, control flow
analysis, infeasible path, etc. As for set values, the worst results are obtained on benchmarks
using unsupported operations of the semantic language.

4.2 Computation Time
The six first columns of Table 2 show runtime performances of the analysis. We call static
estimation the performance evaluation based on the count of instructions found as-is in the
program once loaded in memory. On the opposite, dynamic instructions are counted during
the AI. Both estimations are different because a single instruction may be interpreted several
times before reaching a fixpoint: this is particularly the case of instructions contained in
loops. The left column displays the experimented program, the next one the analysis time
in µs (user time mean after 1000 iterations). The following two columns show the rate in
machine and in semantic instructions, for dynamic estimation and the last two columns are
the same for static.

The static estimation gives an insight of the capacity of the analysis to face to a raw
program. For example, the average of about 139000 instructions / s states that we can
process quickly (in less than 1 second) a program of nearly 512KB of code for a PowerPC
architecture or any pure 32-bit RISC architecture.

On the other hand, the dynamic performances give a more straight-forward estimation of
the real rate of the analysis, 242,594 machine instructions/s and 539,705 semantic instruc-
tions/s, taking into account the structure of the program. Hopefully, both measures are quite
good although there is a lot of variability according to the benchmarks. Such performances
let place for improving analysis without being blocked by intractable computation time.

5 Comparison with Existing Work

A lot of work on value analysis has been done for different purposes. The foundation of
abstract AI was motivated by the interval analysis [l, u] of each variable on Pascal-like
languages [5]. In addition to the domain, the performed analysis is also different because of
the widening operation. To speed up the convergence to the fixpoint, widening and narrowing
operators are applied, that requires several passes of analysis and increases the computation
time. To our knowledge, although there is very few documentation on this [4], the tool ait [2]
is also using such an analysis to exhibit register values at program points but is applied to
machine language.

Yet, the interval of values [l, u] does not fit well with address representation. They include
too many false values while the addresses are usually aligned to a multiple of data sizes
and cause the union of too many false data and reduce the precision. Ermedhal et al in [6]
improve this using a modulo analysis to identify more precisely values inside an interval.
Yet, their domain is more complex than ours, ([l, u], (i, c)) that identifies the set of values
matching [l, u]∩ {i+ n× c, n ∈ Z}. Moreover, this domain makes the analysis more costly in
computation time.

S. Rathijit [8][9] simplifies a lot this representation using only three integers, (l, u, δ). i,
the argument of Ermedhal’s representation is easily replaced by finding the lowest value of
the set to get a more precise l. Then, we have improved Rathijit’s work to have canonical
representation of these values. Indeed several representations for a same set exist because
u− l is not required to be a multiple of δ. Our triplet (a, δ, n) ensures the uniqueness of the
representation as it forces u = a + n × δ. This property makes easier some operations of

the value arithmetics like equality tests. In addition, unlike Rathijit that seems to support
only ARM, our machine code abstraction, avoids to tie our analysis to a specific machine
instruction set and we are using the conditions to accelerate convergence of fixpoint of the
analysis and improve the precision in presence of selections.

In the domain of semantics languages, ALF [7] is supported by several compilation and
WCET tools. It allows to represent completely a program while our language is just an overlay
on the CFG. More comprehensive and more expressive than our semantics instructions, it
seems to be more memory- and time-consuming for analyses. Architecture Description
Languages like SimNML, Lisa, etc are also good candidate to express semantics of machine
code. But we think that their granularity would make the analyses too costly and that some
concepts are too hard to extract: for example, in a microprocessor, the comparison result
is represented as a set of bits obtained by a combination of operand bits whose usage in
analysis is not straight-forward.

6 Conclusion

The contribution of our paper is twofold. First, we propose a language to abstract usual
machine code semantic and show how it may be involved in abstract AI. The overall outcome
is that the analyses based on this language becomes portable on any microprocessor supported
by our semantic language. For example, in the OTAWA framework, it has been already
successfully used to describe several RISC instruction sets like PowerPC. We plan to quickly
apply the semantics instructions to Sparc, TriCore and possibly to the x86 instruction set.

Second, we have improved existing value analysis, based on clp domain, for speed of
computation. The changes include a reformulation of the domain leading to canonical values
and therefore simplification of operation abstraction. The second improvement concerns the
use of conditions to speed up the convergence of fixpoint computation.

The resulting analysis rate is quite fast, which will be valuable in the future in order to
fix medium precision results. We think that the precision problem is not inherent to the
value analysis algorithm but, instead, to the limitation of the semantic language. So, we
plan to extend it with bit-to-bit operations, integer multiplication and division as well as
floating-point operations. The latter extension cannot be done in the frame of clp because
the notion of modulo does not fit well with float value: we have to fall back to usual interval
analysis. This means a state abstraction with heterogenous content.

Finally, we would like to exploit the results of this value analysis to extend the OTAWA
framework. The semantic language has already been used in OTAWA to implement data cache
analysis and stack analysis but we can exploit the value analysis results to improve control
flow analyses like detection of infeasible paths, dynamically dead code, switch decoding,
indirect pointer call analyzes. As the latter analysis does not fit well with clp, we have also
to introduce set of addresses in our domain and it remains to identify which values should
be clp and which ones should be sets. In a more generic way, we have to replace our naive
implementation of state to improve our value representation to support heterogeneous data,
to maintain fast computation and to waste as less memory as possible.

References

1 Mälardalen benchmarks. http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.
html.

2 ait tool, 2005. http://www.absint.com/ait/.

http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.html
http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.html
http://www.absint.com/ait/

3 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for Ad-
aptive WCET Analysis. In IFIP Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS), 2010.

4 C. Ferdinand, R. Heckmann, and D. Kästner. Static Memory and Timing Analysis of
Embedded Systems Code. In Proceedings of the IET Conference on Embedded Systems at
Embedded Systems Show, 2006.

5 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static ana-
lysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1977.

6 A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop Bound Analysis
based on a Combination of Program Slicing, Abstract Interpretation and Invariant Analysis.
In 7th International Workshop on Worst-Case Execution Time Analysis, 2007.

7 J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg. ALF – A Language
for WCET Flow Analysis. WCET’09, 30 June 2009.

8 S. Rathijit and Y. N. Srikant. Executable analysis using abstract interpretation with cir-
cular linear progressions. In 5th IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2007). 2007.

9 S. Rathijit and Y. N. Srikant. Wcet estimation for executables in the presence of data
caches. In Proceedings of the 7th ACM & IEEE international conference on Embedded
software (EMSOFT’07), 2007.

	Introduction
	Value Analysis at Machine Code Level
	Independent Machine Language
	AI with Semantic Instructions

	Proof of Concept: CLP analysis
	Circular-Linear Progression Analysis
	Widening Function
	Condition Filtering

	Experimentation
	Analysis Precision
	Computation Time

	Comparison with Existing Work
	Conclusion

