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Abstract—As we are living in a data-driven world and directed
toward internet, the need for datacenter is growing. The main
limitation for building cloud infrastructures is their energy
consumption. Moreover, their conception is not perfect because
servers are not the ones consuming all the power, cooling systems
are responsible for half of the consumption. Cooling costs can
be reduced by intelligent scheduling, and in our case through
virtual machines migrations. In this paper, we propose a dynamic
reconfiguration based on evolution of temperatures and load of
the servers. The idea is to share heat production to reduce cooling
costs and consolidate the workload when possible to reduce
servers costs. The challenge resides in satisfying these opposite
objectives. We tested our algorithm on an experimental testbed,
and achieve to cap the temperature of the datacenter room while
not forgetting to optimize the server use, and without impacting
on applications performance.

Keywords—Thermal-aware, cooling, scheduling, cloud middle-
ware, energy efficiency

I. INTRODUCTION

Global electricity consumption of cloud computing, com-
pared to total energy consumption of individual country, would
be at the fifth rank just before India according to Greenpeace’s
report of 2012 [1]. And inside a datacenter, the whole elec-
tric power does not go toward computing: cooling systems
consumption is up to half of the total power consumption.
The effective power consumed by the servers is only 36%,
while the rest is due to energy provisioning and losses [2].
Electricity consumed by servers produces heat they cannot
handle. Indeed, high temperature causes hardware degradation
[3] and is a main factor which reduces MTBF (Mean Time
Between Failures).

Datacenters are usually cooled by cooling units and fans,
whose functioning are controlled by the changes of tempera-
ture in the room. A slight increase of the ambient temperature,
even just at a local spot of the room, implies a significant
increase of the cooling system power needed to maintain a
reasonable global temperature. Therefore heat produced by
servers is an important issue and should be carefully moni-
tored. By controlling and reducing each server temperature,
we consequently reduce the room temperature.

Considering the whole datacenter, energy savings can not
be achieved only by optimizing the energy efficiency of the
servers. A trade-off between reducing cooling systems costs
with optimizing the use of servers leads to the best global
efficiency.

We address this issue by dynamically placing workload,
through migrations of virtual machines, according to measures
from temperature and load sensors located on each node.
Temperature of a server is closely linked to its CPU load
but its evolution is different in terms of range and time: load
variation is instantaneous while heat takes some time to appear.
Moreover, other parameters influence server temperature such
as ambient temperature of the room and server location in the
data center due to heat transferred by nearby servers. Because
our goal is to reduce cooling costs, it is not enough to only
consider CPU load. Our algorithm deals with real time data
like temperature that affects directly cooling systems.

After an overview of the state of the art in the next section,
we describe the algorithm in section III. Implementation of the
algorithm in a cloud manager is detailed in section IV, as well
as its deployment on the testbed platform Grid’5000, and the
obtained results. Section V raises some possible perspectives
and section VI concludes the work.

II. STATE OF THE ART

Prior works on reducing datacenter power consumption
can be classified into two trends : the ones whose goal is to
reduce servers power consumption, and the others which are
concerned by the consumption of the cooling infrastructure.

Reductions of servers energy consumption are accom-
plished by consolidation of the workload on the smallest
possible number of nodes. The goal is to free the lowest
loaded nodes in order to perform energy savings actions like
shutdown or suspend. This way when a server is powered
on, its static cost is shared between several virtual machines.
Different approaches for consolidation have been proposed :
Heuristics inspired by the bin-packing problem and variants of
the best fit algorithm [4] [5], ant colony based approach [6],
decentralized algorithms through gossiping which do not need
a superior entity to take migration decisions [7], and Entropy
which relies on a dynamic constraint satisfaction problem [8].
But these works only focus on optimizing the energy efficiency
of the servers, without considering the thermal impacts. Indeed,
scheduling decisions have a huge impact on how the cooling
systems behave and thus how much power they consume.

Concerning datacenter thermal management, some work
focus on the layout of the servers in order to optimize the
flow of hot and cold air and especially to minimize the hot
air recirculation [9]. Organization of the racks alternating cold
and hot aisles [10] is now a common use. The CoolEmAll



project [11] studies in details all the parameters affecting the
energy efficiency, by deep simulations of a datacenter and all
its characteristics: hardware configurations, applications types,
scheduling policies and cooling system settings.

