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MultiScale Wavelet p-Leader based Heart Rate Variability Analysis

for Survival Probability Assessment in CHF Patients

H. Wendt1, K. Kiyono2, P. Abry3, J. Hayano4, E. Watanabe5, Y. Yamamoto6

Abstract— A priori discrimination of high mortality risk
amongst congestive heart failure patients constitutes an im-
portant clinical stake in cardiology and involves challenging
analyses of the temporal dynamics of heart rate variability
(HRV). The present contribution investigates the potential of
a new multifractal formalism, constructed on wavelet p-leader
coefficients, to help discrimination between survivor and non
survivor patients. The formalism, applied to a high quality
database of 108 patients collected in a Japanese hospital, en-
ables to assess the existence of multifractal properties amongst
congestive heart failure patients and to reveal significant differ-
ences in the multiscale properties of HRV between survivor and
non survivor patients, for scales ranging from approximately
60 to 250 beats.

I. INTRODUCTION

Congestion Heart Failure: Discriminating Survivors from

Non-Survivors. Human Heart Rate Variability (HRV) is

known to fluctuate in a highly irregular and complex manner

that reflects the health status of patients. The analysis of

HRV fluctuations can notably be used to discriminate healthy

subjects from patients suffering from congestive heart failure

(CHF). However, despite significant recent advances in ther-

apy, CHF is a difficult condition to manage in clinical prac-

tice and mortality remains unacceptably high. Medical stud-

ies have consistently reported a significant decrease in mor-

tality for patients equipped with implantable cardioverter-

defibrillators or undergoing resynchronization therapy. Risk

stratification for deciding a priori which patients should bene-

fit from such treatments therefore constitutes a stake of major

clinical importance. Identification of high-risk patients with

CHF remains a difficult and challenging task with current

available methods. It has thus recently received growing

academic interest and research efforts (cf., e.g., [1]–[3]).

Related works. After the seminal contribution [4] that

stimulated the massive use of spectral analysis for HRV char-

acterization, the benefits of using alternative tools dedicated

to non linear, non Gaussian and non stationary analyses were

investigated (cf., e.g., [5], [6] and reference therein). In the

last two decades, evidence was gathered that the temporal

dynamics of HRV fluctuations are well described by fractal,
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or scaling, properties, characterized notably by 1/f power

spectra [7]–[10], multifractality [11], [12], or non Gaussian

distributions with fat tails [13], [14]. It has been shown

that the alterations of such properties can be associated

with certain diseases and can thus be used as diagnostic

tools [11], [15]. For instance, an increased departure from

Gaussianity (in HRV increments computed on a 25s scale) is

associated with an increased cardiac mortality risk in a cohort

of acute myocardial infarction (AMI), with a predictive

power independent of other HRV indices [15]. Furthermore,

departures from Gaussianity have been shown to be relevant

in the evaluation of increased mortality risk in CHF patients

[3] and compared against fractal exponent and variance in

beat interarrival times reported in [2].

Goals, contributions and outline. In this context, the

present contribution aims at investigating to which extent

multiscale and multifractal analysis enables to help discrim-

inating between survivor and non-survivor CHF subjects. It

relies on the use of a new tool, the wavelet p-leader multi-

fractal formalism, very recently proposed in [16]–[18] and

briefly defined in Section III. This statistical analysis tool is

expected to yield better estimation performance and to show

significant robustness in quantifying the scaling properties of

real world data [16]. It is applied to a high quality database,

described in Section II, consisting of 24h HRV data for 108

CHF patients collected at Fujita Health University Hospital,

Japan. Results are presented and discussed in Section IV, in

terms of compared multiscale behaviors, powers of statistical

tests and Kaplan-Meier Survival Curves. Conclusions are

drawn in Section V, also discussing of future works.

II. DATABASE

Database. A cohort of 108 CHF patients was enrolled

at Fujita Health University Hospital, Japan, during years

2000-2001. The cohort was constituted of 61 male and 47

female subjects, with age ranging from 21 to 92 (average

66.1 ± 14.8) years. Of these patients, 39 (36.1 %) died

within the follow-up period of 33± 17 months (range 1-59

months). Medication status before hospital discharge did not

significantly differ between survivor (SV) and non-survivor

(NS) patients. Clinical details for these CHF patients were

previously reported in [3].

Data. For each patient, a 24-hour Holter ECG recording

was collected prior to Hospital discharge. R peaks were

extracted and thoroughly reviewed for outlier removal and

detection error correction. When atrial or ventricular pre-

mature complexes occurred, they were handled by median

interpolation using two successive beats. It has also been



checked that no sustained tachyarrhythmias were present in

HRV recordings. The corresponding RR inter-arrival time

values, denoted as X ≡ {xn, n = 1, . . . , N}, are analyzed

as a time series, without resampling on a regular time grid.