Besides, some people try to reduce cooling costs in more
exotic ways. Follow-the-moon approach [12] works with com-
panies having datacenters in different locations. The idea is
to always transfer the work towards the datacenter where it
is currently night time. They take advantage of the cheaper
electricity cost, but on top of that, temperatures are also lower
at night. Recently, more datacenter operators are opting for
cold climates and Nordic countries to settle down their servers
like Facebook in Sweden or Google in Finland.

More recent work tries to optimize both servers and cooling
consumption at the same time [13]. In fact they split the
datacenter in three different zones according to the average
temperature : cold, warm and hot. They perform consolidation
in the cold zone, while in the warm zone they try to share the
workload, and the hot zone is only used in case other zones
are already fully loaded.

These previous works are only conducted and validated
over simulations, and consequently can not model perfectly
the complex behaviour of the system. Contrarily, the following
works benefit from real testbeds. In [14], authors propose
to place the jobs in priority to the most efficiently cooled
servers. They determined the different regions of efficiency
through measurements done in their experimental testbed
equipped with several temperature sensors. Unfortunately, their
job placement is only static, and do not take into account
evolution of load or temperature. In [15], authors focus more
on the heat generation and extraction at different points of a
datacenter, resulting in a metric called heat imbalance, and use
this model to decide where to place the workload. Detailed
measurements from the datacenter and knowledge about the
spacial configuration is needed to build these models and
metrics. In contrast, our reconfiguration is purely autonomic,
do not need knowledge of the datacenter topology because it
is only based on current evolution of the system. We aim at
reducing the cooling costs only by the simple assumption to
limit the maximum temperature for any server at any time.

III. CONTRIBUTIONS

A. Objectives

Our work aims at different objectives :

1) Avoiding hot spots: Hot spots, meaning peak of tem-
perature on some isolated elements, are really inefficient
because they force the air conditioning units to cool the entire
datacenter. As pictured in Fig.1, A/C units only have a global
impact on the room through the cold air they provide. Their
functioning only relies on the incoming air temperature and on
maximum temperature monitored on each node, and even if the
latter increases by only 1 or 2 degrees, it implies a power peak
consumption for the A/C to make a bigger effort on cooling
the whole datacenter.
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Fig. 1. Architecture of a datacenter with cold/hot aisle.

2) Optimize servers power consumption: Because power
proportional hardware are not yet available, we have to care
about servers fix power costs. Indeed, when a server is
powered-on but idle, it already consumes half of its consump-
tion when fully loaded [16]. So we have to make sure that
utilization of servers is optimal, that is to minimize the number
of used servers in order to shutdown the idle ones.

B. Reconfiguration algorithm

Now we present the two concepts we use to reach the two
objectives:

1) Cap the temperature: To avoid hot spots, we decided
to put the priority on not crossing a maximum temperature
threshold for all servers at any time. This way, temperature
peaks disappear, and the cooling costs remain low and stable
because the cooling effort is constant.

Fig.2 is an illustration of the impact of virtual machine
placement on temperatures. On the left, the initial situation
where machine 1 is fully loaded with 2 virtual machines, and
machine 2 loaded at 20% hosting 1 virtual machine. M1 is a
hot spot, its temperature of 60

◦C is too high, that is why a
decision to migrate VM2 towards M2 is made. On the right is
shown the situation after the migration: the workload is more
equally shared and this results in an uniform temperature of
both machines around 50 ◦C
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Fig. 2. Example of the principle impact of migrating a virtual machine on
server heat.

In our algorithm, we use the concept of anomaly. For
avoiding hot spots, we defined the OVERHEAT anomaly which
is triggered when a node temperature crosses the maximum
fixed threshold. In this case, we want to reduce the load of the



node in order for it to cool down. The solution is to migrate
the virtual machines hosted by this node towards another one,
but without impacting too much on the temperature of the
destination. Indeed it would be very inefficient to resolve an
overheat anomaly by overheating another server. That is why
the destination for the migration is chosen as the coldest node
of the cluster.

If this is the only action we do in the system, it will
then result in a case where the workload is uniformly shared
between the nodes. When the load is stable, then it is the
best configuration in terms of cooling costs because the heat
production is uniformly distributed. But if the load decreases,
servers will be poorly used, and it is the least configuration
in terms of servers costs because all machines are powered on
for only little load, which is very energy inefficient.

2) Consolidate the workload: To optimize servers utiliza-
tion, we defined another anomaly we refer to as UNDERLOAD.
It corresponds to a node loaded under a certain threshold.
The solution to solve this problem is to consolidate the
virtual machines on a few number of hosts. This action brings
significant energy savings because all the newly released nodes
can be shutdown.

The minimum load threshold should be fixed accordingly
to the static consumption of the servers. Higher is the idle
consumption of the server, higher should be the minimum
load threshold. We detail the impact of the thresholds in the
Experiments section IV.

Consolidation may seem to be an easy action to undertake,
but in the case of our algorithm, we need to carefully consider
what will be the impact of the consolidation on the temper-
atures. Indeed, consolidation should not be too brutal or it
would rapidly produce an overheat anomaly on the destination
host. This overheat would then be detected by the algorithm,
and the action to solve this problem would be to undo this
previous consolidation.

C. Find good balance between two opposite objectives

Our algorithm can be summarized in two actions that are
actually equivalent to two opposite movements: sharing and
consolidating the load. Obviously, this implies they must be
performed wisely to avoid a chaotic behaviour. Therefore we
introduce a priority: overheat anomalies must be handled first.
As a matter of fact, overheat are resolved by sharing the
load, so this can clear up the eventual underload anomalies.
Moreover, our main concern here is to avoid hot spots, so we
want to deal with overheat as quickly as possible.

Of course, both thresholds should be chosen in agreement
with each other, otherwise our algorithm has no chance to
achieve a satisfying result.

IV. EXPERIMENTS

A. Adding thermal-aware feature to Snooze

We chose the cloud manager Snooze [17] to implement and
test our algorithm. It was developed by Eugen Feller during his
PhD at Inria Rennes. The main particularity is its hierarchical
architecture that allows it to scale across a large number of

servers and virtual machines, and to have features like self-
configuring and self-healing in case of failures.

In order to test our algorithm in Snooze, our first task
was to add the temperature monitoring feature to the software.
All servers are equipped with hardware temperature sensors
to prevent themselves from critical overheat. To exploit these
sensors, we use functions from the Linux lm-sensors package
that can read temperature information from the hardware.

The distributed monitoring system Ganglia [18] has been
integrated into Snooze to retrieve monitoring information peri-
odically. Ganglia is well suited for the hierarchical architecture
of Snooze and has the same characteristics of scalability and
robustness. Monitoring data is gathered every second by each
node of the cluster, and send to the supervisor node. This
node stores locally the data with the aim of using it later
to take reconfiguration decisions. Ganglia can monitor several
measures at the same time, and is completely extensible by
adding custom modules. Indeed, to get temperatures, we have
written a module in Python which interacts with the sensors
through lm-sensors functions.

B. Implementation of the algorithm

A periodic threshold crossing detection is performed on
each host every five seconds. If a crossing is actually detected,
an anomaly is raised. The detection of the crossing is per-
formed using the average of the five last values as measures
are done every second. The anomaly type is set according
to which threshold has been crossed. The node called Group
Manager, which supervises the hosts, which are called Local
Controllers in Snooze language, is aware of the problem by
receiving the anomaly notification. This hierarchically superior
node is the one responsible of making decisions in order to
resolve anomaly, and triggers according actions.

On Fig.3, we can see the order of the successive actions.
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Fig. 3. Snooze hierarchy decisions. GM (Group Manager) node manages
several LC (Local Controler). Each server hosts one LC.

C. Grid’5000 testbed

Experiments were carried on the French testbed Grid’5000
and more precisely on the cluster named parapluie in the



Rennes site. Servers of this cluster are equipped with AMD
Opteron 6164 HE processor, which has 12 cores running at
1.7GHz. These nodes are powered by power distribution units
(PDU) which export power monitoring information using the
Simple Network Management Protocol (SNMP). We get power
consumption data every second for each node that are part of
our experiments, and we are able to compute the total energy
consumed at the end of the run. This system allows us to know
the impact of our algorithm on the energy consumption of the
servers.