III. WAVELET P-LEADER FORMALISM

Multifractal analysis. Multifractal analysis aims at char-

acterizing the fluctuations along time n of the local regularity

of a signal X , classically measured by the Hölder exponent

h, by means of the so-called multifractal spectrum D(h)
(cf. [19] for a theoretical introduction). D(h) can be further

described using multifractal parameters (e.g., the multifractal

exponents described below.) It has already been massively

used to analyze HRV both in adults [11], [20] and fetuses

[21], [22]. Numerous declinations of multifractal formalisms

(the practical counterpart of multifractal theory that actu-

ally enables to compute the multifractal parameters) were

proposed and compared (cf. [20] for a review). Notably,

declinations of the (discrete) wavelet transform have proven

to yield some of the most relevant multifractal formalisms

(cf. e.g. [22]–[24]). The present contribution relies on a new

tool, referred to as the wavelet p-leader formalism, that has

been theoretically introduced in [18] and recently studied in

[16], [17].

Wavelet coefficients. Let ψ denote the mother wavelet,

characterized by a strictly positive integer Nψ defined as

∀n = 0, . . . , Nψ − 1,
∫

R
tkψ(t)dt ≡ 0 and

∫

R
tNψψ(t)dt 6=

0 and referred to as the number of vanishing moments.

The (L1-normalized) discrete wavelet transform coefficients

dX(j, k) of X are defined as dX(j, k) = 〈ψj,k|X〉, with

{ψj,k(t) = 2−jψ(2−jt− k)}(j,k)∈N2 . For detailed introduc-

tions to wavelet transforms, readers are referred to e.g., [25].

Wavelet p-leaders. The p-leaders are defined as local

Lp-norms of the fractional integral of order γ of wavelet

coefficient, 2jγdX(j, k),

L(p,γ)(j, k) =
(

2j
∑

λj′,k′⊂3λj,k

|2j
′γdj′,k′ |

p2−j
′

)1/p

, (1)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃

m{−1,0,1} λj,k+m.

The parameter γ ≥ 0 must be chosen to ensure a minimal

regularity constraint (cf. [16]–[18] for theoretical develop-

ments). Parameter p can be freely chosen in a range p ∈
(0, p0) where p0 is implicitly defined by

η(p0) + γp0 = 0, (2)

with 1/nj
∑nj
k=1 |dX(j, k)|p ∼ Kp2

jη(p), 2j → 0. The

p-leaders enable to measure the fluctuations of the local

regularity of X , quantified by its p-exponents hp, and to infer

the corresponding multifractal parameters (cf. [16]–[18] for

details, beyond the scope of this contribution.)

Cumulants. The quantities used in this work for character-

izing the multiscale and multifractal properties of X are the

cumulants C
(p,γ)
m (j) = Cumm lnL(p,γ)(j, ·) of the variables

lnL(p,γ)(j, k), commonly used for multifractal analysis [24],

[26]. For X with perfect fractal properties (such as self-

similar or multifractal processes), it can be shown that [26]:

C(p,γ)
m (j) = ν(p,γ)m + c(p,γ)m ln 2j . (3)

When applied to exactly self-similar processes, c
(p,γ)
1 is

tied to the self-similar exponent as c
(p,γ)
1 = H + γ. It is

thus generically referred to as the self-similarity exponent.

Exponents c
(p,γ)
m , m ≥ 2, do not depend on γ and are directly

related to the multifractal properties of data, thus referred to

as multifractal exponents. Making use of (3), the exponents

c
(p,γ)
m can be estimated by linear regressions of the sample

cumulants C
(p)
m (j) against ln 2j , for j ∈ [j1, j2].

IV. RESULTS AND DISCUSSIONS

p-leaders multiscale HRV analysis. To apply the p-

leader multifractal formalism, parameters γ and p need to be

selected. First the wavelet coefficients dX(j, k) are computed

from the 24h RR interarrival time series for each subject.

Inspection shows that for most subjects Condition (2) can not

be satisfied with γ = 0 for any p0 > 0. This provides us with

a first and crucial information regarding HRV and scaling:

Multifractal analysis can not in general be applied to HRV

data without the a priori recourse to a fractional integration

of small yet non zero order to ensure minimal regularity. The

value γ = 0.5 is found sufficient to ensure minimal regularity

for all subjects. To simplify the characterization of the entire

database, this value is used for all subjects.

With this choice for γ, the p-leaders L(p,γ)(j, k), the log-

cumulant functions C
(p,γ)
m (j) and the exponents c

(p,γ)
m can be

computed for p ∈ (0, p0), where p0 varies amongst subjects

but p0 ≥ 4 for all subjects. It is found that p = 1 yields

the optimal classification between SV and NS subjects. In-

terestingly, this low value of p matches the theoretical results

reported in [16], [17] showing that estimation performance

generically improve with decreasing p. All results reported

below are thus computed with parameters (p, γ) = (1, 0.5).

Furthermore, it is chosen here to analyze cumulants up

to order m = 3, i.e., C
(p,γ)
1 (j), C

(p,γ)
2 (j) and C

(p,γ)
3 (j)

corresponding respectively to the mean, the variance and

(essentially) the skewness of lnL(p,γ)(j, ·).
Statistical discrimination between NS and SV patients.

To assess the discriminative power of p-leaders for the

temporal dynamics of NS versus SV CHF patients, Wilcoxon

rank-sum tests are used together with Kaplan Meier Cumula-

tive Survival Curves (KMSC), following the methodology in

[3]. KMSC curves are obtained by choosing a threshold for

a chosen attribute (say c
(1,0.5)
1 ) and splitting the population

into two groups of predicted NS and predicted SV with

attributes above and below this threshold, respectively. Over

the follow-up period, the population of a group decreases

each time one of its members dies such that with an ideal

discrimination, the population of the predicted SV class

would remain constant while that of the predicted NS class

would decay to zero. Differences between the decrease of

the curves for the two groups are assessed by the Mantel-

Haenszel Logrank test: Let nSV and dSV (resp., nNS and

dNS) denote the total number of subjects and the number of

deaths occurring in class SV (resp., NS). Let d = dSV +dNS ,

n = nSV + nNS . Under the null hypothesis that the

survival curves of the two classes are equal, the test statistic
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Fig. 1. Log-cumulants C
(1,0.5)
m (j) as functions of the log of the

scale and discrimination between SV and NS patients. Left column:

C
(1,0.5)
m (j) for m = 1, 2, 3 from top to bottom. Right column: log10(p-

value) for each octave j (a value below the threshold 1.30 (dashed horizontal
black line) indicates a p-value smaller than 0.05 and thus a significative
difference between SV and NS).

Z = n2(n−1)(dSV −nSV d/n)
2

nSV nNSd(n−d)
∼ χ2

1 follows a chi-squared

distribution with 1 degree of freedom.

Furthermore, we assess classification performance in terms

of Sensitivity and Specificity.

Discriminative power of multifractal properties. Fig. 1

shows log-cumulants C
(1,0.5)
m (j) as functions of (log2 of) the

analysis scale a = 2j , and calls for the following comments.

First, it can be observed that, both for NS and SV, all three

log-cumulant functions C
(1,0.5)
m (j) (Fig. 1, left column) dis-

play satisfactory linear behavior across scales 23 ≤ a ≤ 27.

This indicates that HRV temporal dynamics display scaling

properties across groups of 8 to 128 beats. This partially

matches with previous analysis of RR interarrival time series

reporting scaling in range of 10 to 1000 beats [10]. Such

scaling have often been quantified via the so-called α2

scaling parameter when measured by Detrended Fluctuation

Analysis (DFA) (cf. e.g., [3] and references therein). Note

that the slope c
(1,0.5)
1 of the function C

(1,0.5)
1 (j) can be

understood as a robust estimator for α2. Thorough theoretical

and practical comparisons between DFA and p-leaders will

be detailed in a forthcoming study.

Second, the fact that the slopes c
(1,0.5)
1 differ (Fig. 1, top

left) indicates a clear difference in the self-similar temporal

dynamics between SV and NS subjects. Accordingly, Fig. 2

(top right) shows that KMSC computed from c
(1,0.5)
1 has

a moderate discriminative power, slightly below the signifi-

cance level 0.05.

Third, multifractal exponents c
(1,0.5)
2 and c

(1,0.5)
3 , mea-

sured from the linear behaviors across scales of the second

and third log-cumulant functions, C
(1,0.5)
2 (j) and C

(1,0.5)
3 (j)
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Fig. 2. Kaplan Meier Cumulative Survival Curves for the log-cumulants

C
(1,0.5)
m (j = 7) for m = 1, 2, 3 (left column, top to bottom) and for the

self-similar exponent c
(1,0.5)
1 and multifractal exponent s c

(1,0.5)
2 , c

(1,0.5)
3 .