The room that hosts these nodes is cooled by air con-
ditioning units, which are not yet monitored. Moreover, as
this room hosts other servers of the Grid’5000 testbed, the
ambient temperature, and thus the power consumption of the
A/C depends on the other jobs currently running in the whole
room. Each server has its own fan to cool it down when its
temperature is too high. These fans are part of the cooling
system, but their power consumption is included in servers
power consumption. Next section and graph show that actions
of the server fans are noticeable.

D. Measures on a single node

Fig.4 shows the evolution of CPU load, temperature and
power consumption of a single node. It pictures the close
relationship between these three metrics. CPU load starts from
0%, stays at 100% during 10 minutes and then decreases to
0% for another 3 minutes.

We can see that the temperature evolves much slower than
load and power consumption. Starting from approximately
38

◦C, it reaches its peak value, almost 48 ◦C after 3 minutes
of full load. When the load stops, the temperature slowly
decreases to its original value, taking also 3 minutes. We can
noticed fluctuations in the temperature during the 10 minutes of
load, these are due to actions from the cooling system, meaning
the server fan. Furthermore, these actions are also visible on
power consumption graph as we can observe slight peaks of
consumption, in link with the slight decreases of temperature.
The power consumption itself varies from 170W when idle
and around 220W when fully loaded.

Fig. 4. Evolution of load, temperature and power consumption on one host
for a simple ON/OFF workload.

E. Experimental validation

The results presented below are all obtained with the same
following configuration. Three physical machines are used as
hosting nodes, and six virtual machines are created. Each
computing node has 12 cores and each virtual machine is set
up with 2 virtual CPUs. In this configuration, one computing
node would be sufficient to host all the virtual machines. If so,
the hosting node would be a hot spot, and we want to show
that our algorithm brings a better trade-off in term of cooling.
In fact it would be even more relevant if the total load is
a little more than 100% because instead of having one host
fully loaded and an other one just powered on for little load
and then creating a hot spot, we propose to share the load and
the heat. Experiments will illustrate our algorithm using CPU
intensive applications. The virtual machines are loaded using
the cpuburn application, with one instance of the application
for each virtual CPU.

When the load stays high, only the temperature threshold
is used. In this case, all the hosts are used and then the only
goal is to manage the maximum temperature, by sharing the
virtual machines. The following Fig.5 shows an example of
such a situation. We can see that all virtual machines are
firstly launched on Host A, which shortly causes an overheat.
To solve this, all the virtual machines are migrated to other
nodes, whose temperature hits the maximum threshold after
few minutes. The virtual machines are then migrated back to
the previous node, which has just cooled down during the last
minutes. This same ping-pong pattern is repeating over the rest
of the experiment. These successive migrations shows that for
this configuration it is not possible to reach a stable state while
staying under this maximum temperature threshold.

As migrations are not the same timescale as power impact
on heat, it is possible to spread heat production between
servers in order to prevent host spots. As a reminder, in those
experiments live-migration is used and thus there is not much
impact on the applications running inside the virtual machines.
Indeed, migrations introduce a small increase to the total
execution time of applications. If for certain reasons, migration
cost is more important than the one in our experimental
platform, then threshold should be adapted accordingly.

At the opposite of static placement whose goal is to find the
best configuration at first try and never change it again, here
we take into account the system evolution to always try to
keep the best configuration. Contrary to classical scheduling,
in our case having a periodic behaviour can be positive as
it helps levelling the servers temperature. For our cooling
concern, it is not possible to ignore the behaviour of the system
because scheduling has an impact on temperatures, that we
want to control. Moreover, as we saw previously, temperatures
evolution is not linear and can be influenced by factors we
cannot precisely predict.
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Fig. 5. 6 VMs using each 2 virtual CPUs start on Host A at t=0min. They
are migrated to prevent OVERHEAT anomaly.