(Fig. 1, middle and bottom left), are observed to clearly

depart from 0, a strong evidence that scaling in RR in-

terarrival HRV time series possess multifractal properties,

both for SV and NS patients. The range (or power) of the

fluctuations of regularity of RR interarrival HRV time series

is identical for NS and SV patients. Yet, no significant change

in the multifractal temporal dynamics conveyed by c
(1,0.5)
2

and c
(1,0.5)
3 is evidenced between NS and SV patients. Ac-

cordingly, KMSC computed from them (Fig. 2, middle and

bottom right, respectively) show no discriminative power.

Discriminative power of multiscale properties. Multi-

fractal analysis consists of a demanding model as it relies

on the assumption that data follow (3). To alleviate such

assumptions, log-cumulant functions C
(1,0.5)
m (j) can be ex-

amined at each scale a = 2j independently, regardless of

whether (3) is satisfied or not. These are referred to as the

multiscale properties of data (to distinguish from multifractal

properties induced by (3)) and provide a measure for the non

Gaussian characteristics of p-leaders at each scale j.

First, it is observed that the function C
(1,0.5)
1 (j) (Fig. 1,

top right) clearly discriminates between SV and NS temporal

dynamics for scales a = 2j ranging from 26 ≃ 60 to

210 ≃ 1000 beats. Interestingly, C
(1,0.5)
1 (j) for NS patients

is systematically below that of SV patients, indicating a

clear decrease in the overall power (or variance) of the RR

inter-arrival times HRV time series. This thus materializes



a decrease in the overall variability of heart rate, generally

considered a sign of bad health. Accordingly, KMSC com-

puted from C
(1,0.5)
1 (j = 7) (Fig. 2, top left) indicate a high

discriminative power between NS and SV patients.

Second, the functions C
(1,0.5)
2 (j) (Fig. 1, middle left) show

no significant change between NS and SV at any scale and

the KMSC computed from C
(1,0.5)
2 (j = 7) (Fig. 2, middle

right) indicates little to no discriminative power.

Third and foremost, the third log-cumulant function (skew-

ness type) C
(1,0.5)
3 (j) (Fig. 1, bottom left) is observed to

significantly differ for scales ranging from 24 ≃ 20 to 210 ≃

1000 beats. The KMSC computed from C
(1,0.5)
3 (j = 7)

(Fig. 2, bottom left) reflect this fact and show highly signi-

ficative discriminating power between NS and SV patients.

These observations confirm multifractal analysis: There

exist clear yet subtle changes in multiscaling properties of

RR interarrival HRV time series. Changes in C
(1,0.5)
1 (j = 7)

indicate changes in the power (or variance) of the time

series themselves, a significant decrease being manifest for

NS patients; The absence of change in C
(1,0.5)
2 (j = 7)

indicates that the range of the fluctuations of lnL(p,γ)(j, ·)
at any scale does not differ between NS and SV patients;

Conversely, the change in C
(1,0.5)
3 (j = 7) indicates a strong

positive asymmetry of the fluctuations of lnL(p,γ)(j, ·) for

NS patients. In equivalent terms, the fluctuations of the time

series of NS patients are characterized by the same variance

but stronger power law like heavy tails and stronger departure

from log-normal tails as those of SV patients.

V. CONCLUSIONS

Making use of the recently proposed p-leader wavelet

coefficients multifractal formalism, the multifractal and mul-

tiscale properties of RR interarrival HRV time series tempo-

ral dynamics of survivor and non-survivor congestion heart

failure patients were compared. For both classes of patients,

clear scaling and multifractal properties are evidenced. While

a (weakly) significant difference is observed for the self-

similar scaling exponent c
(1,0.5)
1 , no clear differences are

evidenced for the multifractal exponents c
(1,0.5)
2 and c

(1,0.5)
3 .

Instead, clear differences are reported for the first and

third log-cumulant functions, C
(1,0.5)
1 and C

(1,0.5)
3 , for scale

A = 27 ≃ 100 beats. Equivalent results are obtained with

scales 26 or 28 corresponding to ≃ 60 or ≃ 250 beats. These

results are strongly consistent with (and slightly outperform)

those reported in [3] where a significant departure from

Gaussianity for detrended increments of the RR interarrival

HRV time series is found around a scale of 40 beats.

It comes as a surprising result that the third log-cumulant

function yields significant differences when the second one

does not, while they are both related to the non-Gaussianity

of the data. The differences of the third log-cumulant indicate

a subtle change in the heavy tails of the fluctuations that

will be further investigated. This preliminary analysis will

be further continued by comparing against age-sex matched

healthy subjects. Also, the 24h data enables us to study

potential differences between awake and sleep phases.
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