Fig.6 shows an example where a stable state is reached.
The beginning of the experiments is the same, all virtual
machines are launched on Host A which becomes overheated.
Virtual machines are then shared between Host B and C. This
action produces a small overheat on both hosts, just enough
for them to migrate one virtual machine each back to Host
A. So at approximately minute 4, each of the three nodes
hosts two virtual machines, and their temperature are stabilized
just under the threshold of 44 ◦C. This is typically a case
where the placement is now equivalent to the Round Robin
policy. But when the load drops under the minimum CPU load
threshold, an action of consolidation should be taken in order
to optimize the energy efficiency. The remaining idle hosts
after this consolidation could then be shut down, or put in a
low power state in order to save more energy. In the case where
4 hosts would be present, this approach would be equivalent
to a mix of consolidation on only 3 hosts with a Round Robin
algorithm on these remaining hosts.

Fig. 6. Stable state reached at time Ts as the OVERHEAT anomaly threshold
is at 44 ◦C compared to 42 ◦C in Fig. 5. m1 corresponds to migrations from
Host A to B and m2 to migrations from Host A to C

As our algorithm is based on a threshold crossing principle,
we have run the experiments while varying the threshold values
to evaluate the impact on energy consumption of servers.
Fig.7 is composed of two graphs which show respectively
the number of migrations and the energy consumption at five
different temperature thresholds. The scenario is the same as
previously described with 3 hosts and 6 virtual machines. They
are fully loaded during 10 minutes and then idle for 5 minutes.

Higher the temperature threshold is, less the number of
migrations is. When the allowed temperature rises, each node
can accommodate some load for a longer time and thus
reduce the number of needed migrations. Meanwhile, higher
the maximum temperature is, less the energy consumption is.
Here the energy consumption correspond to the three hosting
servers without including the cooling infrastructure. There
is an outstanding value for energy consumption at threshold
42 ◦C that we cannot explain but we are doing some more
experiments to see if it is recurrent.

When the temperature threshold is low, it implies that the
load must be shared between more nodes. In this case, the
power consumed by the server part is bigger because more
of them are powered on, and this involves higher fix costs.
But what is relevant when the temperature is lower, is that
the cooling system is less needed because the heat produced
is uniformly distributed. So the cooling costs, which are not
shown here, are reduced.

On the other hand, when the temperature threshold is high,
the load can be consolidated on a smaller number of hosts,
so the server consumption part is less important because the
remaining idle servers can be shut down. But this means there
are more hot spots and implicates an increase of the cooling
consumption. In this case, cooling systems have to make a
huge effort to cool these hot spots, which means to cool all
the room even for the rest of the servers which do not need it.

Fig. 7. Impact of the temperature threshold on number of VM migration and
on server energy consumption.

V. PERSPECTIVES

As our algorithm is based on thresholds, it should be
interesting to have thresholds that can adapt themselves accord-
ing to different parameters. For instance, for the temperature
one, we can imagine a threshold self-adapting to the outside
temperature, the current overall load in the datacenter, or any
other meaningful criterion.

To improve the decisions made for migrations, and es-
pecially to choose the better suited host as destination, a
predictive temperature model should be included to our work.
The current coldest node might not be the coldest node in one
or two minutes if it has just received some new load. And
this kind of recent events can not be taken into account in our
current approach of taking the average of the last temperature
values.



In the same idea, time management should be improved.
The goal would be to take into account impact of recent events
on the system before taking any other decisions. For instance,
after a migration the temperature is not decreasing instantly on
the source host. The algorithm should wait for the temperature
to stabilize before performing further migrations. This would
bring more stability, meaning reduce the ping-pong migrations
pattern, and avoid making thoughtless decisions.

VI. CONCLUSION

Our algorithm deals with temperature at the level of the
data center by imposing a maximum threshold to all the
servers. Because the cooling system only have a general view
of what is going on in the room from its overall temperature,
we want to reduce the temperature in a global way. Our ap-
proach tends to increase the power consumption of the servers,
to reduce power consumption of the cooling infrastructure. It
eliminates hot spots, which are responsible for high cooling
costs.

One of the main problem in datacenters is that servers
cannot handle high temperatures even though they have to
produce large amount of heat to achieve their computing goal.
Managing their heat is the key to reduce overall datacenter
power consumption while avoiding potential hardware failures.
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